Lines Matching refs:frac

291 sharedexp_{max} & = \frac{(2^N-1)}{2^N} \times 2^{(E_{max}-B)}
331 { \frac{max_{clamped}}{2^{(exp'-B-N)}} + \frac{1}{2} }
355 { \frac{red_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
359 { \frac{green_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
363 { \frac{blue_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
1256 i_{frac} & = i_{RB} - i_{floor} \\
1257 j_{frac} & = j_{RB} - j_{floor}
1266 & \times & ( 1 - i_{frac} ) &
1267 & \times & ( 1 - j_{frac} ) & + \\
1269 & \times & ( i_{frac} ) &
1270 & \times & ( 1 - j_{frac} ) & + \\
1272 & \times & ( 1 - i_{frac} ) &
1273 & \times & ( j_{frac} ) & + \\
1275 & \times & ( i_{frac} ) &
1276 & \times & ( j_{frac} ) &
1634 s & = \frac{s}{q}, & \text{for 1D, 2D, or 3D image} \\
1636 t & = \frac{t}{q}, & \text{for 2D or 3D image} \\
1638 r & = \frac{r}{q}, & \text{for 3D image} \\
1640 D_{\textit{ref}} & = \frac{D_{\textit{ref}}}{q}, & \text{if provided}
1784 \frac{1}{2} \times \frac{s_c}{|r_c|} + \frac{1}{2} \\
1786 \frac{1}{2} \times \frac{t_c}{|r_c|} + \frac{1}{2} \\
1796 \frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
1797 \frac{\partial}{\partial{x}} \left ( \frac{1}{2} \times \frac{s_{c}}{|r_{c}|}
1798 + \frac{1}{2}\right ) \\
1799 \frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
1800 \frac{1}{2} \times \frac{\partial}{\partial{x}}
1801 \left ( \frac{s_{c}}{|r_{c}|} \right ) \\
1802 \frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
1803 \frac{1}{2} \times
1805 \frac{
1816 \frac{\partial{s_{\textit{face}}}}{\partial{y}} &=
1817 \frac{1}{2} \times
1819 \frac{
1824 \frac{\partial{t_{\textit{face}}}}{\partial{x}} &=
1825 \frac{1}{2} \times
1827 \frac{
1832 \frac{\partial{t_{\textit{face}}}}{\partial{y}} &=
1833 \frac{1}{2} \times
1835 \frac{
2017 \log_2 \left ( \frac{\rho_{max}}{\eta} \right ) & \text{otherwise}
2288 \alpha &= \mathbin{frac}\left(u - shift\right) \\[1em]
2289 \beta &= \mathbin{frac}\left(v - shift\right) \\[1em]
2290 \gamma &= \mathbin{frac}\left(w - shift\right)
2309 \mathbin{frac}(x) = x - \left\lfloor x \right\rfloor
2331 i_{0} & = {\left \lfloor {u - \frac{3}{2}} \right \rfloor} & i_{1} & = i_{0} + 1 & i_{2} & = i_{1}…
2332 j_{0} & = {\left \lfloor {v - \frac{3}{2}} \right \rfloor} & j_{1} & = j_{0} + 1 & j_{2} & = j_{1}…
2339 alpha &= \mathbin{frac}\left(u - \frac{1}{2}\right) \\[1em]
2340 \beta &= \mathbin{frac}\left(v - \frac{1}{2}\right)
2350 i_{0} & = {\left \lfloor {u - \frac{3}{2}} \right \rfloor} & i_{1} & = i_{0} + 1 & i_{2} & = i_{1}…
2351 j_{0} & = {\left \lfloor {v - \frac{3}{2}} \right \rfloor} & j_{1} & = j_{0} + 1 & j_{2} & = j_{1}…
2352 k_{0} & = {\left \lfloor {w - \frac{3}{2}} \right \rfloor} & k_{1} & = k_{0} + 1 & k_{2} & = k_{1}…
2359 \alpha &= \mathbin{frac}\left(u - \frac{1}{2}\right) \\[1em]
2360 \beta &= \mathbin{frac}\left(v - \frac{1}{2}\right) \\[1em]
2361 \gamma &= \mathbin{frac}\left(w - \frac{1}{2}\right)
2371 \mathbin{frac}(x) = x - \left\lfloor x \right\rfloor
2667 = \frac{1}{2}
2681 = \frac{1}{2}
2714 = \frac{1}{2}
2728 = \frac{1}{2}
2742 = \frac{1}{2}
2766 = \frac{1}{2}
2780 = \frac{1}{2}
2794 = \frac{1}{2}
2816 = \frac{1}{6}
2830 = \frac{1}{6}
2844 = \frac{1}{6}
2867 = \frac{1}{18}
2881 = \frac{1}{18}
2895 = \frac{1}{18}
3054 \frac{1}{N}\sum_{i=1}^{N}
3056 u \left ( x - \frac{1}{2} + \frac{i}{N+1} , y \right ),
3057 v \left (x-\frac{1}{2}+\frac{i}{N+1}, y \right )
3061 \frac{1}{N}\sum_{i=1}^{N}
3063 u \left ( x, y - \frac{1}{2} + \frac{i}{N+1} \right ),
3064 v \left (x,y-\frac{1}{2}+\frac{i}{N+1} \right )
3506 hPhase &= \left\lfloor\mathbin{frac}\left( u \right) \times phaseCount_{h} \right\rfloor \\[1em]
3507 vPhase &= \left\lfloor\mathbin{frac}\left( v \right) \times phaseCount_{v} \right\rfloor \\[1em]
3937 i_{0} &= \left\lfloor u - \frac{boxWidth}{2} \right\rfloor \\[1em]
3938 j_{0} &= \left\lfloor v - \frac{boxHeight}{2} \right\rfloor
3952 startFracU &= \mathbin{frac}\left(u - \frac{boxWidth}{2} \right) \\[1em]
3953 startFracV &= \mathbin{frac}\left(v - \frac{boxHeight}{2} \right) \\[1em]
3954 endFracU &= \mathbin{frac}\left( startFracU + boxWidth \right) \\[1em]
3955 endFracV &= \mathbin{frac}\left( startFracV + boxHeight \right) \\[1em]
3961 where the number of fraction bits retained by latexmath:[frac()] is
4026 \tau_{boxFilter} &= \frac{1}{boxHeight \times boxWidth} \sum_{j=j_0}^{j_{filterHeight-1}}\quad\sum_…