Lines Matching refs:input

292 bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize,  in reshapePrepare()  argument
298 int32_t numInputElements = (int32_t)getNumberOfElements(input); in reshapePrepare()
321 output->type = input.type; in reshapePrepare()
323 output->offset = input.offset; in reshapePrepare()
324 output->scale = input.scale; in reshapePrepare()
329 bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) { in depthToSpacePrepare() argument
330 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in depthToSpacePrepare()
333 uint32_t batches = getSizeOfDimension(input, 0); in depthToSpacePrepare()
334 uint32_t height = getSizeOfDimension(input, 1); in depthToSpacePrepare()
335 uint32_t width = getSizeOfDimension(input, 2); in depthToSpacePrepare()
336 uint32_t channels = getSizeOfDimension(input, 3); in depthToSpacePrepare()
339 output->type = input.type; in depthToSpacePrepare()
342 output->offset = input.offset; in depthToSpacePrepare()
343 output->scale = input.scale; in depthToSpacePrepare()
348 bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) { in spaceToDepthPrepare() argument
349 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToDepthPrepare()
352 uint32_t batches = getSizeOfDimension(input, 0); in spaceToDepthPrepare()
353 uint32_t height = getSizeOfDimension(input, 1); in spaceToDepthPrepare()
354 uint32_t width = getSizeOfDimension(input, 2); in spaceToDepthPrepare()
355 uint32_t channels = getSizeOfDimension(input, 3); in spaceToDepthPrepare()
360 output->type = input.type; in spaceToDepthPrepare()
363 output->offset = input.offset; in spaceToDepthPrepare()
364 output->scale = input.scale; in spaceToDepthPrepare()
410 bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape, in padPrepare() argument
412 uint32_t numInputDims = getNumberOfDimensions(input); in padPrepare()
426 outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding; in padPrepare()
428 output->type = input.type; in padPrepare()
430 output->offset = input.offset; in padPrepare()
431 output->scale = input.scale; in padPrepare()
436 bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData, in batchToSpacePrepare() argument
439 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in batchToSpacePrepare()
447 uint32_t batches = getSizeOfDimension(input, 0); in batchToSpacePrepare()
448 uint32_t height = getSizeOfDimension(input, 1); in batchToSpacePrepare()
449 uint32_t width = getSizeOfDimension(input, 2); in batchToSpacePrepare()
450 uint32_t channels = getSizeOfDimension(input, 3); in batchToSpacePrepare()
453 output->type = input.type; in batchToSpacePrepare()
456 output->offset = input.offset; in batchToSpacePrepare()
457 output->scale = input.scale; in batchToSpacePrepare()
462 bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData, in spaceToBatchPrepare() argument
466 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in spaceToBatchPrepare()
480 uint32_t batches = getSizeOfDimension(input, 0); in spaceToBatchPrepare()
481 uint32_t height = getSizeOfDimension(input, 1); in spaceToBatchPrepare()
482 uint32_t width = getSizeOfDimension(input, 2); in spaceToBatchPrepare()
483 uint32_t channels = getSizeOfDimension(input, 3); in spaceToBatchPrepare()
491 output->type = input.type; in spaceToBatchPrepare()
495 output->offset = input.offset; in spaceToBatchPrepare()
496 output->scale = input.scale; in spaceToBatchPrepare()
501 bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims, in meanPrepare() argument
507 int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(input)); in meanPrepare()
524 outDims[idx] = getSizeOfDimension(input, idx); in meanPrepare()
561 outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx); in meanPrepare()
571 output->type = input.type; in meanPrepare()
572 output->offset = input.offset; in meanPrepare()
573 output->scale = input.scale; in meanPrepare()
578 bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output) { in argMinMaxPrepare() argument
579 NN_CHECK(handleNegativeAxis(input, &axis)); in argMinMaxPrepare()
585 if (getNumberOfDimensions(input) > 1) { in argMinMaxPrepare()
586 output->dimensions.reserve(getNumberOfDimensions(input) - 1); in argMinMaxPrepare()
587 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin(), in argMinMaxPrepare()
588 input.dimensions.begin() + axis); in argMinMaxPrepare()
589 output->dimensions.insert(output->dimensions.end(), input.dimensions.begin() + axis + 1, in argMinMaxPrepare()
590 input.dimensions.end()); in argMinMaxPrepare()
598 bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs, in splitPrepare() argument
600 NN_CHECK(handleNegativeAxis(input, &axis)); in splitPrepare()
602 const int32_t sizeOfAxisToSplit = input.dimensions[axis]; in splitPrepare()
607 output->at(i).type = input.type; in splitPrepare()
608 output->at(i).dimensions = input.dimensions; in splitPrepare()
610 output->at(i).offset = input.offset; in splitPrepare()
611 output->at(i).scale = input.scale; in splitPrepare()
616 bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias, in groupedConvPrepare() argument
621 NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
622 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED); in groupedConvPrepare()
624 NN_OPS_CHECK(input.type == filter.type); in groupedConvPrepare()
626 if (input.type == OperandType::TENSOR_QUANT8_ASYMM || in groupedConvPrepare()
627 input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) { in groupedConvPrepare()
630 NN_OPS_CHECK(input.type == bias.type); in groupedConvPrepare()
632 NN_OPS_CHECK(getNumberOfDimensions(input) == 4); in groupedConvPrepare()
638 NN_OPS_CHECK(getSizeOfDimension(filter, 3) * numGroups == getSizeOfDimension(input, 3)); in groupedConvPrepare()
642 uint32_t width = getSizeOfDimension(input, 2); in groupedConvPrepare()
643 uint32_t height = getSizeOfDimension(input, 1); in groupedConvPrepare()
646 uint32_t batches = getSizeOfDimension(input, 0); in groupedConvPrepare()
658 output->type = input.type; in groupedConvPrepare()