/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_ #define ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_ #include #include "arch/x86/instruction_set_features_x86.h" #include "base/arena_containers.h" #include "base/array_ref.h" #include "base/bit_utils.h" #include "base/globals.h" #include "base/macros.h" #include "base/pointer_size.h" #include "constants_x86.h" #include "heap_poisoning.h" #include "managed_register_x86.h" #include "offsets.h" #include "utils/assembler.h" namespace art HIDDEN { namespace x86 { class Immediate : public ValueObject { public: explicit Immediate(int32_t value_in) : value_(value_in) {} int32_t value() const { return value_; } bool is_int8() const { return IsInt<8>(value_); } bool is_uint8() const { return IsUint<8>(value_); } bool is_int16() const { return IsInt<16>(value_); } bool is_uint16() const { return IsUint<16>(value_); } private: const int32_t value_; }; class Operand : public ValueObject { public: uint8_t mod() const { return (encoding_at(0) >> 6) & 3; } Register rm() const { return static_cast(encoding_at(0) & 7); } ScaleFactor scale() const { return static_cast((encoding_at(1) >> 6) & 3); } Register index() const { return static_cast((encoding_at(1) >> 3) & 7); } Register base() const { return static_cast(encoding_at(1) & 7); } int32_t disp() const { return disp_; } int8_t disp8() const { CHECK_GE(length_, 2); return static_cast(encoding_[length_ - 1]); } int32_t disp32() const { CHECK_GE(length_, 5); int32_t value; memcpy(&value, &encoding_[length_ - 4], sizeof(value)); return value; } bool IsRegister(Register reg) const { return ((encoding_[0] & 0xF8) == 0xC0) // Addressing mode is register only. && ((encoding_[0] & 0x07) == reg); // Register codes match. } inline bool operator==(const Operand &op) const { return length_ == op.length_ && memcmp(encoding_, op.encoding_, length_) == 0 && disp_ == op.disp_ && fixup_ == op.fixup_; } protected: // Operand can be sub classed (e.g: Address). Operand() : length_(0), disp_(0), fixup_(nullptr) { } void SetModRM(int mod_in, Register rm_in) { CHECK_EQ(mod_in & ~3, 0); encoding_[0] = (mod_in << 6) | rm_in; length_ = 1; } void SetSIB(ScaleFactor scale_in, Register index_in, Register base_in) { CHECK_EQ(length_, 1); CHECK_EQ(scale_in & ~3, 0); encoding_[1] = (scale_in << 6) | (index_in << 3) | base_in; length_ = 2; } void SetDisp8(int8_t disp) { CHECK(length_ == 1 || length_ == 2); encoding_[length_++] = static_cast(disp); disp_ = disp; } void SetDisp32(int32_t disp) { CHECK(length_ == 1 || length_ == 2); int disp_size = sizeof(disp); memmove(&encoding_[length_], &disp, disp_size); length_ += disp_size; disp_ = disp; } AssemblerFixup* GetFixup() const { return fixup_; } void SetFixup(AssemblerFixup* fixup) { fixup_ = fixup; } private: uint8_t length_; uint8_t encoding_[6]; int32_t disp_; // A fixup can be associated with the operand, in order to be applied after the // code has been generated. This is used for constant area fixups. AssemblerFixup* fixup_; explicit Operand(Register reg) : disp_(0), fixup_(nullptr) { SetModRM(3, reg); } // Get the operand encoding byte at the given index. uint8_t encoding_at(int index_in) const { CHECK_GE(index_in, 0); CHECK_LT(index_in, length_); return encoding_[index_in]; } friend class X86Assembler; }; class Address : public Operand { public: Address(Register base_in, int32_t disp) { Init(base_in, disp); } Address(Register base_in, int32_t disp, AssemblerFixup *fixup) { Init(base_in, disp); SetFixup(fixup); } Address(Register base_in, Offset disp) { Init(base_in, disp.Int32Value()); } Address(Register base_in, FrameOffset disp) { CHECK_EQ(base_in, ESP); Init(ESP, disp.Int32Value()); } Address(Register base_in, MemberOffset disp) { Init(base_in, disp.Int32Value()); } Address(Register index_in, ScaleFactor scale_in, int32_t disp) { CHECK_NE(index_in, ESP); // Illegal addressing mode. SetModRM(0, ESP); SetSIB(scale_in, index_in, EBP); SetDisp32(disp); } Address(Register base_in, Register index_in, ScaleFactor scale_in, int32_t disp) { Init(base_in, index_in, scale_in, disp); } Address(Register base_in, Register index_in, ScaleFactor scale_in, int32_t disp, AssemblerFixup *fixup) { Init(base_in, index_in, scale_in, disp); SetFixup(fixup); } // Break the address into pieces and reassemble it again with a new displacement. // Note that it may require a new addressing mode if displacement size is changed. static Address displace(const Address &addr, int32_t disp) { const int32_t new_disp = addr.disp() + disp; const bool sib = addr.rm() == ESP; const bool ebp = EBP == (sib ? addr.base() : addr.rm()); Address new_addr; if (addr.mod() == 0 && ebp) { // Special case: mod 00b and EBP in r/m or SIB base => 32-bit displacement. new_addr.SetModRM(0, addr.rm()); if (sib) { new_addr.SetSIB(addr.scale(), addr.index(), addr.base()); } new_addr.SetDisp32(new_disp); } else if (new_disp == 0 && !ebp) { // Mod 00b (excluding a special case for EBP) => no displacement. new_addr.SetModRM(0, addr.rm()); if (sib) { new_addr.SetSIB(addr.scale(), addr.index(), addr.base()); } } else if (new_disp >= -128 && new_disp <= 127) { // Mod 01b => 8-bit displacement. new_addr.SetModRM(1, addr.rm()); if (sib) { new_addr.SetSIB(addr.scale(), addr.index(), addr.base()); } new_addr.SetDisp8(new_disp); } else { // Mod 10b => 32-bit displacement. new_addr.SetModRM(2, addr.rm()); if (sib) { new_addr.SetSIB(addr.scale(), addr.index(), addr.base()); } new_addr.SetDisp32(new_disp); } new_addr.SetFixup(addr.GetFixup()); return new_addr; } Register GetBaseRegister() { if (rm() == ESP) { return base(); } else { return rm(); } } static Address Absolute(uintptr_t addr) { Address result; result.SetModRM(0, EBP); result.SetDisp32(addr); return result; } static Address Absolute(ThreadOffset32 addr) { return Absolute(addr.Int32Value()); } inline bool operator==(const Address& addr) const { return static_cast(*this) == static_cast(addr); } private: Address() {} void Init(Register base_in, int32_t disp) { if (disp == 0 && base_in != EBP) { SetModRM(0, base_in); if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in); } else if (disp >= -128 && disp <= 127) { SetModRM(1, base_in); if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in); SetDisp8(disp); } else { SetModRM(2, base_in); if (base_in == ESP) SetSIB(TIMES_1, ESP, base_in); SetDisp32(disp); } } void Init(Register base_in, Register index_in, ScaleFactor scale_in, int32_t disp) { CHECK_NE(index_in, ESP); // Illegal addressing mode. if (disp == 0 && base_in != EBP) { SetModRM(0, ESP); SetSIB(scale_in, index_in, base_in); } else if (disp >= -128 && disp <= 127) { SetModRM(1, ESP); SetSIB(scale_in, index_in, base_in); SetDisp8(disp); } else { SetModRM(2, ESP); SetSIB(scale_in, index_in, base_in); SetDisp32(disp); } } }; std::ostream& operator<<(std::ostream& os, const Address& addr); // This is equivalent to the Label class, used in a slightly different context. We // inherit the functionality of the Label class, but prevent unintended // derived-to-base conversions by making the base class private. class NearLabel : private Label { public: NearLabel() : Label() {} // Expose the Label routines that we need. using Label::Position; using Label::LinkPosition; using Label::IsBound; using Label::IsUnused; using Label::IsLinked; private: using Label::BindTo; using Label::LinkTo; friend class x86::X86Assembler; DISALLOW_COPY_AND_ASSIGN(NearLabel); }; /** * Class to handle constant area values. */ class ConstantArea { public: explicit ConstantArea(ArenaAllocator* allocator) : buffer_(allocator->Adapter(kArenaAllocAssembler)) {} // Add a double to the constant area, returning the offset into // the constant area where the literal resides. size_t AddDouble(double v); // Add a float to the constant area, returning the offset into // the constant area where the literal resides. size_t AddFloat(float v); // Add an int32_t to the constant area, returning the offset into // the constant area where the literal resides. size_t AddInt32(int32_t v); // Add an int32_t to the end of the constant area, returning the offset into // the constant area where the literal resides. size_t AppendInt32(int32_t v); // Add an int64_t to the constant area, returning the offset into // the constant area where the literal resides. size_t AddInt64(int64_t v); bool IsEmpty() const { return buffer_.size() == 0; } size_t GetSize() const { return buffer_.size() * elem_size_; } ArrayRef GetBuffer() const { return ArrayRef(buffer_); } private: static constexpr size_t elem_size_ = sizeof(int32_t); ArenaVector buffer_; }; class X86Assembler final : public Assembler { public: explicit X86Assembler(ArenaAllocator* allocator, const X86InstructionSetFeatures* instruction_set_features = nullptr) : Assembler(allocator), constant_area_(allocator), has_AVX_(instruction_set_features != nullptr ? instruction_set_features->HasAVX() : false), has_AVX2_(instruction_set_features != nullptr ? instruction_set_features->HasAVX2() :false) {} virtual ~X86Assembler() {} /* * Emit Machine Instructions. */ void call(Register reg); void call(const Address& address); void call(Label* label); void call(const ExternalLabel& label); void pushl(Register reg); void pushl(const Address& address); void pushl(const Immediate& imm); void popl(Register reg); void popl(const Address& address); void movl(Register dst, const Immediate& src); void movl(Register dst, Register src); void movl(Register dst, const Address& src); void movl(const Address& dst, Register src); void movl(const Address& dst, const Immediate& imm); void movl(const Address& dst, Label* lbl); void movntl(const Address& dst, Register src); void blsi(Register dst, Register src); // no addr variant (for now) void blsmsk(Register dst, Register src); // no addr variant (for now) void blsr(Register dst, Register src); // no addr varianr (for now) void bswapl(Register dst); void bsfl(Register dst, Register src); void bsfl(Register dst, const Address& src); void bsrl(Register dst, Register src); void bsrl(Register dst, const Address& src); void popcntl(Register dst, Register src); void popcntl(Register dst, const Address& src); void rorl(Register reg, const Immediate& imm); void rorl(Register operand, Register shifter); void roll(Register reg, const Immediate& imm); void roll(Register operand, Register shifter); void movzxb(Register dst, ByteRegister src); void movzxb(Register dst, const Address& src); void movsxb(Register dst, ByteRegister src); void movsxb(Register dst, const Address& src); void movb(Register dst, const Address& src); void movb(const Address& dst, ByteRegister src); void movb(const Address& dst, const Immediate& imm); void movzxw(Register dst, Register src); void movzxw(Register dst, const Address& src); void movsxw(Register dst, Register src); void movsxw(Register dst, const Address& src); void movw(Register dst, const Address& src); void movw(const Address& dst, Register src); void movw(const Address& dst, const Immediate& imm); void leal(Register dst, const Address& src); void cmovl(Condition condition, Register dst, Register src); void cmovl(Condition condition, Register dst, const Address& src); void setb(Condition condition, Register dst); void movaps(XmmRegister dst, XmmRegister src); // move void movaps(XmmRegister dst, const Address& src); // load aligned void movups(XmmRegister dst, const Address& src); // load unaligned void movaps(const Address& dst, XmmRegister src); // store aligned void movups(const Address& dst, XmmRegister src); // store unaligned void vmovaps(XmmRegister dst, XmmRegister src); // move void vmovaps(XmmRegister dst, const Address& src); // load aligned void vmovups(XmmRegister dst, const Address& src); // load unaligned void vmovaps(const Address& dst, XmmRegister src); // store aligned void vmovups(const Address& dst, XmmRegister src); // store unaligned void movss(XmmRegister dst, const Address& src); void movss(const Address& dst, XmmRegister src); void movss(XmmRegister dst, XmmRegister src); void movd(XmmRegister dst, Register src); void movd(Register dst, XmmRegister src); void addss(XmmRegister dst, XmmRegister src); void addss(XmmRegister dst, const Address& src); void subss(XmmRegister dst, XmmRegister src); void subss(XmmRegister dst, const Address& src); void mulss(XmmRegister dst, XmmRegister src); void mulss(XmmRegister dst, const Address& src); void divss(XmmRegister dst, XmmRegister src); void divss(XmmRegister dst, const Address& src); void addps(XmmRegister dst, XmmRegister src); // no addr variant (for now) void subps(XmmRegister dst, XmmRegister src); void mulps(XmmRegister dst, XmmRegister src); void divps(XmmRegister dst, XmmRegister src); void vmulps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vmulpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vdivps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vdivpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vaddps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vsubps(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vsubpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vaddpd(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vfmadd213ss(XmmRegister acc, XmmRegister left, XmmRegister right); void vfmadd213sd(XmmRegister acc, XmmRegister left, XmmRegister right); void movapd(XmmRegister dst, XmmRegister src); // move void movapd(XmmRegister dst, const Address& src); // load aligned void movupd(XmmRegister dst, const Address& src); // load unaligned void movapd(const Address& dst, XmmRegister src); // store aligned void movupd(const Address& dst, XmmRegister src); // store unaligned void vmovapd(XmmRegister dst, XmmRegister src); // move void vmovapd(XmmRegister dst, const Address& src); // load aligned void vmovupd(XmmRegister dst, const Address& src); // load unaligned void vmovapd(const Address& dst, XmmRegister src); // store aligned void vmovupd(const Address& dst, XmmRegister src); // store unaligned void movsd(XmmRegister dst, const Address& src); void movsd(const Address& dst, XmmRegister src); void movsd(XmmRegister dst, XmmRegister src); void movhpd(XmmRegister dst, const Address& src); void movhpd(const Address& dst, XmmRegister src); void addsd(XmmRegister dst, XmmRegister src); void addsd(XmmRegister dst, const Address& src); void subsd(XmmRegister dst, XmmRegister src); void subsd(XmmRegister dst, const Address& src); void mulsd(XmmRegister dst, XmmRegister src); void mulsd(XmmRegister dst, const Address& src); void divsd(XmmRegister dst, XmmRegister src); void divsd(XmmRegister dst, const Address& src); void addpd(XmmRegister dst, XmmRegister src); // no addr variant (for now) void subpd(XmmRegister dst, XmmRegister src); void mulpd(XmmRegister dst, XmmRegister src); void divpd(XmmRegister dst, XmmRegister src); void movdqa(XmmRegister dst, XmmRegister src); // move void movdqa(XmmRegister dst, const Address& src); // load aligned void movdqu(XmmRegister dst, const Address& src); // load unaligned void movdqa(const Address& dst, XmmRegister src); // store aligned void movdqu(const Address& dst, XmmRegister src); // store unaligned void vmovdqa(XmmRegister dst, XmmRegister src); // move void vmovdqa(XmmRegister dst, const Address& src); // load aligned void vmovdqu(XmmRegister dst, const Address& src); // load unaligned void vmovdqa(const Address& dst, XmmRegister src); // store aligned void vmovdqu(const Address& dst, XmmRegister src); // store unaligned void paddb(XmmRegister dst, XmmRegister src); // no addr variant (for now) void psubb(XmmRegister dst, XmmRegister src); void vpaddb(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vpaddw(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void paddw(XmmRegister dst, XmmRegister src); void psubw(XmmRegister dst, XmmRegister src); void pmullw(XmmRegister dst, XmmRegister src); void vpmullw(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vpsubb(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vpsubw(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vpsubd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void paddd(XmmRegister dst, XmmRegister src); void psubd(XmmRegister dst, XmmRegister src); void pmulld(XmmRegister dst, XmmRegister src); void vpmulld(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vpaddd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void paddq(XmmRegister dst, XmmRegister src); void psubq(XmmRegister dst, XmmRegister src); void vpaddq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void vpsubq(XmmRegister dst, XmmRegister add_left, XmmRegister add_right); void paddusb(XmmRegister dst, XmmRegister src); void paddsb(XmmRegister dst, XmmRegister src); void paddusw(XmmRegister dst, XmmRegister src); void paddsw(XmmRegister dst, XmmRegister src); void psubusb(XmmRegister dst, XmmRegister src); void psubsb(XmmRegister dst, XmmRegister src); void psubusw(XmmRegister dst, XmmRegister src); void psubsw(XmmRegister dst, XmmRegister src); void cvtsi2ss(XmmRegister dst, Register src); void cvtsi2sd(XmmRegister dst, Register src); void cvtss2si(Register dst, XmmRegister src); void cvtss2sd(XmmRegister dst, XmmRegister src); void cvtsd2si(Register dst, XmmRegister src); void cvtsd2ss(XmmRegister dst, XmmRegister src); void cvttss2si(Register dst, XmmRegister src); void cvttsd2si(Register dst, XmmRegister src); void cvtdq2ps(XmmRegister dst, XmmRegister src); void cvtdq2pd(XmmRegister dst, XmmRegister src); void comiss(XmmRegister a, XmmRegister b); void comiss(XmmRegister a, const Address& b); void comisd(XmmRegister a, XmmRegister b); void comisd(XmmRegister a, const Address& b); void ucomiss(XmmRegister a, XmmRegister b); void ucomiss(XmmRegister a, const Address& b); void ucomisd(XmmRegister a, XmmRegister b); void ucomisd(XmmRegister a, const Address& b); void roundsd(XmmRegister dst, XmmRegister src, const Immediate& imm); void roundss(XmmRegister dst, XmmRegister src, const Immediate& imm); void sqrtsd(XmmRegister dst, XmmRegister src); void sqrtss(XmmRegister dst, XmmRegister src); void xorpd(XmmRegister dst, const Address& src); void xorpd(XmmRegister dst, XmmRegister src); void xorps(XmmRegister dst, const Address& src); void xorps(XmmRegister dst, XmmRegister src); void pxor(XmmRegister dst, XmmRegister src); // no addr variant (for now) void vpxor(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vxorps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vxorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void andpd(XmmRegister dst, XmmRegister src); void andpd(XmmRegister dst, const Address& src); void andps(XmmRegister dst, XmmRegister src); void andps(XmmRegister dst, const Address& src); void pand(XmmRegister dst, XmmRegister src); // no addr variant (for now) void vpand(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vandps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vandpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void andn(Register dst, Register src1, Register src2); // no addr variant (for now) void andnpd(XmmRegister dst, XmmRegister src); // no addr variant (for now) void andnps(XmmRegister dst, XmmRegister src); void pandn(XmmRegister dst, XmmRegister src); void vpandn(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vandnps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vandnpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void orpd(XmmRegister dst, XmmRegister src); // no addr variant (for now) void orps(XmmRegister dst, XmmRegister src); void por(XmmRegister dst, XmmRegister src); void vpor(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vorps(XmmRegister dst, XmmRegister src1, XmmRegister src2); void vorpd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void pavgb(XmmRegister dst, XmmRegister src); // no addr variant (for now) void pavgw(XmmRegister dst, XmmRegister src); void psadbw(XmmRegister dst, XmmRegister src); void pmaddwd(XmmRegister dst, XmmRegister src); void vpmaddwd(XmmRegister dst, XmmRegister src1, XmmRegister src2); void phaddw(XmmRegister dst, XmmRegister src); void phaddd(XmmRegister dst, XmmRegister src); void haddps(XmmRegister dst, XmmRegister src); void haddpd(XmmRegister dst, XmmRegister src); void phsubw(XmmRegister dst, XmmRegister src); void phsubd(XmmRegister dst, XmmRegister src); void hsubps(XmmRegister dst, XmmRegister src); void hsubpd(XmmRegister dst, XmmRegister src); void pminsb(XmmRegister dst, XmmRegister src); // no addr variant (for now) void pmaxsb(XmmRegister dst, XmmRegister src); void pminsw(XmmRegister dst, XmmRegister src); void pmaxsw(XmmRegister dst, XmmRegister src); void pminsd(XmmRegister dst, XmmRegister src); void pmaxsd(XmmRegister dst, XmmRegister src); void pminub(XmmRegister dst, XmmRegister src); // no addr variant (for now) void pmaxub(XmmRegister dst, XmmRegister src); void pminuw(XmmRegister dst, XmmRegister src); void pmaxuw(XmmRegister dst, XmmRegister src); void pminud(XmmRegister dst, XmmRegister src); void pmaxud(XmmRegister dst, XmmRegister src); void minps(XmmRegister dst, XmmRegister src); // no addr variant (for now) void maxps(XmmRegister dst, XmmRegister src); void minpd(XmmRegister dst, XmmRegister src); void maxpd(XmmRegister dst, XmmRegister src); void pcmpeqb(XmmRegister dst, XmmRegister src); void pcmpeqw(XmmRegister dst, XmmRegister src); void pcmpeqd(XmmRegister dst, XmmRegister src); void pcmpeqq(XmmRegister dst, XmmRegister src); void pcmpgtb(XmmRegister dst, XmmRegister src); void pcmpgtw(XmmRegister dst, XmmRegister src); void pcmpgtd(XmmRegister dst, XmmRegister src); void pcmpgtq(XmmRegister dst, XmmRegister src); // SSE4.2 void shufpd(XmmRegister dst, XmmRegister src, const Immediate& imm); void shufps(XmmRegister dst, XmmRegister src, const Immediate& imm); void pshufd(XmmRegister dst, XmmRegister src, const Immediate& imm); void punpcklbw(XmmRegister dst, XmmRegister src); void punpcklwd(XmmRegister dst, XmmRegister src); void punpckldq(XmmRegister dst, XmmRegister src); void punpcklqdq(XmmRegister dst, XmmRegister src); void punpckhbw(XmmRegister dst, XmmRegister src); void punpckhwd(XmmRegister dst, XmmRegister src); void punpckhdq(XmmRegister dst, XmmRegister src); void punpckhqdq(XmmRegister dst, XmmRegister src); void psllw(XmmRegister reg, const Immediate& shift_count); void pslld(XmmRegister reg, const Immediate& shift_count); void psllq(XmmRegister reg, const Immediate& shift_count); void psraw(XmmRegister reg, const Immediate& shift_count); void psrad(XmmRegister reg, const Immediate& shift_count); // no psraq void psrlw(XmmRegister reg, const Immediate& shift_count); void psrld(XmmRegister reg, const Immediate& shift_count); void psrlq(XmmRegister reg, const Immediate& shift_count); void psrldq(XmmRegister reg, const Immediate& shift_count); void flds(const Address& src); void fstps(const Address& dst); void fsts(const Address& dst); void fldl(const Address& src); void fstpl(const Address& dst); void fstl(const Address& dst); void fstsw(); void fucompp(); void fnstcw(const Address& dst); void fldcw(const Address& src); void fistpl(const Address& dst); void fistps(const Address& dst); void fildl(const Address& src); void filds(const Address& src); void fincstp(); void ffree(const Immediate& index); void fsin(); void fcos(); void fptan(); void fprem(); void xchgb(ByteRegister dst, ByteRegister src); void xchgb(ByteRegister reg, const Address& address); // Wrappers for `xchgb` that accept `Register` instead of `ByteRegister` (used for testing). void xchgb(Register dst, Register src); void xchgb(Register reg, const Address& address); void xchgw(Register dst, Register src); void xchgw(Register reg, const Address& address); void xchgl(Register dst, Register src); void xchgl(Register reg, const Address& address); void cmpb(const Address& address, const Immediate& imm); void cmpw(const Address& address, const Immediate& imm); void cmpl(Register reg, const Immediate& imm); void cmpl(Register reg0, Register reg1); void cmpl(Register reg, const Address& address); void cmpl(const Address& address, Register reg); void cmpl(const Address& address, const Immediate& imm); void testl(Register reg1, Register reg2); void testl(Register reg, const Immediate& imm); void testl(Register reg1, const Address& address); void testb(const Address& dst, const Immediate& imm); void testl(const Address& dst, const Immediate& imm); void andl(Register dst, const Immediate& imm); void andl(Register dst, Register src); void andl(Register dst, const Address& address); void andw(const Address& address, const Immediate& imm); void orl(Register dst, const Immediate& imm); void orl(Register dst, Register src); void orl(Register dst, const Address& address); void xorl(Register dst, Register src); void xorl(Register dst, const Immediate& imm); void xorl(Register dst, const Address& address); void addl(Register dst, Register src); void addl(Register reg, const Immediate& imm); void addl(Register reg, const Address& address); void addl(const Address& address, Register reg); void addl(const Address& address, const Immediate& imm); void addw(const Address& address, const Immediate& imm); void addw(Register reg, const Immediate& imm); void adcl(Register dst, Register src); void adcl(Register reg, const Immediate& imm); void adcl(Register dst, const Address& address); void subl(Register dst, Register src); void subl(Register reg, const Immediate& imm); void subl(Register reg, const Address& address); void subl(const Address& address, Register src); void cdq(); void idivl(Register reg); void divl(Register reg); void imull(Register dst, Register src); void imull(Register reg, const Immediate& imm); void imull(Register dst, Register src, const Immediate& imm); void imull(Register reg, const Address& address); void imull(Register reg); void imull(const Address& address); void mull(Register reg); void mull(const Address& address); void sbbl(Register dst, Register src); void sbbl(Register reg, const Immediate& imm); void sbbl(Register reg, const Address& address); void sbbl(const Address& address, Register src); void incl(Register reg); void incl(const Address& address); void decl(Register reg); void decl(const Address& address); void shll(Register reg, const Immediate& imm); void shll(Register operand, Register shifter); void shll(const Address& address, const Immediate& imm); void shll(const Address& address, Register shifter); void shrl(Register reg, const Immediate& imm); void shrl(Register operand, Register shifter); void shrl(const Address& address, const Immediate& imm); void shrl(const Address& address, Register shifter); void sarl(Register reg, const Immediate& imm); void sarl(Register operand, Register shifter); void sarl(const Address& address, const Immediate& imm); void sarl(const Address& address, Register shifter); void shld(Register dst, Register src, Register shifter); void shld(Register dst, Register src, const Immediate& imm); void shrd(Register dst, Register src, Register shifter); void shrd(Register dst, Register src, const Immediate& imm); void negl(Register reg); void notl(Register reg); void enter(const Immediate& imm); void leave(); void ret(); void ret(const Immediate& imm); void nop(); void int3(); void hlt(); void j(Condition condition, Label* label); void j(Condition condition, NearLabel* label); void jecxz(NearLabel* label); void jmp(Register reg); void jmp(const Address& address); void jmp(Label* label); void jmp(NearLabel* label); void repne_scasb(); void repne_scasw(); void repe_cmpsb(); void repe_cmpsw(); void repe_cmpsl(); void rep_movsb(); void rep_movsl(); void rep_movsw(); X86Assembler* lock(); void cmpxchgb(const Address& address, ByteRegister reg); void cmpxchgw(const Address& address, Register reg); void cmpxchgl(const Address& address, Register reg); void cmpxchg8b(const Address& address); void xaddb(const Address& address, ByteRegister reg); void xaddw(const Address& address, Register reg); void xaddl(const Address& address, Register reg); void mfence(); X86Assembler* fs(); X86Assembler* gs(); // // Macros for High-level operations. // void AddImmediate(Register reg, const Immediate& imm); void LoadLongConstant(XmmRegister dst, int64_t value); void LoadDoubleConstant(XmmRegister dst, double value); // For testing purpose (Repeat* functions expect Register rather than ByteRegister). void cmpxchgb(const Address& address, Register reg) { cmpxchgb(address, static_cast(reg)); } // For testing purpose (Repeat* functions expect Register rather than ByteRegister). void LockCmpxchgb(const Address& address, Register reg) { LockCmpxchgb(address, static_cast(reg)); } void LockCmpxchgb(const Address& address, ByteRegister reg) { lock()->cmpxchgb(address, reg); } void LockCmpxchgw(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // We make sure that the operand size override bytecode is emited before the lock bytecode. // We test against clang which enforces this bytecode order. EmitOperandSizeOverride(); EmitUint8(0xF0); EmitUint8(0x0F); EmitUint8(0xB1); EmitOperand(reg, address); } void LockCmpxchgl(const Address& address, Register reg) { lock()->cmpxchgl(address, reg); } void LockCmpxchg8b(const Address& address) { lock()->cmpxchg8b(address); } // For testing purpose (Repeat* functions expect Register rather than ByteRegister). void LockXaddb(const Address& address, Register reg) { LockXaddb(address, static_cast(reg)); } void LockXaddb(const Address& address, ByteRegister reg) { lock()->xaddb(address, reg); } void LockXaddw(const Address& address, Register reg) { AssemblerBuffer::EnsureCapacity ensured(&buffer_); // We make sure that the operand size override bytecode is emited before the lock bytecode. // We test against clang which enforces this bytecode order. EmitOperandSizeOverride(); EmitUint8(0xF0); EmitUint8(0x0F); EmitUint8(0xC1); EmitOperand(reg, address); } void LockXaddl(const Address& address, Register reg) { lock()->xaddl(address, reg); } void rdtsc() { AssemblerBuffer::EnsureCapacity ensured(&buffer_); EmitUint8(0x0F); EmitUint8(0x31); } // // Misc. functionality // int PreferredLoopAlignment() { return 16; } void Align(int alignment, int offset); void Bind(Label* label) override; void Jump(Label* label) override { jmp(label); } void Bind(NearLabel* label); // // Heap poisoning. // // Poison a heap reference contained in `reg`. void PoisonHeapReference(Register reg) { negl(reg); } // Unpoison a heap reference contained in `reg`. void UnpoisonHeapReference(Register reg) { negl(reg); } // Poison a heap reference contained in `reg` if heap poisoning is enabled. void MaybePoisonHeapReference(Register reg) { if (kPoisonHeapReferences) { PoisonHeapReference(reg); } } // Unpoison a heap reference contained in `reg` if heap poisoning is enabled. void MaybeUnpoisonHeapReference(Register reg) { if (kPoisonHeapReferences) { UnpoisonHeapReference(reg); } } // Add a double to the constant area, returning the offset into // the constant area where the literal resides. size_t AddDouble(double v) { return constant_area_.AddDouble(v); } // Add a float to the constant area, returning the offset into // the constant area where the literal resides. size_t AddFloat(float v) { return constant_area_.AddFloat(v); } // Add an int32_t to the constant area, returning the offset into // the constant area where the literal resides. size_t AddInt32(int32_t v) { return constant_area_.AddInt32(v); } // Add an int32_t to the end of the constant area, returning the offset into // the constant area where the literal resides. size_t AppendInt32(int32_t v) { return constant_area_.AppendInt32(v); } // Add an int64_t to the constant area, returning the offset into // the constant area where the literal resides. size_t AddInt64(int64_t v) { return constant_area_.AddInt64(v); } // Add the contents of the constant area to the assembler buffer. void AddConstantArea(); // Is the constant area empty? Return true if there are no literals in the constant area. bool IsConstantAreaEmpty() const { return constant_area_.IsEmpty(); } // Return the current size of the constant area. size_t ConstantAreaSize() const { return constant_area_.GetSize(); } bool CpuHasAVXorAVX2FeatureFlag(); private: inline void EmitUint8(uint8_t value); inline void EmitInt32(int32_t value); inline void EmitRegisterOperand(int rm, int reg); inline void EmitXmmRegisterOperand(int rm, XmmRegister reg); inline void EmitFixup(AssemblerFixup* fixup); inline void EmitOperandSizeOverride(); void EmitOperand(int rm, const Operand& operand); void EmitImmediate(const Immediate& imm, bool is_16_op = false); void EmitComplex( int rm, const Operand& operand, const Immediate& immediate, bool is_16_op = false); void EmitLabel(Label* label, int instruction_size); void EmitLabelLink(Label* label); void EmitLabelLink(NearLabel* label); void EmitGenericShift(int rm, const Operand& operand, const Immediate& imm); void EmitGenericShift(int rm, const Operand& operand, Register shifter); uint8_t EmitVexPrefixByteZero(bool is_twobyte_form); uint8_t EmitVexPrefixByteOne(bool R, bool X, bool B, int SET_VEX_M); uint8_t EmitVexPrefixByteOne(bool R, X86ManagedRegister operand, int SET_VEX_L, int SET_VEX_PP); uint8_t EmitVexPrefixByteTwo(bool W, X86ManagedRegister operand, int SET_VEX_L, int SET_VEX_PP); uint8_t EmitVexPrefixByteTwo(bool W, int SET_VEX_L, int SET_VEX_PP); // Helper function to emit a shorter variant of XCHG for when at least one operand is EAX/AX. bool try_xchg_eax(Register dst, Register src); ConstantArea constant_area_; bool has_AVX_; // x86 256bit SIMD AVX. bool has_AVX2_; // x86 256bit SIMD AVX 2.0. DISALLOW_COPY_AND_ASSIGN(X86Assembler); }; inline void X86Assembler::EmitUint8(uint8_t value) { buffer_.Emit(value); } inline void X86Assembler::EmitInt32(int32_t value) { buffer_.Emit(value); } inline void X86Assembler::EmitRegisterOperand(int rm, int reg) { CHECK_GE(rm, 0); CHECK_LT(rm, 8); buffer_.Emit(0xC0 + (rm << 3) + reg); } inline void X86Assembler::EmitXmmRegisterOperand(int rm, XmmRegister reg) { EmitRegisterOperand(rm, static_cast(reg)); } inline void X86Assembler::EmitFixup(AssemblerFixup* fixup) { buffer_.EmitFixup(fixup); } inline void X86Assembler::EmitOperandSizeOverride() { EmitUint8(0x66); } } // namespace x86 } // namespace art #endif // ART_COMPILER_UTILS_X86_ASSEMBLER_X86_H_