/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utils.h" #include #include #include #include #include #include #include #include #include #include "android-base/file.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "base/mem_map.h" #include "base/stl_util.h" #include "bit_utils.h" #include "os.h" #if defined(__APPLE__) #include // NOLINTNEXTLINE - inclusion of syscall is dependent on arch #include #include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED #endif #if defined(__BIONIC__) // membarrier(2) is only supported for target builds (b/111199492). #include // NOLINTNEXTLINE - inclusion of syscall is dependent on arch #include #endif #if defined(__linux__) #include // NOLINTNEXTLINE - inclusion of syscall is dependent on arch #include #endif #if defined(_WIN32) #include // This include needs to be here due to our coding conventions. Unfortunately // it drags in the definition of the dread ERROR macro. #ifdef ERROR #undef ERROR #endif #endif namespace art { using android::base::ReadFileToString; // NOLINT - ReadFileToString is actually used using android::base::StringPrintf; #if defined(__arm__) namespace { // Bitmap of caches to flush for cacheflush(2). Must be zero for ARM. static constexpr int kCacheFlushFlags = 0x0; // Number of retry attempts when flushing cache ranges. static constexpr size_t kMaxFlushAttempts = 4; int CacheFlush(uintptr_t start, uintptr_t limit) { // The signature of cacheflush(2) seems to vary by source. On ARM the system call wrapper // (bionic/SYSCALLS.TXT) has the form: int cacheflush(long start, long end, long flags); int r = cacheflush(start, limit, kCacheFlushFlags); if (r == -1) { CHECK_NE(errno, EINVAL); } return r; } bool TouchAndFlushCacheLinesWithinPage(uintptr_t start, uintptr_t limit, size_t attempts, size_t page_size) { CHECK_LT(start, limit); CHECK_EQ(RoundDown(start, page_size), RoundDown(limit - 1, page_size)) << "range spans pages"; // Declare a volatile variable so the compiler does not elide reads from the page being touched. [[maybe_unused]] volatile uint8_t v = 0; for (size_t i = 0; i < attempts; ++i) { // Touch page to maximize chance page is resident. v = *reinterpret_cast(start); if (LIKELY(CacheFlush(start, limit) == 0)) { return true; } } return false; } } // namespace bool FlushCpuCaches(void* begin, void* end) { // This method is specialized for ARM as the generic implementation below uses the // __builtin___clear_cache() intrinsic which is declared as void. On ARMv7 flushing the CPU // caches is a privileged operation. The Linux kernel allows these operations to fail when they // trigger a fault (e.g. page not resident). We use a wrapper for the ARM specific cacheflush() // system call to detect the failure and potential erroneous state of the data and instruction // caches. // // The Android bug for this is b/132205399 and there's a similar discussion on // https://reviews.llvm.org/D37788. This is primarily an issue for the dual view JIT where the // pages where code is executed are only ever RX and never RWX. When attempting to invalidate // instruction cache lines in the RX mapping after writing fresh code in the RW mapping, the // page may not be resident (due to memory pressure), and this means that a fault is raised in // the midst of a cacheflush() call and the instruction cache lines are not invalidated and so // have stale code. // // Other architectures fair better for reasons such as: // // (1) stronger coherence between the data and instruction caches. // // (2) fault handling that allows flushing/invalidation to continue after // a missing page has been faulted in. const size_t page_size = MemMap::GetPageSize(); uintptr_t start = reinterpret_cast(begin); const uintptr_t limit = reinterpret_cast(end); if (LIKELY(CacheFlush(start, limit) == 0)) { return true; } // A rare failure has occurred implying that part of the range (begin, end] has been swapped // out. Retry flushing but this time grouping cache-line flushes on individual pages and // touching each page before flushing. uintptr_t next_page = RoundUp(start + 1, page_size); while (start < limit) { uintptr_t boundary = std::min(next_page, limit); if (!TouchAndFlushCacheLinesWithinPage(start, boundary, kMaxFlushAttempts, page_size)) { return false; } start = boundary; next_page += page_size; } return true; } #else bool FlushCpuCaches(void* begin, void* end) { __builtin___clear_cache(reinterpret_cast(begin), reinterpret_cast(end)); return true; } #endif #if defined(__linux__) bool IsKernelVersionAtLeast(int reqd_major, int reqd_minor) { struct utsname uts; int major, minor; CHECK_EQ(uname(&uts), 0); CHECK_EQ(strcmp(uts.sysname, "Linux"), 0); CHECK_EQ(sscanf(uts.release, "%d.%d:", &major, &minor), 2); return major > reqd_major || (major == reqd_major && minor >= reqd_minor); } #endif bool CacheOperationsMaySegFault() { #if defined(__linux__) && defined(__aarch64__) // Avoid issue on older ARM64 kernels where data cache operations could be classified as writes // and cause segmentation faults. This was fixed in Linux 3.11rc2: // // https://github.com/torvalds/linux/commit/db6f41063cbdb58b14846e600e6bc3f4e4c2e888 // // This behaviour means we should avoid the dual view JIT on the device. This is just // an issue when running tests on devices that have an old kernel. return !IsKernelVersionAtLeast(3, 12); #else return false; #endif } uint32_t GetTid() { #if defined(__APPLE__) uint64_t owner; CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6 return owner; #elif defined(__BIONIC__) return gettid(); #elif defined(_WIN32) return static_cast(::GetCurrentThreadId()); #else return syscall(__NR_gettid); #endif } std::string GetThreadName(pid_t tid) { std::string result; #ifdef _WIN32 UNUSED(tid); result = ""; #else // TODO: make this less Linux-specific. if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) { result.resize(result.size() - 1); // Lose the trailing '\n'. } else { result = ""; } #endif return result; } std::string PrettySize(uint64_t byte_count) { // The byte thresholds at which we display amounts. A byte count is displayed // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1]. static const uint64_t kUnitThresholds[] = { 0, // B up to... 10*KB, // KB up to... 10*MB, // MB up to... 10ULL*GB // GB from here. }; static const uint64_t kBytesPerUnit[] = { 1, KB, MB, GB }; static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" }; int i = arraysize(kUnitThresholds); while (--i > 0) { if (byte_count >= kUnitThresholds[i]) { break; } } return StringPrintf("%" PRIu64 "%s", byte_count / kBytesPerUnit[i], kUnitStrings[i]); } template void Split(const StrIn& s, char separator, std::vector* out_result) { auto split = SplitString(std::string_view(s), separator); for (std::string_view p : split) { if (p.empty()) { continue; } out_result->push_back(Str(p)); } } template void Split(const char *const& s, char separator, std::vector* out_result); template void Split(const std::string& s, char separator, std::vector* out_result); template void Split(const char *const& s, char separator, std::vector* out_result); template void Split(const std::string_view& s, char separator, std::vector* out_result); template void Split(const std::string_view& s, char separator, std::vector* out_result); template void Split(const Str& s, char separator, size_t len, Str* out_result) { Str* last = out_result + len; auto split = SplitString(std::string_view(s), separator); for (std::string_view p : split) { if (p.empty()) { continue; } if (out_result == last) { return; } *out_result++ = Str(p); } } template void Split(const std::string& s, char separator, size_t len, std::string* out_result); template void Split(const std::string_view& s, char separator, size_t len, std::string_view* out_result); void SetThreadName(const char* thread_name) { bool hasAt = false; bool hasDot = false; const char* s = thread_name; while (*s) { if (*s == '.') { hasDot = true; } else if (*s == '@') { hasAt = true; } s++; } int len = s - thread_name; if (len < 15 || hasAt || !hasDot) { s = thread_name; } else { s = thread_name + len - 15; } #if defined(__linux__) || defined(_WIN32) // pthread_setname_np fails rather than truncating long strings. char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel. strncpy(buf, s, sizeof(buf)-1); buf[sizeof(buf)-1] = '\0'; errno = pthread_setname_np(pthread_self(), buf); if (errno != 0) { PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; } #else // __APPLE__ pthread_setname_np(thread_name); #endif } void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) { *utime = *stime = *task_cpu = 0; #ifdef _WIN32 // TODO: implement this. UNUSED(tid); *state = 'S'; #else std::string stats; // TODO: make this less Linux-specific. if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) { return; } // Skip the command, which may contain spaces. stats = stats.substr(stats.find(')') + 2); // Extract the three fields we care about. std::vector fields; Split(stats, ' ', &fields); *state = fields[0][0]; *utime = strtoull(fields[11].c_str(), nullptr, 10); *stime = strtoull(fields[12].c_str(), nullptr, 10); *task_cpu = strtoull(fields[36].c_str(), nullptr, 10); #endif } void SleepForever() { while (true) { sleep(100000000); } } std::string GetProcessStatus(const char* key) { // Build search pattern of key and separator. std::string pattern(key); pattern.push_back(':'); // Search for status lines starting with pattern. std::ifstream fs("/proc/self/status"); std::string line; while (std::getline(fs, line)) { if (strncmp(pattern.c_str(), line.c_str(), pattern.size()) == 0) { // Skip whitespace in matching line (if any). size_t pos = line.find_first_not_of(" \t", pattern.size()); if (UNLIKELY(pos == std::string::npos)) { break; } return std::string(line, pos); } } return ""; } size_t GetOsThreadStat(pid_t tid, char* buf, size_t len) { #if defined(__linux__) static constexpr int NAME_BUF_SIZE = 50; char file_name_buf[NAME_BUF_SIZE]; snprintf(file_name_buf, NAME_BUF_SIZE, "/proc/%d/stat", tid); int stat_fd = open(file_name_buf, O_RDONLY | O_CLOEXEC); if (stat_fd >= 0) { ssize_t bytes_read = TEMP_FAILURE_RETRY(read(stat_fd, buf, len)); CHECK_GT(bytes_read, 0) << strerror(errno); int ret = close(stat_fd); CHECK_EQ(ret, 0) << strerror(errno); buf[len - 1] = '\0'; return bytes_read; } #else UNUSED(tid); UNUSED(buf); UNUSED(len); #endif return 0; } std::string GetOsThreadStatQuick(pid_t tid) { static constexpr int BUF_SIZE = 90; char buf[BUF_SIZE]; #if defined(__linux__) if (GetOsThreadStat(tid, buf, BUF_SIZE) == 0) { snprintf(buf, BUF_SIZE, "Unknown state: %d", tid); } #else UNUSED(tid); strcpy(buf, "Unknown state"); // snprintf may not be usable. #endif return buf; } std::string GetOtherThreadOsStats() { #if defined(__linux__) DIR* dir = opendir("/proc/self/task"); if (dir == nullptr) { return std::string("Failed to open /proc/self/task: ") + strerror(errno); } pid_t me = GetTid(); struct dirent* de; std::string result; bool found_me = false; errno = 0; while ((de = readdir(dir)) != nullptr) { if (de->d_name[0] == '.') { continue; } pid_t tid = atoi(de->d_name); if (tid == me) { found_me = true; } else { if (!result.empty()) { result += "; "; } result += tid == 0 ? std::string("bad tid: ") + de->d_name : GetOsThreadStatQuick(tid); } } if (errno == EBADF) { result += "(Bad directory)"; } if (!found_me) { result += "(Failed to find requestor)"; } return result; #else return "Can't get other threads"; #endif } } // namespace art