/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fault_handler.h" #include #include "arch/instruction_set.h" #include "art_method.h" #include "base/hex_dump.h" #include "base/logging.h" // For VLOG. #include "base/macros.h" #include "base/pointer_size.h" #include "oat/oat_quick_method_header.h" #include "runtime_globals.h" #include "thread-current-inl.h" #if defined(__APPLE__) #define ucontext __darwin_ucontext #if defined(__x86_64__) // 64 bit mac build. #define CTX_ESP uc_mcontext->__ss.__rsp #define CTX_EIP uc_mcontext->__ss.__rip #define CTX_EAX uc_mcontext->__ss.__rax #define CTX_METHOD uc_mcontext->__ss.__rdi #define CTX_RDI uc_mcontext->__ss.__rdi #define CTX_JMP_BUF uc_mcontext->__ss.__rdi #else // 32 bit mac build. #define CTX_ESP uc_mcontext->__ss.__esp #define CTX_EIP uc_mcontext->__ss.__eip #define CTX_EAX uc_mcontext->__ss.__eax #define CTX_METHOD uc_mcontext->__ss.__eax #define CTX_JMP_BUF uc_mcontext->__ss.__eax #endif #elif defined(__x86_64__) // 64 bit linux build. #define CTX_ESP uc_mcontext.gregs[REG_RSP] #define CTX_EIP uc_mcontext.gregs[REG_RIP] #define CTX_EAX uc_mcontext.gregs[REG_RAX] #define CTX_METHOD uc_mcontext.gregs[REG_RDI] #define CTX_RDI uc_mcontext.gregs[REG_RDI] #define CTX_JMP_BUF uc_mcontext.gregs[REG_RDI] #else // 32 bit linux build. #define CTX_ESP uc_mcontext.gregs[REG_ESP] #define CTX_EIP uc_mcontext.gregs[REG_EIP] #define CTX_EAX uc_mcontext.gregs[REG_EAX] #define CTX_METHOD uc_mcontext.gregs[REG_EAX] #define CTX_JMP_BUF uc_mcontext.gregs[REG_EAX] #endif // // X86 (and X86_64) specific fault handler functions. // namespace art HIDDEN { extern "C" void art_quick_throw_null_pointer_exception_from_signal(); extern "C" void art_quick_throw_stack_overflow(); extern "C" void art_quick_test_suspend(); // Get the size of an instruction in bytes. // Return 0 if the instruction is not handled. static uint32_t GetInstructionSize(const uint8_t* pc, size_t bytes) { #define FETCH_OR_SKIP_BYTE(assignment) \ do { \ if (bytes == 0u) { \ return 0u; \ } \ (assignment); \ ++pc; \ --bytes; \ } while (0) #define FETCH_BYTE(var) FETCH_OR_SKIP_BYTE((var) = *pc) #define SKIP_BYTE() FETCH_OR_SKIP_BYTE((void)0) #if defined(__x86_64) const bool x86_64 = true; #else const bool x86_64 = false; #endif const uint8_t* startpc = pc; uint8_t opcode; FETCH_BYTE(opcode); uint8_t modrm; bool has_modrm = false; bool two_byte = false; uint32_t displacement_size = 0; uint32_t immediate_size = 0; bool operand_size_prefix = false; // Prefixes. while (true) { bool prefix_present = false; switch (opcode) { // Group 3 case 0x66: operand_size_prefix = true; FALLTHROUGH_INTENDED; // Group 1 case 0xf0: case 0xf2: case 0xf3: // Group 2 case 0x2e: case 0x36: case 0x3e: case 0x26: case 0x64: case 0x65: // Group 4 case 0x67: FETCH_BYTE(opcode); prefix_present = true; break; } if (!prefix_present) { break; } } if (x86_64 && opcode >= 0x40 && opcode <= 0x4f) { FETCH_BYTE(opcode); } if (opcode == 0x0f) { // Two byte opcode two_byte = true; FETCH_BYTE(opcode); } bool unhandled_instruction = false; if (two_byte) { switch (opcode) { case 0x10: // vmovsd/ss case 0x11: // vmovsd/ss case 0xb6: // movzx case 0xb7: case 0xbe: // movsx case 0xbf: FETCH_BYTE(modrm); has_modrm = true; break; default: unhandled_instruction = true; break; } } else { switch (opcode) { case 0x88: // mov byte case 0x89: // mov case 0x8b: case 0x38: // cmp with memory. case 0x39: case 0x3a: case 0x3b: case 0x3c: case 0x3d: case 0x85: // test. FETCH_BYTE(modrm); has_modrm = true; break; case 0x80: // group 1, byte immediate. case 0x83: case 0xc6: FETCH_BYTE(modrm); has_modrm = true; immediate_size = 1; break; case 0x81: // group 1, word immediate. case 0xc7: // mov FETCH_BYTE(modrm); has_modrm = true; immediate_size = operand_size_prefix ? 2 : 4; break; case 0xf6: case 0xf7: FETCH_BYTE(modrm); has_modrm = true; switch ((modrm >> 3) & 7) { // Extract "reg/opcode" from "modr/m". case 0: // test immediate_size = (opcode == 0xf6) ? 1 : (operand_size_prefix ? 2 : 4); break; case 2: // not case 3: // neg case 4: // mul case 5: // imul case 6: // div case 7: // idiv break; default: unhandled_instruction = true; break; } break; default: unhandled_instruction = true; break; } } if (unhandled_instruction) { VLOG(signals) << "Unhandled x86 instruction with opcode " << static_cast(opcode); return 0; } if (has_modrm) { uint8_t mod = (modrm >> 6) & 3U /* 0b11 */; // Check for SIB. if (mod != 3U /* 0b11 */ && (modrm & 7U /* 0b111 */) == 4) { SKIP_BYTE(); // SIB } switch (mod) { case 0U /* 0b00 */: break; case 1U /* 0b01 */: displacement_size = 1; break; case 2U /* 0b10 */: displacement_size = 4; break; case 3U /* 0b11 */: break; } } // Skip displacement and immediate. pc += displacement_size + immediate_size; VLOG(signals) << "x86 instruction length calculated as " << (pc - startpc); return pc - startpc; #undef SKIP_BYTE #undef FETCH_BYTE #undef FETCH_OR_SKIP_BYTE } uintptr_t FaultManager::GetFaultPc([[maybe_unused]] siginfo_t* siginfo, void* context) { ucontext_t* uc = reinterpret_cast(context); if (uc->CTX_ESP == 0) { VLOG(signals) << "Missing SP"; return 0u; } return uc->CTX_EIP; } uintptr_t FaultManager::GetFaultSp(void* context) { ucontext_t* uc = reinterpret_cast(context); return uc->CTX_ESP; } bool NullPointerHandler::Action(int, siginfo_t* sig, void* context) { uintptr_t fault_address = reinterpret_cast(sig->si_addr); if (!IsValidFaultAddress(fault_address)) { return false; } ucontext_t* uc = reinterpret_cast(context); ArtMethod** sp = reinterpret_cast(uc->CTX_ESP); ArtMethod* method = *sp; if (!IsValidMethod(method)) { return false; } // For null checks in compiled code we insert a stack map that is immediately // after the load/store instruction that might cause the fault and we need to // pass the return PC to the handler. For null checks in Nterp, we similarly // need the return PC to recognize that this was a null check in Nterp, so // that the handler can get the needed data from the Nterp frame. // Note: Allowing nested faults if `IsValidMethod()` returned a false positive. // Note: The `ArtMethod::GetOatQuickMethodHeader()` can acquire locks, which is // essentially unsafe in a signal handler, but we allow that here just like in // `NullPointerHandler::IsValidReturnPc()`. For more details see comments there. uintptr_t pc = uc->CTX_EIP; const OatQuickMethodHeader* method_header = method->GetOatQuickMethodHeader(pc); if (method_header == nullptr) { VLOG(signals) << "No method header."; return false; } const uint8_t* pc_ptr = reinterpret_cast(pc); size_t offset = pc_ptr - method_header->GetCode(); size_t code_size = method_header->GetCodeSize(); CHECK_LT(offset, code_size); size_t max_instr_size = code_size - offset; uint32_t instr_size = GetInstructionSize(pc_ptr, max_instr_size); if (instr_size == 0u) { // Unknown instruction (can't really happen) or not enough bytes until end of method code. return false; } uintptr_t return_pc = reinterpret_cast(pc + instr_size); if (!IsValidReturnPc(sp, return_pc)) { return false; } // Push the return PC and fault address onto the stack. uintptr_t* next_sp = reinterpret_cast(sp) - 2; next_sp[1] = return_pc; next_sp[0] = fault_address; uc->CTX_ESP = reinterpret_cast(next_sp); // Arrange for the signal handler to return to the NPE entrypoint. uc->CTX_EIP = reinterpret_cast( art_quick_throw_null_pointer_exception_from_signal); VLOG(signals) << "Generating null pointer exception"; return true; } // A suspend check is done using the following instruction sequence: // (x86) // 0xf720f1df: 648B058C000000 mov eax, fs:[0x8c] ; suspend_trigger // .. some intervening instructions. // 0xf720f1e6: 8500 test eax, [eax] // (x86_64) // 0x7f579de45d9e: 65488B0425A8000000 movq rax, gs:[0xa8] ; suspend_trigger // .. some intervening instructions. // 0x7f579de45da7: 8500 test eax, [eax] // The offset from fs is Thread::ThreadSuspendTriggerOffset(). // To check for a suspend check, we examine the instructions that caused // the fault. bool SuspensionHandler::Action(int, siginfo_t*, void* context) { // These are the instructions to check for. The first one is the mov eax, fs:[xxx] // where xxx is the offset of the suspend trigger. uint32_t trigger = Thread::ThreadSuspendTriggerOffset().Int32Value(); VLOG(signals) << "Checking for suspension point"; #if defined(__x86_64__) uint8_t checkinst1[] = {0x65, 0x48, 0x8b, 0x04, 0x25, static_cast(trigger & 0xff), static_cast((trigger >> 8) & 0xff), 0, 0}; #else uint8_t checkinst1[] = {0x64, 0x8b, 0x05, static_cast(trigger & 0xff), static_cast((trigger >> 8) & 0xff), 0, 0}; #endif uint8_t checkinst2[] = {0x85, 0x00}; ucontext_t* uc = reinterpret_cast(context); uint8_t* pc = reinterpret_cast(uc->CTX_EIP); uint8_t* sp = reinterpret_cast(uc->CTX_ESP); if (pc[0] != checkinst2[0] || pc[1] != checkinst2[1]) { // Second instruction is not correct (test eax,[eax]). VLOG(signals) << "Not a suspension point"; return false; } // The first instruction can a little bit up the stream due to load hoisting // in the compiler. uint8_t* limit = pc - 100; // Compiler will hoist to a max of 20 instructions. uint8_t* ptr = pc - sizeof(checkinst1); bool found = false; while (ptr > limit) { if (memcmp(ptr, checkinst1, sizeof(checkinst1)) == 0) { found = true; break; } ptr -= 1; } if (found) { VLOG(signals) << "suspend check match"; // We need to arrange for the signal handler to return to the null pointer // exception generator. The return address must be the address of the // next instruction (this instruction + 2). The return address // is on the stack at the top address of the current frame. // Push the return address onto the stack. uintptr_t retaddr = reinterpret_cast(pc + 2); uintptr_t* next_sp = reinterpret_cast(sp - sizeof(uintptr_t)); *next_sp = retaddr; uc->CTX_ESP = reinterpret_cast(next_sp); uc->CTX_EIP = reinterpret_cast(art_quick_test_suspend); // Now remove the suspend trigger that caused this fault. Thread::Current()->RemoveSuspendTrigger(); VLOG(signals) << "removed suspend trigger invoking test suspend"; return true; } VLOG(signals) << "Not a suspend check match, first instruction mismatch"; return false; } // The stack overflow check is done using the following instruction: // test eax, [esp+ -xxx] // where 'xxx' is the size of the overflow area. // // This is done before any frame is established in the method. The return // address for the previous method is on the stack at ESP. bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) { ucontext_t* uc = reinterpret_cast(context); uintptr_t sp = static_cast(uc->CTX_ESP); uintptr_t fault_addr = reinterpret_cast(info->si_addr); VLOG(signals) << "fault_addr: " << std::hex << fault_addr; VLOG(signals) << "checking for stack overflow, sp: " << std::hex << sp << ", fault_addr: " << fault_addr; #if defined(__x86_64__) uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86_64); #else uintptr_t overflow_addr = sp - GetStackOverflowReservedBytes(InstructionSet::kX86); #endif // Check that the fault address is the value expected for a stack overflow. if (fault_addr != overflow_addr) { VLOG(signals) << "Not a stack overflow"; return false; } VLOG(signals) << "Stack overflow found"; // Since the compiler puts the implicit overflow // check before the callee save instructions, the SP is already pointing to // the previous frame. // Now arrange for the signal handler to return to art_quick_throw_stack_overflow. uc->CTX_EIP = reinterpret_cast(art_quick_throw_stack_overflow); return true; } } // namespace art