/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ #include "android-base/macros.h" #include "instrumentation.h" #include "interpreter.h" #include #include #include #include #include #include #include "art_field-inl.h" #include "art_method-inl.h" #include "base/locks.h" #include "base/logging.h" #include "base/macros.h" #include "base/pointer_size.h" #include "class_linker-inl.h" #include "class_root-inl.h" #include "common_dex_operations.h" #include "common_throws.h" #include "dex/dex_file-inl.h" #include "dex/dex_instruction-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "handle_scope-inl.h" #include "interpreter_cache-inl.h" #include "interpreter_switch_impl.h" #include "intrinsics_list.h" #include "jit/jit-inl.h" #include "mirror/call_site.h" #include "mirror/class-inl.h" #include "mirror/dex_cache.h" #include "mirror/method.h" #include "mirror/method_handles_lookup.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "mirror/string-inl.h" #include "obj_ptr.h" #include "stack.h" #include "thread.h" #include "thread-inl.h" #include "unstarted_runtime.h" #include "verifier/method_verifier.h" namespace art HIDDEN { namespace interpreter { void ThrowNullPointerExceptionFromInterpreter() REQUIRES_SHARED(Locks::mutator_lock_); static inline void DoMonitorEnter(Thread* self, ShadowFrame* frame, ObjPtr ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { DCHECK(!ref.IsNull()); StackHandleScope<1> hs(self); Handle h_ref(hs.NewHandle(ref)); h_ref->MonitorEnter(self); DCHECK(self->HoldsLock(h_ref.Get())); if (UNLIKELY(self->IsExceptionPending())) { bool unlocked = h_ref->MonitorExit(self); DCHECK(unlocked); return; } if (frame->GetMethod()->MustCountLocks()) { DCHECK(!frame->GetMethod()->SkipAccessChecks()); frame->GetLockCountData().AddMonitor(self, h_ref.Get()); } } static inline void DoMonitorExit(Thread* self, ShadowFrame* frame, ObjPtr ref) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { StackHandleScope<1> hs(self); Handle h_ref(hs.NewHandle(ref)); h_ref->MonitorExit(self); if (frame->GetMethod()->MustCountLocks()) { DCHECK(!frame->GetMethod()->SkipAccessChecks()); frame->GetLockCountData().RemoveMonitorOrThrow(self, h_ref.Get()); } } static inline bool DoMonitorCheckOnExit(Thread* self, ShadowFrame* frame) NO_THREAD_SAFETY_ANALYSIS REQUIRES(!Roles::uninterruptible_) { if (frame->GetMethod()->MustCountLocks()) { DCHECK(!frame->GetMethod()->SkipAccessChecks()); return frame->GetLockCountData().CheckAllMonitorsReleasedOrThrow(self); } return true; } // Invokes the given method. This is part of the invocation support and is used by DoInvoke, // DoFastInvoke and DoInvokeVirtualQuick functions. // Returns true on success, otherwise throws an exception and returns false. template bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, bool string_init, JValue* result); // Called by the switch interpreter to know if we can stay in it. bool ShouldStayInSwitchInterpreter(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_); // Throws exception if we are getting close to the end of the stack. NO_INLINE bool CheckStackOverflow(Thread* self, size_t frame_size) REQUIRES_SHARED(Locks::mutator_lock_); // Sends the normal method exit event. // Returns true if the events succeeded and false if there is a pending exception. template bool SendMethodExitEvents( Thread* self, const instrumentation::Instrumentation* instrumentation, ShadowFrame& frame, ArtMethod* method, T& result) REQUIRES_SHARED(Locks::mutator_lock_); static inline ALWAYS_INLINE WARN_UNUSED bool NeedsMethodExitEvent(const instrumentation::Instrumentation* ins) REQUIRES_SHARED(Locks::mutator_lock_) { return ins->HasMethodExitListeners() || ins->HasWatchedFramePopListeners(); } COLD_ATTR void UnlockHeldMonitors(Thread* self, ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_); void PerformNonStandardReturn(Thread* self, ShadowFrame& frame, JValue& result, const instrumentation::Instrumentation* instrumentation, bool unlock_monitors = true) REQUIRES_SHARED(Locks::mutator_lock_); // Handles all invoke-XXX/range instructions except for invoke-polymorphic[/range]. // Returns true on success, otherwise throws an exception and returns false. template static ALWAYS_INLINE bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // Make sure to check for async exceptions before anything else. if (UNLIKELY(self->ObserveAsyncException())) { return false; } const uint32_t vregC = is_range ? inst->VRegC_3rc() : inst->VRegC_35c(); ObjPtr obj = type == kStatic ? nullptr : shadow_frame.GetVRegReference(vregC); ArtMethod* sf_method = shadow_frame.GetMethod(); bool string_init = false; ArtMethod* called_method = FindMethodToCall( self, sf_method, &obj, *inst, /* only_lookup_tls_cache= */ false, &string_init); if (called_method == nullptr) { DCHECK(self->IsExceptionPending()); result->SetJ(0); return false; } return DoCall( called_method, self, shadow_frame, inst, inst_data, string_init, result); } static inline ObjPtr ResolveMethodHandle(Thread* self, uint32_t method_handle_index, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->ResolveMethodHandle(self, method_handle_index, referrer); } static inline ObjPtr ResolveMethodType(Thread* self, dex::ProtoIndex method_type_index, ArtMethod* referrer) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); return class_linker->ResolveMethodType(self, method_type_index, referrer); } #define DECLARE_SIGNATURE_POLYMORPHIC_HANDLER(Name, ...) \ bool Do ## Name(Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data, \ JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); ART_INTRINSICS_LIST(DECLARE_SIGNATURE_POLYMORPHIC_HANDLER) #undef DECLARE_SIGNATURE_POLYMORPHIC_HANDLER // Performs a invoke-polymorphic or invoke-polymorphic-range. template bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx, const InstructionOperands* operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_); // Performs a custom invoke (invoke-custom/invoke-custom-range). template bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); if (is_range) { RangeInstructionOperands operands(inst->VRegC_3rc(), inst->VRegA_3rc()); return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result); } else { uint32_t args[Instruction::kMaxVarArgRegs]; inst->GetVarArgs(args, inst_data); VarArgsInstructionOperands operands(args, inst->VRegA_35c()); return DoInvokeCustom(self, shadow_frame, call_site_idx, &operands, result); } } template ALWAYS_INLINE static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg) REQUIRES_SHARED(Locks::mutator_lock_) { JValue field_value; switch (field_type) { case Primitive::kPrimBoolean: field_value.SetZ(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimByte: field_value.SetB(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimChar: field_value.SetC(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimShort: field_value.SetS(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimInt: field_value.SetI(shadow_frame.GetVReg(vreg)); break; case Primitive::kPrimLong: field_value.SetJ(shadow_frame.GetVRegLong(vreg)); break; case Primitive::kPrimNot: field_value.SetL(shadow_frame.GetVRegReference(vreg)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return field_value; } extern "C" size_t NterpGetStaticField(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr, size_t resolve_field_type); extern "C" uint32_t NterpGetInstanceFieldOffset(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr, size_t resolve_field_type); static inline void GetFieldInfo(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr, bool is_static, bool resolve_field_type, ArtField** field, bool* is_volatile, MemberOffset* offset) { size_t tls_value = 0u; if (!self->GetInterpreterCache()->Get(self, dex_pc_ptr, &tls_value)) { if (is_static) { tls_value = NterpGetStaticField(self, caller, dex_pc_ptr, resolve_field_type); } else { tls_value = NterpGetInstanceFieldOffset(self, caller, dex_pc_ptr, resolve_field_type); } if (self->IsExceptionPending()) { return; } } if (is_static) { DCHECK_NE(tls_value, 0u); *is_volatile = ((tls_value & 1) != 0); *field = reinterpret_cast(tls_value & ~static_cast(1u)); *offset = (*field)->GetOffset(); } else { *is_volatile = (static_cast(tls_value) < 0); *offset = MemberOffset(std::abs(static_cast(tls_value))); } } // Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the // java.lang.String class is initialized. static inline ObjPtr ResolveString(Thread* self, ShadowFrame& shadow_frame, dex::StringIndex string_idx) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr java_lang_string_class = GetClassRoot(); if (UNLIKELY(!java_lang_string_class->IsVisiblyInitialized())) { StackHandleScope<1> hs(self); Handle h_class(hs.NewHandle(java_lang_string_class)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized( self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) { DCHECK(self->IsExceptionPending()); return nullptr; } DCHECK(h_class->IsInitializing()); } ArtMethod* method = shadow_frame.GetMethod(); ObjPtr string_ptr = Runtime::Current()->GetClassLinker()->ResolveString(string_idx, method); return string_ptr; } // Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, kMinInt); } else { shadow_frame.SetVReg(result_reg, dividend / divisor); } return true; } // Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg, int32_t dividend, int32_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { constexpr int32_t kMinInt = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinInt && divisor == -1)) { shadow_frame.SetVReg(result_reg, 0); } else { shadow_frame.SetVReg(result_reg, dividend % divisor); } return true; } // Handles div-long and div-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, kMinLong); } else { shadow_frame.SetVRegLong(result_reg, dividend / divisor); } return true; } // Handles rem-long and rem-long-2addr instructions. // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg, int64_t dividend, int64_t divisor) REQUIRES_SHARED(Locks::mutator_lock_) { const int64_t kMinLong = std::numeric_limits::min(); if (UNLIKELY(divisor == 0)) { ThrowArithmeticExceptionDivideByZero(); return false; } if (UNLIKELY(dividend == kMinLong && divisor == -1)) { shadow_frame.SetVRegLong(result_reg, 0); } else { shadow_frame.SetVRegLong(result_reg, dividend % divisor); } return true; } // Handles filled-new-array and filled-new-array-range instructions. // Returns true on success, otherwise throws an exception and returns false. template bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result); // Handles packed-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH); const uint16_t* switch_data = reinterpret_cast(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast(Instruction::kPackedSwitchSignature)); uint16_t size = switch_data[1]; if (size == 0) { // Empty packed switch, move forward by 3 (size of PACKED_SWITCH). return 3; } const int32_t* keys = reinterpret_cast(&switch_data[2]); DCHECK_ALIGNED(keys, 4); int32_t first_key = keys[0]; const int32_t* targets = reinterpret_cast(&switch_data[4]); DCHECK_ALIGNED(targets, 4); int32_t index = test_val - first_key; if (index >= 0 && index < size) { return targets[index]; } else { // No corresponding value: move forward by 3 (size of PACKED_SWITCH). return 3; } } // Handles sparse-switch instruction. // Returns the branch offset to the next instruction to execute. static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, uint16_t inst_data) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH); const uint16_t* switch_data = reinterpret_cast(inst) + inst->VRegB_31t(); int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); DCHECK_EQ(switch_data[0], static_cast(Instruction::kSparseSwitchSignature)); uint16_t size = switch_data[1]; // Return length of SPARSE_SWITCH if size is 0. if (size == 0) { return 3; } const int32_t* keys = reinterpret_cast(&switch_data[2]); DCHECK_ALIGNED(keys, 4); const int32_t* entries = keys + size; DCHECK_ALIGNED(entries, 4); int lo = 0; int hi = size - 1; while (lo <= hi) { int mid = (lo + hi) / 2; int32_t foundVal = keys[mid]; if (test_val < foundVal) { hi = mid - 1; } else if (test_val > foundVal) { lo = mid + 1; } else { return entries[mid]; } } // No corresponding value: move forward by 3 (size of SPARSE_SWITCH). return 3; } // We execute any instrumentation events triggered by throwing and/or handing the pending exception // and change the shadow_frames dex_pc to the appropriate exception handler if the current method // has one. If the exception has been handled and the shadow_frame is now pointing to a catch clause // we return true. If the current method is unable to handle the exception we return false. // This function accepts a null Instrumentation* as a way to cause instrumentation events not to be // reported. // TODO We might wish to reconsider how we cause some events to be ignored. bool MoveToExceptionHandler(Thread* self, ShadowFrame& shadow_frame, bool skip_listeners, bool skip_throw_listener) REQUIRES_SHARED(Locks::mutator_lock_); NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) __attribute__((cold)) REQUIRES_SHARED(Locks::mutator_lock_); // Set true if you want TraceExecution invocation before each bytecode execution. constexpr bool kTraceExecutionEnabled = false; static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst, const uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) { if (kTraceExecutionEnabled) { #define TRACE_LOG std::cerr std::ostringstream oss; oss << shadow_frame.GetMethod()->PrettyMethod() << android::base::StringPrintf("\n0x%x: ", dex_pc) << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n"; for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) { uint32_t raw_value = shadow_frame.GetVReg(i); ObjPtr ref_value = shadow_frame.GetVRegReference(i); oss << android::base::StringPrintf(" vreg%u=0x%08X", i, raw_value); if (ref_value != nullptr) { if (ref_value->GetClass()->IsStringClass() && !ref_value->AsString()->IsValueNull()) { oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\""; } else { oss << "/" << ref_value->PrettyTypeOf(); } } } TRACE_LOG << oss.str() << "\n"; #undef TRACE_LOG } } static inline bool IsBackwardBranch(int32_t branch_offset) { return branch_offset <= 0; } // The arg_offset is the offset to the first input register in the frame. void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, ShadowFrame* shadow_frame, uint16_t arg_offset, JValue* result); // Set string value created from StringFactory.newStringFromXXX() into all aliases of // StringFactory.newEmptyString(). void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result); } // namespace interpreter } // namespace art #endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_