/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "local_reference_table-inl.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/globals.h" #include "base/mutator_locked_dumpable.h" #include "base/systrace.h" #include "base/utils.h" #include "indirect_reference_table.h" #include "jni/java_vm_ext.h" #include "jni/jni_internal.h" #include "mirror/object-inl.h" #include "nth_caller_visitor.h" #include "reference_table.h" #include "runtime-inl.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" #include namespace art HIDDEN { namespace jni { static constexpr bool kDumpStackOnNonLocalReference = false; // Mmap an "indirect ref table region. Table_bytes is a multiple of a page size. static inline MemMap NewLRTMap(size_t table_bytes, std::string* error_msg) { return MemMap::MapAnonymous("local ref table", table_bytes, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, error_msg); } SmallLrtAllocator::SmallLrtAllocator() : free_lists_(num_lrt_slots_, nullptr), shared_lrt_maps_(), lock_("Small LRT allocator lock", LockLevel::kGenericBottomLock) { } inline size_t SmallLrtAllocator::GetIndex(size_t size) { DCHECK_GE(size, kSmallLrtEntries); DCHECK_LT(size, gPageSize / sizeof(LrtEntry)); DCHECK(IsPowerOfTwo(size)); size_t index = WhichPowerOf2(size / kSmallLrtEntries); DCHECK_LT(index, num_lrt_slots_); return index; } LrtEntry* SmallLrtAllocator::Allocate(size_t size, std::string* error_msg) { size_t index = GetIndex(size); MutexLock lock(Thread::Current(), lock_); size_t fill_from = index; while (fill_from != num_lrt_slots_ && free_lists_[fill_from] == nullptr) { ++fill_from; } void* result = nullptr; if (fill_from != num_lrt_slots_) { // We found a slot with enough memory. result = free_lists_[fill_from]; free_lists_[fill_from] = *reinterpret_cast(result); } else { // We need to allocate a new page and split it into smaller pieces. MemMap map = NewLRTMap(gPageSize, error_msg); if (!map.IsValid()) { return nullptr; } result = map.Begin(); shared_lrt_maps_.emplace_back(std::move(map)); } while (fill_from != index) { --fill_from; // Store the second half of the current buffer in appropriate free list slot. void* mid = reinterpret_cast(result) + (kInitialLrtBytes << fill_from); DCHECK(free_lists_[fill_from] == nullptr); *reinterpret_cast(mid) = nullptr; free_lists_[fill_from] = mid; } // Clear the memory we return to the caller. std::memset(result, 0, kInitialLrtBytes << index); return reinterpret_cast(result); } void SmallLrtAllocator::Deallocate(LrtEntry* unneeded, size_t size) { size_t index = GetIndex(size); MutexLock lock(Thread::Current(), lock_); while (index < num_lrt_slots_) { // Check if we can merge this free block with another block with the same size. void** other = reinterpret_cast( reinterpret_cast(unneeded) ^ (kInitialLrtBytes << index)); void** before = &free_lists_[index]; if (index + 1u == num_lrt_slots_ && *before == other && *other == nullptr) { // Do not unmap the page if we do not have other free blocks with index `num_lrt_slots_ - 1`. // (Keep at least one free block to avoid a situation where creating and destroying a single // thread with no local references would map and unmap a page in the `SmallLrtAllocator`.) break; } while (*before != nullptr && *before != other) { before = reinterpret_cast(*before); } if (*before == nullptr) { break; } // Remove `other` from the free list and merge it with the `unneeded` block. DCHECK(*before == other); *before = *reinterpret_cast(other); ++index; unneeded = reinterpret_cast( reinterpret_cast(unneeded) & reinterpret_cast(other)); } if (index == num_lrt_slots_) { // Free the entire page. DCHECK(free_lists_[num_lrt_slots_ - 1u] != nullptr); auto match = [=](MemMap& map) { return unneeded == reinterpret_cast(map.Begin()); }; auto it = std::find_if(shared_lrt_maps_.begin(), shared_lrt_maps_.end(), match); DCHECK(it != shared_lrt_maps_.end()); shared_lrt_maps_.erase(it); DCHECK(!shared_lrt_maps_.empty()); return; } *reinterpret_cast(unneeded) = free_lists_[index]; free_lists_[index] = unneeded; } LocalReferenceTable::LocalReferenceTable(bool check_jni) : previous_state_(kLRTFirstSegment), segment_state_(kLRTFirstSegment), max_entries_(0u), free_entries_list_( FirstFreeField::Update(kFreeListEnd, check_jni ? 1u << kFlagCheckJni : 0u)), small_table_(nullptr), tables_(), table_mem_maps_() { } void LocalReferenceTable::SetCheckJniEnabled(bool enabled) { free_entries_list_ = (free_entries_list_ & ~(1u << kFlagCheckJni)) | (enabled ? 1u << kFlagCheckJni : 0u); } bool LocalReferenceTable::Initialize(size_t max_count, std::string* error_msg) { CHECK(error_msg != nullptr); // Overflow and maximum check. CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(LrtEntry)); if (IsCheckJniEnabled()) { CHECK_LE(max_count, kMaxTableSizeInBytes / sizeof(LrtEntry) / kCheckJniEntriesPerReference); max_count *= kCheckJniEntriesPerReference; } SmallLrtAllocator* small_lrt_allocator = Runtime::Current()->GetSmallLrtAllocator(); LrtEntry* first_table = small_lrt_allocator->Allocate(kSmallLrtEntries, error_msg); if (first_table == nullptr) { DCHECK(!error_msg->empty()); return false; } DCHECK_ALIGNED(first_table, kCheckJniEntriesPerReference * sizeof(LrtEntry)); small_table_ = first_table; max_entries_ = kSmallLrtEntries; return (max_count <= kSmallLrtEntries) || Resize(max_count, error_msg); } LocalReferenceTable::~LocalReferenceTable() { SmallLrtAllocator* small_lrt_allocator = max_entries_ != 0u ? Runtime::Current()->GetSmallLrtAllocator() : nullptr; if (small_table_ != nullptr) { small_lrt_allocator->Deallocate(small_table_, kSmallLrtEntries); DCHECK(tables_.empty()); } else { size_t num_small_tables = std::min(tables_.size(), MaxSmallTables()); for (size_t i = 0; i != num_small_tables; ++i) { small_lrt_allocator->Deallocate(tables_[i], GetTableSize(i)); } } } bool LocalReferenceTable::Resize(size_t new_size, std::string* error_msg) { DCHECK_GE(max_entries_, kSmallLrtEntries); DCHECK(IsPowerOfTwo(max_entries_)); DCHECK_GT(new_size, max_entries_); DCHECK_LE(new_size, kMaxTableSizeInBytes / sizeof(LrtEntry)); size_t required_size = RoundUpToPowerOfTwo(new_size); size_t num_required_tables = NumTablesForSize(required_size); DCHECK_GE(num_required_tables, 2u); // Delay moving the `small_table_` to `tables_` until after the next table allocation succeeds. size_t num_tables = (small_table_ != nullptr) ? 1u : tables_.size(); DCHECK_EQ(num_tables, NumTablesForSize(max_entries_)); for (; num_tables != num_required_tables; ++num_tables) { size_t new_table_size = GetTableSize(num_tables); if (num_tables < MaxSmallTables()) { SmallLrtAllocator* small_lrt_allocator = Runtime::Current()->GetSmallLrtAllocator(); LrtEntry* new_table = small_lrt_allocator->Allocate(new_table_size, error_msg); if (new_table == nullptr) { DCHECK(!error_msg->empty()); return false; } DCHECK_ALIGNED(new_table, kCheckJniEntriesPerReference * sizeof(LrtEntry)); tables_.push_back(new_table); } else { MemMap new_map = NewLRTMap(new_table_size * sizeof(LrtEntry), error_msg); if (!new_map.IsValid()) { DCHECK(!error_msg->empty()); return false; } DCHECK_ALIGNED(new_map.Begin(), kCheckJniEntriesPerReference * sizeof(LrtEntry)); tables_.push_back(reinterpret_cast(new_map.Begin())); table_mem_maps_.push_back(std::move(new_map)); } DCHECK_EQ(num_tables == 1u, small_table_ != nullptr); if (num_tables == 1u) { tables_.insert(tables_.begin(), small_table_); small_table_ = nullptr; } // Record the new available capacity after each successful allocation. DCHECK_EQ(max_entries_, new_table_size); max_entries_ = 2u * new_table_size; } DCHECK_EQ(num_required_tables, tables_.size()); return true; } template inline void LocalReferenceTable::PrunePoppedFreeEntries(EntryGetter&& get_entry) { const uint32_t top_index = segment_state_.top_index; uint32_t free_entries_list = free_entries_list_; uint32_t free_entry_index = FirstFreeField::Decode(free_entries_list); DCHECK_NE(free_entry_index, kFreeListEnd); DCHECK_GE(free_entry_index, top_index); do { free_entry_index = get_entry(free_entry_index)->GetNextFree(); } while (free_entry_index != kFreeListEnd && free_entry_index >= top_index); free_entries_list_ = FirstFreeField::Update(free_entry_index, free_entries_list); } inline uint32_t LocalReferenceTable::IncrementSerialNumber(LrtEntry* serial_number_entry) { DCHECK_EQ(serial_number_entry, GetCheckJniSerialNumberEntry(serial_number_entry)); // The old serial number can be 0 if it was not used before. It can also be bits from the // representation of an object reference, or a link to the next free entry written in this // slot before enabling the CheckJNI. (Some gtests repeatedly enable and disable CheckJNI.) uint32_t old_serial_number = serial_number_entry->GetSerialNumberUnchecked() % kCheckJniEntriesPerReference; uint32_t new_serial_number = (old_serial_number + 1u) != kCheckJniEntriesPerReference ? old_serial_number + 1u : 1u; DCHECK(IsValidSerialNumber(new_serial_number)); serial_number_entry->SetSerialNumber(new_serial_number); return new_serial_number; } IndirectRef LocalReferenceTable::Add(ObjPtr obj, std::string* error_msg) { if (kDebugLRT) { LOG(INFO) << "+++ Add: previous_state=" << previous_state_.top_index << " top_index=" << segment_state_.top_index; } DCHECK(obj != nullptr); VerifyObject(obj); DCHECK_LE(previous_state_.top_index, segment_state_.top_index); DCHECK(max_entries_ == kSmallLrtEntries ? small_table_ != nullptr : !tables_.empty()); auto store_obj = [obj, this](LrtEntry* free_entry, const char* tag) REQUIRES_SHARED(Locks::mutator_lock_) { free_entry->SetReference(obj); IndirectRef result = ToIndirectRef(free_entry); if (kDebugLRT) { LOG(INFO) << "+++ " << tag << ": added at index " << GetReferenceEntryIndex(result) << ", top=" << segment_state_.top_index; } return result; }; // Fast-path for small table with CheckJNI disabled. uint32_t top_index = segment_state_.top_index; LrtEntry* const small_table = small_table_; if (LIKELY(small_table != nullptr)) { DCHECK_EQ(max_entries_, kSmallLrtEntries); DCHECK_LE(segment_state_.top_index, kSmallLrtEntries); auto get_entry = [small_table](uint32_t index) ALWAYS_INLINE { DCHECK_LT(index, kSmallLrtEntries); return &small_table[index]; }; if (LIKELY(free_entries_list_ == kEmptyFreeListAndCheckJniDisabled)) { if (LIKELY(top_index != kSmallLrtEntries)) { LrtEntry* free_entry = get_entry(top_index); segment_state_.top_index = top_index + 1u; return store_obj(free_entry, "small_table/empty-free-list"); } } else if (LIKELY(!IsCheckJniEnabled())) { uint32_t first_free_index = GetFirstFreeIndex(); DCHECK_NE(first_free_index, kFreeListEnd); if (UNLIKELY(first_free_index >= top_index)) { PrunePoppedFreeEntries(get_entry); first_free_index = GetFirstFreeIndex(); } if (first_free_index != kFreeListEnd && first_free_index >= previous_state_.top_index) { DCHECK_LT(first_free_index, segment_state_.top_index); // Popped entries pruned above. LrtEntry* free_entry = get_entry(first_free_index); // Use the `free_entry` only if it was created with CheckJNI disabled. LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(free_entry); if (!serial_number_entry->IsSerialNumber()) { free_entries_list_ = FirstFreeField::Update(free_entry->GetNextFree(), 0u); return store_obj(free_entry, "small_table/reuse-empty-slot"); } } if (top_index != kSmallLrtEntries) { LrtEntry* free_entry = get_entry(top_index); segment_state_.top_index = top_index + 1u; return store_obj(free_entry, "small_table/pruned-free-list"); } } } DCHECK(IsCheckJniEnabled() || small_table == nullptr || top_index == kSmallLrtEntries); // Process free list: prune, reuse free entry or pad for CheckJNI. uint32_t first_free_index = GetFirstFreeIndex(); if (first_free_index != kFreeListEnd && first_free_index >= top_index) { PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); }); first_free_index = GetFirstFreeIndex(); } if (first_free_index != kFreeListEnd && first_free_index >= previous_state_.top_index) { // Reuse the free entry if it was created with the same CheckJNI setting. DCHECK_LT(first_free_index, top_index); // Popped entries have been pruned above. LrtEntry* free_entry = GetEntry(first_free_index); LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(free_entry); if (serial_number_entry->IsSerialNumber() == IsCheckJniEnabled()) { free_entries_list_ = FirstFreeField::Update(free_entry->GetNextFree(), free_entries_list_); if (UNLIKELY(IsCheckJniEnabled())) { DCHECK_NE(free_entry, serial_number_entry); uint32_t serial_number = IncrementSerialNumber(serial_number_entry); free_entry = serial_number_entry + serial_number; DCHECK_EQ( free_entry, GetEntry(RoundDown(first_free_index, kCheckJniEntriesPerReference) + serial_number)); } return store_obj(free_entry, "reuse-empty-slot"); } } if (UNLIKELY(IsCheckJniEnabled()) && !IsAligned(top_index)) { // Add non-CheckJNI holes up to the next serial number entry. for (; !IsAligned(top_index); ++top_index) { GetEntry(top_index)->SetNextFree(first_free_index); first_free_index = top_index; } free_entries_list_ = FirstFreeField::Update(first_free_index, 1u << kFlagCheckJni); segment_state_.top_index = top_index; } // Resize (double the space) if needed. if (UNLIKELY(top_index == max_entries_)) { static_assert(IsPowerOfTwo(kMaxTableSizeInBytes)); static_assert(IsPowerOfTwo(sizeof(LrtEntry))); DCHECK(IsPowerOfTwo(max_entries_)); if (kMaxTableSizeInBytes == max_entries_ * sizeof(LrtEntry)) { std::ostringstream oss; oss << "JNI ERROR (app bug): " << kLocal << " table overflow " << "(max=" << max_entries_ << ")" << std::endl << MutatorLockedDumpable(*this) << " Resizing failed: Cannot resize over the maximum permitted size."; *error_msg = oss.str(); return nullptr; } std::string inner_error_msg; if (!Resize(max_entries_ * 2u, &inner_error_msg)) { std::ostringstream oss; oss << "JNI ERROR (app bug): " << kLocal << " table overflow " << "(max=" << max_entries_ << ")" << std::endl << MutatorLockedDumpable(*this) << " Resizing failed: " << inner_error_msg; *error_msg = oss.str(); return nullptr; } } // Use the next entry. if (UNLIKELY(IsCheckJniEnabled())) { DCHECK_ALIGNED(top_index, kCheckJniEntriesPerReference); DCHECK_ALIGNED(previous_state_.top_index, kCheckJniEntriesPerReference); DCHECK_ALIGNED(max_entries_, kCheckJniEntriesPerReference); LrtEntry* serial_number_entry = GetEntry(top_index); uint32_t serial_number = IncrementSerialNumber(serial_number_entry); LrtEntry* free_entry = serial_number_entry + serial_number; DCHECK_EQ(free_entry, GetEntry(top_index + serial_number)); segment_state_.top_index = top_index + kCheckJniEntriesPerReference; return store_obj(free_entry, "slow-path/check-jni"); } LrtEntry* free_entry = GetEntry(top_index); segment_state_.top_index = top_index + 1u; return store_obj(free_entry, "slow-path"); } // Removes an object. // // This method is not called when a local frame is popped; this is only used // for explicit single removals. // // If the entry is not at the top, we just add it to the free entry list. // If the entry is at the top, we pop it from the top and check if there are // free entries under it to remove in order to reduce the size of the table. // // Returns "false" if nothing was removed. bool LocalReferenceTable::Remove(IndirectRef iref) { if (kDebugLRT) { LOG(INFO) << "+++ Remove: previous_state=" << previous_state_.top_index << " top_index=" << segment_state_.top_index; } IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(iref); if (UNLIKELY(kind != kLocal)) { Thread* self = Thread::Current(); if (kind == kJniTransition) { if (self->IsJniTransitionReference(reinterpret_cast(iref))) { // Transition references count as local but they cannot be deleted. // TODO: They could actually be cleared on the stack, except for the `jclass` // reference for static methods that points to the method's declaring class. JNIEnvExt* env = self->GetJniEnv(); DCHECK(env != nullptr); if (env->IsCheckJniEnabled()) { const char* msg = kDumpStackOnNonLocalReference ? "Attempt to remove non-JNI local reference, dumping thread" : "Attempt to remove non-JNI local reference"; LOG(WARNING) << msg; if (kDumpStackOnNonLocalReference) { self->Dump(LOG_STREAM(WARNING)); } } return true; } } if (kDumpStackOnNonLocalReference && IsCheckJniEnabled()) { // Log the error message and stack. Repeat the message as FATAL later. LOG(ERROR) << "Attempt to delete " << kind << " reference as local JNI reference, dumping stack"; self->Dump(LOG_STREAM(ERROR)); } LOG(IsCheckJniEnabled() ? ERROR : FATAL) << "Attempt to delete " << kind << " reference as local JNI reference"; return false; } DCHECK_LE(previous_state_.top_index, segment_state_.top_index); DCHECK(max_entries_ == kSmallLrtEntries ? small_table_ != nullptr : !tables_.empty()); DCheckValidReference(iref); LrtEntry* entry = ToLrtEntry(iref); uint32_t entry_index = GetReferenceEntryIndex(iref); uint32_t top_index = segment_state_.top_index; const uint32_t bottom_index = previous_state_.top_index; if (entry_index < bottom_index) { // Wrong segment. LOG(WARNING) << "Attempt to remove index outside index area (" << entry_index << " vs " << bottom_index << "-" << top_index << ")"; return false; } if (UNLIKELY(IsCheckJniEnabled())) { // Ignore invalid references. CheckJNI should have aborted before passing this reference // to `LocalReferenceTable::Remove()` but gtests intercept the abort and proceed anyway. std::string error_msg; if (!IsValidReference(iref, &error_msg)) { LOG(WARNING) << "Attempt to remove invalid reference: " << error_msg; return false; } } DCHECK_LT(entry_index, top_index); // Workaround for double `DeleteLocalRef` bug. b/298297411 if (entry->IsFree()) { // In debug build or with CheckJNI enabled, we would have detected this above. LOG(ERROR) << "App error: `DeleteLocalRef()` on already deleted local ref. b/298297411"; return false; } // Prune the free entry list if a segment with holes was popped before the `Remove()` call. uint32_t first_free_index = GetFirstFreeIndex(); if (first_free_index != kFreeListEnd && first_free_index >= top_index) { PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); }); } // Check if we're removing the top entry (created with any CheckJNI setting). bool is_top_entry = false; uint32_t prune_end = entry_index; if (GetCheckJniSerialNumberEntry(entry)->IsSerialNumber()) { LrtEntry* serial_number_entry = GetCheckJniSerialNumberEntry(entry); uint32_t serial_number = dchecked_integral_cast(entry - serial_number_entry); DCHECK_EQ(serial_number, serial_number_entry->GetSerialNumber()); prune_end = entry_index - serial_number; is_top_entry = (prune_end == top_index - kCheckJniEntriesPerReference); } else { is_top_entry = (entry_index == top_index - 1u); } if (is_top_entry) { // Top-most entry. Scan up and consume holes created with the current CheckJNI setting. constexpr uint32_t kDeadLocalValue = 0xdead10c0; entry->SetReference(reinterpret_cast32(kDeadLocalValue)); // TODO: Maybe we should not prune free entries from the top of the segment // because it has quadratic worst-case complexity. We could still prune while // the first free list entry is at the top. uint32_t prune_start = prune_end; size_t prune_count; auto find_prune_range = [&](size_t chunk_size, auto is_prev_entry_free) { while (prune_start > bottom_index && is_prev_entry_free(prune_start)) { prune_start -= chunk_size; } prune_count = (prune_end - prune_start) / chunk_size; }; if (UNLIKELY(IsCheckJniEnabled())) { auto is_prev_entry_free = [&](size_t index) { DCHECK_ALIGNED(index, kCheckJniEntriesPerReference); LrtEntry* serial_number_entry = GetEntry(index - kCheckJniEntriesPerReference); DCHECK_ALIGNED(serial_number_entry, kCheckJniEntriesPerReference * sizeof(LrtEntry)); if (!serial_number_entry->IsSerialNumber()) { return false; } uint32_t serial_number = serial_number_entry->GetSerialNumber(); DCHECK(IsValidSerialNumber(serial_number)); LrtEntry* entry = serial_number_entry + serial_number; DCHECK_EQ(entry, GetEntry(prune_start - kCheckJniEntriesPerReference + serial_number)); return entry->IsFree(); }; find_prune_range(kCheckJniEntriesPerReference, is_prev_entry_free); } else { auto is_prev_entry_free = [&](size_t index) { LrtEntry* entry = GetEntry(index - 1u); return entry->IsFree() && !GetCheckJniSerialNumberEntry(entry)->IsSerialNumber(); }; find_prune_range(1u, is_prev_entry_free); } if (prune_count != 0u) { // Remove pruned entries from the free list. size_t remaining = prune_count; uint32_t free_index = GetFirstFreeIndex(); while (remaining != 0u && free_index >= prune_start) { DCHECK_NE(free_index, kFreeListEnd); LrtEntry* pruned_entry = GetEntry(free_index); free_index = pruned_entry->GetNextFree(); pruned_entry->SetReference(reinterpret_cast32(kDeadLocalValue)); --remaining; } free_entries_list_ = FirstFreeField::Update(free_index, free_entries_list_); while (remaining != 0u) { DCHECK_NE(free_index, kFreeListEnd); DCHECK_LT(free_index, prune_start); DCHECK_GE(free_index, bottom_index); LrtEntry* free_entry = GetEntry(free_index); while (free_entry->GetNextFree() < prune_start) { free_index = free_entry->GetNextFree(); DCHECK_GE(free_index, bottom_index); free_entry = GetEntry(free_index); } LrtEntry* pruned_entry = GetEntry(free_entry->GetNextFree()); free_entry->SetNextFree(pruned_entry->GetNextFree()); pruned_entry->SetReference(reinterpret_cast32(kDeadLocalValue)); --remaining; } DCHECK(free_index == kFreeListEnd || free_index < prune_start) << "free_index=" << free_index << ", prune_start=" << prune_start; } segment_state_.top_index = prune_start; if (kDebugLRT) { LOG(INFO) << "+++ removed last entry, pruned " << prune_count << ", new top= " << segment_state_.top_index; } } else { // Not the top-most entry. This creates a hole. entry->SetNextFree(GetFirstFreeIndex()); free_entries_list_ = FirstFreeField::Update(entry_index, free_entries_list_); if (kDebugLRT) { LOG(INFO) << "+++ removed entry and left hole at " << entry_index; } } return true; } void LocalReferenceTable::AssertEmpty() { CHECK_EQ(Capacity(), 0u) << "Internal Error: non-empty local reference table."; } void LocalReferenceTable::Trim() { ScopedTrace trace(__PRETTY_FUNCTION__); const size_t num_mem_maps = table_mem_maps_.size(); if (num_mem_maps == 0u) { // Only small tables; nothing to do here. (Do not unnecessarily prune popped free entries.) return; } DCHECK_EQ(tables_.size(), num_mem_maps + MaxSmallTables()); const size_t top_index = segment_state_.top_index; // Prune popped free entries before potentially losing their memory. if (UNLIKELY(GetFirstFreeIndex() != kFreeListEnd) && UNLIKELY(GetFirstFreeIndex() >= segment_state_.top_index)) { PrunePoppedFreeEntries([&](size_t index) { return GetEntry(index); }); } // Small tables can hold as many entries as the next table. const size_t small_tables_capacity = GetTableSize(MaxSmallTables()); size_t mem_map_index = 0u; if (top_index > small_tables_capacity) { const size_t table_size = TruncToPowerOfTwo(top_index); const size_t table_index = NumTablesForSize(table_size); const size_t start_index = top_index - table_size; mem_map_index = table_index - MaxSmallTables(); if (start_index != 0u) { ++mem_map_index; LrtEntry* table = tables_[table_index]; uint8_t* release_start = AlignUp(reinterpret_cast(&table[start_index]), gPageSize); uint8_t* release_end = reinterpret_cast(&table[table_size]); DCHECK_GE(reinterpret_cast(release_end), reinterpret_cast(release_start)); DCHECK_ALIGNED_PARAM(release_end, gPageSize); DCHECK_ALIGNED_PARAM(release_end - release_start, gPageSize); if (release_start != release_end) { madvise(release_start, release_end - release_start, MADV_DONTNEED); } } } for (MemMap& mem_map : ArrayRef(table_mem_maps_).SubArray(mem_map_index)) { madvise(mem_map.Begin(), mem_map.Size(), MADV_DONTNEED); } } template void LocalReferenceTable::VisitRootsInternal(Visitor&& visitor) const { auto visit_table = [&](LrtEntry* table, size_t count) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i != count; ) { LrtEntry* entry; if (i % kCheckJniEntriesPerReference == 0u && table[i].IsSerialNumber()) { entry = &table[i + table[i].GetSerialNumber()]; i += kCheckJniEntriesPerReference; DCHECK_LE(i, count); } else { entry = &table[i]; i += 1u; } DCHECK(!entry->IsSerialNumber()); if (!entry->IsFree()) { GcRoot* root = entry->GetRootAddress(); DCHECK(!root->IsNull()); visitor(root); } } }; if (small_table_ != nullptr) { visit_table(small_table_, segment_state_.top_index); } else { uint32_t remaining = segment_state_.top_index; size_t table_index = 0u; while (remaining != 0u) { size_t count = std::min(remaining, GetTableSize(table_index)); visit_table(tables_[table_index], count); ++table_index; remaining -= count; } } } void LocalReferenceTable::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) { BufferedRootVisitor root_visitor(visitor, root_info); VisitRootsInternal([&](GcRoot* root) REQUIRES_SHARED(Locks::mutator_lock_) { root_visitor.VisitRoot(*root); }); } void LocalReferenceTable::Dump(std::ostream& os) const { os << kLocal << " table dump:\n"; ReferenceTable::Table entries; VisitRootsInternal([&](GcRoot* root) REQUIRES_SHARED(Locks::mutator_lock_) { entries.push_back(*root); }); ReferenceTable::Dump(os, entries); } bool LocalReferenceTable::EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) { // TODO: Pass `previous_state` so that we can check holes. DCHECK_GE(free_capacity, static_cast(1)); size_t top_index = segment_state_.top_index; DCHECK_LE(top_index, max_entries_); if (IsCheckJniEnabled()) { // High values lead to the maximum size check failing below. if (free_capacity >= std::numeric_limits::max() / kCheckJniEntriesPerReference) { free_capacity = std::numeric_limits::max(); } else { free_capacity *= kCheckJniEntriesPerReference; } } // TODO: Include holes from the current segment in the calculation. if (free_capacity <= max_entries_ - top_index) { return true; } if (free_capacity > kMaxTableSize - top_index) { *error_msg = android::base::StringPrintf( "Requested size exceeds maximum: %zu > %zu (%zu used)", free_capacity, kMaxTableSize - top_index, top_index); return false; } // Try to increase the table size. if (!Resize(top_index + free_capacity, error_msg)) { LOG(WARNING) << "JNI ERROR: Unable to reserve space in EnsureFreeCapacity (" << free_capacity << "): " << std::endl << MutatorLockedDumpable(*this) << " Resizing failed: " << *error_msg; return false; } return true; } size_t LocalReferenceTable::FreeCapacity() const { // TODO: Include holes in current segment. if (IsCheckJniEnabled()) { DCHECK_ALIGNED(max_entries_, kCheckJniEntriesPerReference); // The `segment_state_.top_index` is not necessarily aligned; rounding down. return (max_entries_ - segment_state_.top_index) / kCheckJniEntriesPerReference; } else { return max_entries_ - segment_state_.top_index; } } } // namespace jni } // namespace art