/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "method_handles-inl.h" #include "android-base/macros.h" #include "android-base/stringprintf.h" #include "class_root-inl.h" #include "common_dex_operations.h" #include "common_throws.h" #include "interpreter/shadow_frame-inl.h" #include "interpreter/shadow_frame.h" #include "jvalue-inl.h" #include "mirror/class-inl.h" #include "mirror/emulated_stack_frame-inl.h" #include "mirror/emulated_stack_frame.h" #include "mirror/method_handle_impl-inl.h" #include "mirror/method_handle_impl.h" #include "mirror/method_type-inl.h" #include "mirror/var_handle.h" #include "reflection-inl.h" #include "reflection.h" #include "thread.h" #include "var_handles.h" #include "well_known_classes.h" namespace art HIDDEN { using android::base::StringPrintf; namespace { #define PRIMITIVES_LIST(V) \ V(Primitive::kPrimBoolean, Boolean, Boolean, Z) \ V(Primitive::kPrimByte, Byte, Byte, B) \ V(Primitive::kPrimChar, Char, Character, C) \ V(Primitive::kPrimShort, Short, Short, S) \ V(Primitive::kPrimInt, Int, Integer, I) \ V(Primitive::kPrimLong, Long, Long, J) \ V(Primitive::kPrimFloat, Float, Float, F) \ V(Primitive::kPrimDouble, Double, Double, D) // Assigns |type| to the primitive type associated with |klass|. Returns // true iff. |klass| was a boxed type (Integer, Long etc.), false otherwise. bool GetUnboxedPrimitiveType(ObjPtr klass, Primitive::Type* type) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); std::string storage; const char* descriptor = klass->GetDescriptor(&storage); static const char kJavaLangPrefix[] = "Ljava/lang/"; static const size_t kJavaLangPrefixSize = sizeof(kJavaLangPrefix) - 1; if (strncmp(descriptor, kJavaLangPrefix, kJavaLangPrefixSize) != 0) { return false; } descriptor += kJavaLangPrefixSize; #define LOOKUP_PRIMITIVE(primitive, _, java_name, ___) \ if (strcmp(descriptor, #java_name ";") == 0) { \ *type = primitive; \ return true; \ } PRIMITIVES_LIST(LOOKUP_PRIMITIVE); #undef LOOKUP_PRIMITIVE return false; } ObjPtr GetBoxedPrimitiveClass(Primitive::Type type) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); ArtMethod* m = nullptr; switch (type) { #define CASE_PRIMITIVE(primitive, _, java_name, __) \ case primitive: \ m = WellKnownClasses::java_lang_ ## java_name ## _valueOf; \ break; PRIMITIVES_LIST(CASE_PRIMITIVE); #undef CASE_PRIMITIVE case Primitive::Type::kPrimNot: case Primitive::Type::kPrimVoid: return nullptr; } return m->GetDeclaringClass(); } bool GetUnboxedTypeAndValue(ObjPtr o, Primitive::Type* type, JValue* value) REQUIRES_SHARED(Locks::mutator_lock_) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); ObjPtr klass = o->GetClass(); ArtField* primitive_field = &klass->GetIFieldsPtr()->At(0); #define CASE_PRIMITIVE(primitive, abbrev, _, shorthand) \ if (klass == GetBoxedPrimitiveClass(primitive)) { \ *type = primitive; \ value->Set ## shorthand(primitive_field->Get ## abbrev(o)); \ return true; \ } PRIMITIVES_LIST(CASE_PRIMITIVE) #undef CASE_PRIMITIVE return false; } inline bool IsReferenceType(Primitive::Type type) { return type == Primitive::kPrimNot; } inline bool IsPrimitiveType(Primitive::Type type) { return !IsReferenceType(type); } } // namespace bool IsParameterTypeConvertible(ObjPtr from, ObjPtr to) REQUIRES_SHARED(Locks::mutator_lock_) { // This function returns true if there's any conceivable conversion // between |from| and |to|. It's expected this method will be used // to determine if a WrongMethodTypeException should be raised. The // decision logic follows the documentation for MethodType.asType(). if (from == to) { return true; } Primitive::Type from_primitive = from->GetPrimitiveType(); Primitive::Type to_primitive = to->GetPrimitiveType(); DCHECK(from_primitive != Primitive::Type::kPrimVoid); DCHECK(to_primitive != Primitive::Type::kPrimVoid); // If |to| and |from| are references. if (IsReferenceType(from_primitive) && IsReferenceType(to_primitive)) { // Assignability is determined during parameter conversion when // invoking the associated method handle. return true; } // If |to| and |from| are primitives and a widening conversion exists. if (Primitive::IsWidenable(from_primitive, to_primitive)) { return true; } // If |to| is a reference and |from| is a primitive, then boxing conversion. if (IsReferenceType(to_primitive) && IsPrimitiveType(from_primitive)) { return to->IsAssignableFrom(GetBoxedPrimitiveClass(from_primitive)); } // If |from| is a reference and |to| is a primitive, then unboxing conversion. if (IsPrimitiveType(to_primitive) && IsReferenceType(from_primitive)) { if (from->DescriptorEquals("Ljava/lang/Object;")) { // Object might be converted into a primitive during unboxing. return true; } if (Primitive::IsNumericType(to_primitive) && from->DescriptorEquals("Ljava/lang/Number;")) { // Number might be unboxed into any of the number primitive types. return true; } Primitive::Type unboxed_type; if (GetUnboxedPrimitiveType(from, &unboxed_type)) { if (unboxed_type == to_primitive) { // Straightforward unboxing conversion such as Boolean => boolean. return true; } // Check if widening operations for numeric primitives would work, // such as Byte => byte => long. return Primitive::IsWidenable(unboxed_type, to_primitive); } } return false; } bool IsReturnTypeConvertible(ObjPtr from, ObjPtr to) REQUIRES_SHARED(Locks::mutator_lock_) { if (to->GetPrimitiveType() == Primitive::Type::kPrimVoid) { // Result will be ignored. return true; } else if (from->GetPrimitiveType() == Primitive::Type::kPrimVoid) { // Returned value will be 0 / null. return true; } else { // Otherwise apply usual parameter conversion rules. return IsParameterTypeConvertible(from, to); } } bool ConvertJValueCommon( const ThrowWrongMethodTypeFunction& throw_wmt, ObjPtr from, ObjPtr to, /*inout*/ JValue* value) { // The reader maybe concerned about the safety of the heap object // that may be in |value|. There is only one case where allocation // is obviously needed and that's for boxing. However, in the case // of boxing |value| contains a non-reference type. const Primitive::Type from_type = from->GetPrimitiveType(); const Primitive::Type to_type = to->GetPrimitiveType(); // Put incoming value into |src_value| and set return value to 0. // Errors and conversions from void require the return value to be 0. const JValue src_value(*value); value->SetJ(0); // Conversion from void set result to zero. if (from_type == Primitive::kPrimVoid) { return true; } // This method must be called only when the types don't match. DCHECK(from != to); if (IsPrimitiveType(from_type) && IsPrimitiveType(to_type)) { // The source and target types are both primitives. if (UNLIKELY(!ConvertPrimitiveValueNoThrow(from_type, to_type, src_value, value))) { throw_wmt(); return false; } return true; } else if (IsReferenceType(from_type) && IsReferenceType(to_type)) { // They're both reference types. If "from" is null, we can pass it // through unchanged. If not, we must generate a cast exception if // |to| is not assignable from the dynamic type of |ref|. // // Playing it safe with StackHandleScope here, not expecting any allocation // in mirror::Class::IsAssignable(). StackHandleScope<2> hs(Thread::Current()); Handle h_to(hs.NewHandle(to)); Handle h_obj(hs.NewHandle(src_value.GetL())); if (UNLIKELY(!h_obj.IsNull() && !to->IsAssignableFrom(h_obj->GetClass()))) { ThrowClassCastException(h_to.Get(), h_obj->GetClass()); return false; } value->SetL(h_obj.Get()); return true; } else if (IsReferenceType(to_type)) { DCHECK(IsPrimitiveType(from_type)); // The source type is a primitive and the target type is a reference, so we must box. // The target type maybe a super class of the boxed source type, for example, // if the source type is int, it's boxed type is java.lang.Integer, and the target // type could be java.lang.Number. Primitive::Type type; if (!GetUnboxedPrimitiveType(to, &type)) { ObjPtr boxed_from_class = GetBoxedPrimitiveClass(from_type); if (LIKELY(boxed_from_class->IsSubClass(to))) { type = from_type; } else { throw_wmt(); return false; } } if (UNLIKELY(from_type != type)) { throw_wmt(); return false; } if (UNLIKELY(!ConvertPrimitiveValueNoThrow(from_type, type, src_value, value))) { throw_wmt(); return false; } // Then perform the actual boxing, and then set the reference. ObjPtr boxed = BoxPrimitive(type, src_value); value->SetL(boxed); return true; } else { // The source type is a reference and the target type is a primitive, so we must unbox. DCHECK(IsReferenceType(from_type)); DCHECK(IsPrimitiveType(to_type)); ObjPtr from_obj(src_value.GetL()); if (UNLIKELY(from_obj.IsNull())) { ThrowNullPointerException( StringPrintf("Expected to unbox a '%s' primitive type but was returned null", from->PrettyDescriptor().c_str()).c_str()); return false; } ObjPtr from_obj_type = from_obj->GetClass(); Primitive::Type from_primitive_type; if (!GetUnboxedPrimitiveType(from_obj_type, &from_primitive_type)) { ThrowClassCastException(from, to); return false; } Primitive::Type unboxed_type; JValue unboxed_value; if (UNLIKELY(!GetUnboxedTypeAndValue(from_obj, &unboxed_type, &unboxed_value))) { throw_wmt(); return false; } if (UNLIKELY(!ConvertPrimitiveValueNoThrow(unboxed_type, to_type, unboxed_value, value))) { if (from->IsAssignableFrom(GetBoxedPrimitiveClass(to_type))) { // CallSite may be Number, but the Number object is // incompatible, e.g. Number (Integer) for a short. ThrowClassCastException(from, to); } else { // CallSite is incompatible, e.g. Integer for a short. throw_wmt(); } return false; } return true; } } namespace { inline void CopyArgumentsFromCallerFrame(const ShadowFrame& caller_frame, ShadowFrame* callee_frame, const InstructionOperands* const operands, const size_t first_dst_reg) REQUIRES_SHARED(Locks::mutator_lock_) { for (size_t i = 0; i < operands->GetNumberOfOperands(); ++i) { size_t dst_reg = first_dst_reg + i; size_t src_reg = operands->GetOperand(i); // Uint required, so that sign extension does not make this wrong on 64-bit systems uint32_t src_value = caller_frame.GetVReg(src_reg); ObjPtr o = caller_frame.GetVRegReference(src_reg); // If both register locations contains the same value, the register probably holds a reference. // Note: As an optimization, non-moving collectors leave a stale reference value // in the references array even after the original vreg was overwritten to a non-reference. if (src_value == reinterpret_cast(o.Ptr())) { callee_frame->SetVRegReference(dst_reg, o); } else { callee_frame->SetVReg(dst_reg, src_value); } } } // Calculate the number of ins for a proxy or native method, where we // can't just look at the code item. static inline size_t GetInsForProxyOrNativeMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(method->IsNative() || method->IsProxyMethod()); method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); uint32_t shorty_length = 0; const char* shorty = method->GetShorty(&shorty_length); // Static methods do not include the receiver. The receiver isn't included // in the shorty_length though the return value is. size_t num_ins = method->IsStatic() ? shorty_length - 1 : shorty_length; for (const char* c = shorty + 1; *c != '\0'; ++c) { if (*c == 'J' || *c == 'D') { ++num_ins; } } return num_ins; } static inline bool MethodHandleInvokeTransform(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // This can be fixed to two, because the method we're calling here // (MethodHandle.transformInternal) doesn't have any locals and the signature // is known : // // private MethodHandle.transformInternal(EmulatedStackFrame sf); // // This means we need only two vregs : // - One for the method_handle object. // - One for the only method argument (an EmulatedStackFrame). static constexpr size_t kNumRegsForTransform = 2; ArtMethod* called_method = method_handle->GetTargetMethod(); CodeItemDataAccessor accessor(called_method->DexInstructionData()); DCHECK_EQ(kNumRegsForTransform, accessor.RegistersSize()); DCHECK_EQ(kNumRegsForTransform, accessor.InsSize()); StackHandleScope<2> hs(self); Handle callee_type(hs.NewHandle(method_handle->GetMethodType())); Handle sf( hs.NewHandle( mirror::EmulatedStackFrame::CreateFromShadowFrameAndArgs( self, callsite_type, callee_type, shadow_frame, operands))); if (sf == nullptr) { DCHECK(self->IsExceptionPending()); return false; } const char* old_cause = self->StartAssertNoThreadSuspension("MethodHandleInvokeTransform"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(kNumRegsForTransform, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); new_shadow_frame->SetVRegReference(0, method_handle.Get()); new_shadow_frame->SetVRegReference(1, sf.Get()); self->EndAssertNoThreadSuspension(old_cause); PerformCall(self, accessor, shadow_frame.GetMethod(), 0 /* first destination register */, new_shadow_frame, result, interpreter::ShouldStayInSwitchInterpreter(called_method)); if (self->IsExceptionPending()) { return false; } // If the called transformer method we called has returned a value, then we // need to copy it back to |result|. sf->GetReturnValue(self, result); return true; } inline static ObjPtr GetAndInitializeDeclaringClass(Thread* self, ArtField* field) REQUIRES_SHARED(Locks::mutator_lock_) { // Method handle invocations on static fields should ensure class is // initialized. This usually happens when an instance is constructed // or class members referenced, but this is not guaranteed when // looking up method handles. ObjPtr klass = field->GetDeclaringClass(); if (UNLIKELY(!klass->IsInitialized())) { StackHandleScope<1> hs(self); HandleWrapperObjPtr h(hs.NewHandleWrapper(&klass)); if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h, true, true)) { DCHECK(self->IsExceptionPending()); return nullptr; } } return klass; } ArtMethod* RefineTargetMethod(Thread* self, ShadowFrame& shadow_frame, const mirror::MethodHandle::Kind& handle_kind, ObjPtr handle_type, const uint32_t receiver_reg, ArtMethod* target_method) REQUIRES_SHARED(Locks::mutator_lock_) { if (handle_kind == mirror::MethodHandle::Kind::kInvokeVirtual || handle_kind == mirror::MethodHandle::Kind::kInvokeInterface) { // For virtual and interface methods ensure target_method points to // the actual method to invoke. ObjPtr receiver(shadow_frame.GetVRegReference(receiver_reg)); ObjPtr declaring_class(target_method->GetDeclaringClass()); if (receiver == nullptr || receiver->GetClass() != declaring_class) { // Verify that _vRegC is an object reference and of the type expected by // the receiver. if (!VerifyObjectIsClass(receiver, declaring_class)) { DCHECK(self->IsExceptionPending()); return nullptr; } return receiver->GetClass()->FindVirtualMethodForVirtualOrInterface( target_method, kRuntimePointerSize); } } else if (handle_kind == mirror::MethodHandle::Kind::kInvokeDirect) { // String constructors are a special case, they are replaced with // StringFactory methods. if (target_method->IsStringConstructor()) { DCHECK(handle_type->GetRType()->IsStringClass()); return WellKnownClasses::StringInitToStringFactory(target_method); } } else if (handle_kind == mirror::MethodHandle::Kind::kInvokeSuper) { // Note that we're not dynamically dispatching on the type of the receiver // here. We use the static type of the "receiver" object that we've // recorded in the method handle's type, which will be the same as the // special caller that was specified at the point of lookup. ObjPtr referrer_class = handle_type->GetPTypes()->Get(0); ObjPtr declaring_class = target_method->GetDeclaringClass(); if (referrer_class == declaring_class) { return target_method; } if (declaring_class->IsInterface()) { if (target_method->IsAbstract()) { std::string msg = "Method " + target_method->PrettyMethod() + " is abstract interface method!"; ThrowIllegalAccessException(msg.c_str()); return nullptr; } } else { ObjPtr super_class = referrer_class->GetSuperClass(); uint16_t vtable_index = target_method->GetMethodIndex(); DCHECK(super_class != nullptr); DCHECK(super_class->HasVTable()); // Note that super_class is a super of referrer_class and target_method // will always be declared by super_class (or one of its super classes). DCHECK_LT(vtable_index, super_class->GetVTableLength()); return super_class->GetVTableEntry(vtable_index, kRuntimePointerSize); } } return target_method; } // Helper for getters in invoke-polymorphic. inline static void MethodHandleFieldGet(Thread* self, const ShadowFrame& shadow_frame, ObjPtr& obj, ArtField* field, Primitive::Type field_type, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { switch (field_type) { case Primitive::kPrimBoolean: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimByte: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimChar: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimShort: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimInt: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimLong: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimFloat: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimDouble: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimNot: DoFieldGetCommon(self, shadow_frame, obj, field, result); break; case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } } // Helper for setters in invoke-polymorphic. inline bool MethodHandleFieldPut(Thread* self, ShadowFrame& shadow_frame, ObjPtr& obj, ArtField* field, Primitive::Type field_type, JValue& value) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(!Runtime::Current()->IsActiveTransaction()); static const bool kTransaction = false; // Not in a transaction. switch (field_type) { case Primitive::kPrimBoolean: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimByte: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimChar: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimShort: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimInt: case Primitive::kPrimFloat: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimLong: case Primitive::kPrimDouble: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimNot: return DoFieldPutCommon( self, shadow_frame, obj, field, value); case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } } static JValue GetValueFromShadowFrame(const ShadowFrame& shadow_frame, Primitive::Type field_type, uint32_t vreg) REQUIRES_SHARED(Locks::mutator_lock_) { JValue field_value; switch (field_type) { case Primitive::kPrimBoolean: field_value.SetZ(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimByte: field_value.SetB(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimChar: field_value.SetC(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimShort: field_value.SetS(static_cast(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimInt: case Primitive::kPrimFloat: field_value.SetI(shadow_frame.GetVReg(vreg)); break; case Primitive::kPrimLong: case Primitive::kPrimDouble: field_value.SetJ(shadow_frame.GetVRegLong(vreg)); break; case Primitive::kPrimNot: field_value.SetL(shadow_frame.GetVRegReference(vreg)); break; case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return field_value; } bool MethodHandleFieldAccess(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); const mirror::MethodHandle::Kind handle_kind = method_handle->GetHandleKind(); ArtField* field = method_handle->GetTargetField(); Primitive::Type field_type = field->GetTypeAsPrimitiveType(); switch (handle_kind) { case mirror::MethodHandle::kInstanceGet: { size_t obj_reg = operands->GetOperand(0); ObjPtr obj = shadow_frame.GetVRegReference(obj_reg); if (obj == nullptr) { ThrowNullPointerException("Receiver is null"); return false; } MethodHandleFieldGet(self, shadow_frame, obj, field, field_type, result); return true; } case mirror::MethodHandle::kStaticGet: { ObjPtr obj = GetAndInitializeDeclaringClass(self, field); if (obj == nullptr) { DCHECK(self->IsExceptionPending()); return false; } MethodHandleFieldGet(self, shadow_frame, obj, field, field_type, result); return true; } case mirror::MethodHandle::kInstancePut: { size_t obj_reg = operands->GetOperand(0); size_t value_reg = operands->GetOperand(1); const size_t kPTypeIndex = 1; // Use ptypes instead of field type since we may be unboxing a reference for a primitive // field. The field type is incorrect for this case. JValue value = GetValueFromShadowFrame( shadow_frame, callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(), value_reg); ObjPtr obj = shadow_frame.GetVRegReference(obj_reg); if (obj == nullptr) { ThrowNullPointerException("Receiver is null"); return false; } return MethodHandleFieldPut(self, shadow_frame, obj, field, field_type, value); } case mirror::MethodHandle::kStaticPut: { ObjPtr obj = GetAndInitializeDeclaringClass(self, field); if (obj == nullptr) { DCHECK(self->IsExceptionPending()); return false; } size_t value_reg = operands->GetOperand(0); const size_t kPTypeIndex = 0; // Use ptypes instead of field type since we may be unboxing a reference for a primitive // field. The field type is incorrect for this case. JValue value = GetValueFromShadowFrame( shadow_frame, callsite_type->GetPTypes()->Get(kPTypeIndex)->GetPrimitiveType(), value_reg); return MethodHandleFieldPut(self, shadow_frame, obj, field, field_type, value); } default: LOG(FATAL) << "Unreachable: " << handle_kind; UNREACHABLE(); } } bool DoVarHandleInvokeTranslation(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // // Basic checks that apply in all cases. // StackHandleScope<6> hs(self); Handle> callsite_ptypes(hs.NewHandle(callsite_type->GetPTypes())); Handle> mh_ptypes(hs.NewHandle(method_handle->GetMethodType()->GetPTypes())); // Check that the first parameter is a VarHandle if (callsite_ptypes->GetLength() < 1 || !mh_ptypes->Get(0)->IsAssignableFrom(callsite_ptypes->Get(0)) || mh_ptypes->Get(0) != GetClassRoot()) { ThrowWrongMethodTypeException(method_handle->GetMethodType(), callsite_type.Get()); return false; } // Get the receiver ObjPtr receiver = shadow_frame.GetVRegReference(operands->GetOperand(0)); if (receiver == nullptr) { ThrowNullPointerException("Expected argument 1 to be a non-null VarHandle"); return false; } // Cast to VarHandle instance Handle vh(hs.NewHandle(ObjPtr::DownCast(receiver))); DCHECK(GetClassRoot()->IsAssignableFrom(vh->GetClass())); // Determine the accessor kind to dispatch ArtMethod* target_method = method_handle->GetTargetMethod(); int intrinsic_index = target_method->GetIntrinsic(); mirror::VarHandle::AccessMode access_mode = mirror::VarHandle::GetAccessModeByIntrinsic(static_cast(intrinsic_index)); Handle vh_type = hs.NewHandle(vh->GetMethodTypeForAccessMode(self, access_mode)); Handle mh_invoke_type = hs.NewHandle( mirror::MethodType::CloneWithoutLeadingParameter(self, method_handle->GetMethodType())); if (method_handle->GetHandleKind() == mirror::MethodHandle::Kind::kInvokeVarHandleExact) { if (!mh_invoke_type->IsExactMatch(vh_type.Get())) { ThrowWrongMethodTypeException(vh_type.Get(), mh_invoke_type.Get()); return false; } } Handle callsite_type_without_varhandle = hs.NewHandle(mirror::MethodType::CloneWithoutLeadingParameter(self, callsite_type.Get())); NoReceiverInstructionOperands varhandle_operands(operands); return VarHandleInvokeAccessor(self, shadow_frame, vh, callsite_type_without_varhandle, access_mode, &varhandle_operands, result); } static bool DoMethodHandleInvokeMethod(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* target_method = method_handle->GetTargetMethod(); uint32_t receiver_reg = (operands->GetNumberOfOperands() > 0) ? operands->GetOperand(0) : 0u; ArtMethod* called_method = RefineTargetMethod(self, shadow_frame, method_handle->GetHandleKind(), method_handle->GetMethodType(), receiver_reg, target_method); if (called_method == nullptr) { DCHECK(self->IsExceptionPending()); return false; } // Compute method information. CodeItemDataAccessor accessor(called_method->DexInstructionData()); uint16_t num_regs; size_t first_dest_reg; if (LIKELY(accessor.HasCodeItem())) { num_regs = accessor.RegistersSize(); first_dest_reg = num_regs - accessor.InsSize(); // Parameter registers go at the end of the shadow frame. DCHECK_NE(first_dest_reg, (size_t)-1); } else { // No local regs for proxy and native methods. DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = GetInsForProxyOrNativeMethod(called_method); first_dest_reg = 0; } const char* old_cause = self->StartAssertNoThreadSuspension("DoMethodHandleInvokeMethod"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); CopyArgumentsFromCallerFrame(shadow_frame, new_shadow_frame, operands, first_dest_reg); self->EndAssertNoThreadSuspension(old_cause); PerformCall(self, accessor, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result, interpreter::ShouldStayInSwitchInterpreter(called_method)); if (self->IsExceptionPending()) { return false; } return true; } static bool MethodHandleInvokeExactInternal(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { if (!callsite_type->IsExactMatch(method_handle->GetMethodType())) { ThrowWrongMethodTypeException(method_handle->GetMethodType(), callsite_type.Get()); return false; } switch (method_handle->GetHandleKind()) { case mirror::MethodHandle::Kind::kInvokeDirect: case mirror::MethodHandle::Kind::kInvokeInterface: case mirror::MethodHandle::Kind::kInvokeStatic: case mirror::MethodHandle::Kind::kInvokeSuper: case mirror::MethodHandle::Kind::kInvokeVirtual: return DoMethodHandleInvokeMethod(self, shadow_frame, method_handle, operands, result); case mirror::MethodHandle::Kind::kInstanceGet: case mirror::MethodHandle::Kind::kInstancePut: case mirror::MethodHandle::Kind::kStaticGet: case mirror::MethodHandle::Kind::kStaticPut: return MethodHandleFieldAccess( self, shadow_frame, method_handle, callsite_type, operands, result); case mirror::MethodHandle::Kind::kInvokeTransform: return MethodHandleInvokeTransform( self, shadow_frame, method_handle, callsite_type, operands, result); case mirror::MethodHandle::Kind::kInvokeVarHandle: case mirror::MethodHandle::Kind::kInvokeVarHandleExact: return DoVarHandleInvokeTranslation( self, shadow_frame, method_handle, callsite_type, operands, result); } } static bool MethodHandleInvokeInternal(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<2> hs(self); Handle method_handle_type(hs.NewHandle(method_handle->GetMethodType())); // Non-exact invoke behaves as calling mh.asType(newType). In ART, asType() is implemented // as a transformer and it is expensive to call so check first if it's really necessary. // // There are two cases where the asType() transformation can be skipped: // // 1) the call site and type of the MethodHandle match, ie code is calling invoke() // unnecessarily. // // 2) when the call site can be trivially converted to the MethodHandle type due to how // values are represented in the ShadowFrame, ie all registers in the shadow frame are // 32-bit, there is no byte, short, char, etc. So a call site with arguments of these // kinds can be trivially converted to one with int arguments. Similarly if the reference // types are assignable between the call site and MethodHandle type, then as asType() // transformation isn't really doing any work. // // The following IsInPlaceConvertible check determines if either of these opportunities to // skip asType() are true. if (callsite_type->IsInPlaceConvertible(method_handle_type.Get())) { return MethodHandleInvokeExact( self, shadow_frame, method_handle, method_handle_type, operands, result); } // Use asType() variant of this MethodHandle to adapt callsite to the target. MutableHandle atc(hs.NewHandle(method_handle->GetAsTypeCache())); if (atc == nullptr || !callsite_type->IsExactMatch(atc->GetMethodType())) { // Cached asType adapter does not exist or is for another call site. Call // MethodHandle::asType() to get an appropriate adapter. ArtMethod* as_type = WellKnownClasses::java_lang_invoke_MethodHandle_asType; ObjPtr atc_method_handle = ObjPtr::DownCast( as_type->InvokeVirtual<'L', 'L'>(self, method_handle.Get(), callsite_type.Get())); if (atc_method_handle == nullptr) { DCHECK(self->IsExceptionPending()); return false; } atc.Assign(atc_method_handle); DCHECK(!atc.IsNull()); } return MethodHandleInvokeExact(self, shadow_frame, atc, callsite_type, operands, result); } } // namespace bool MethodHandleInvoke(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { return MethodHandleInvokeInternal( self, shadow_frame, method_handle, callsite_type, operands, result); } bool MethodHandleInvokeExact(Thread* self, ShadowFrame& shadow_frame, Handle method_handle, Handle callsite_type, const InstructionOperands* const operands, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { return MethodHandleInvokeExactInternal( self, shadow_frame, method_handle, callsite_type, operands, result); } void MethodHandleInvokeExactWithFrame(Thread* self, Handle method_handle, Handle emulated_frame) REQUIRES_SHARED(Locks::mutator_lock_) { StackHandleScope<1> hs(self); Handle callsite_type = hs.NewHandle(emulated_frame->GetType()); // Copy arguments from the EmalatedStackFrame to a ShadowFrame. const uint16_t num_vregs = callsite_type->NumberOfVRegs(); const char* old_cause = self->StartAssertNoThreadSuspension("EmulatedStackFrame to ShadowFrame"); ArtMethod* invoke_exact = WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact; ShadowFrameAllocaUniquePtr shadow_frame = CREATE_SHADOW_FRAME(num_vregs, invoke_exact, /*dex_pc*/ 0); emulated_frame->WriteToShadowFrame(self, callsite_type, 0, shadow_frame.get()); self->EndAssertNoThreadSuspension(old_cause); ManagedStack fragment; self->PushManagedStackFragment(&fragment); self->PushShadowFrame(shadow_frame.get()); JValue result; RangeInstructionOperands operands(0, num_vregs); bool success = MethodHandleInvokeExact(self, *shadow_frame.get(), method_handle, callsite_type, &operands, &result); DCHECK_NE(success, self->IsExceptionPending()); if (success) { emulated_frame->SetReturnValue(self, result); } self->PopShadowFrame(); self->PopManagedStackFragment(fragment); } } // namespace art