# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies RAW sensitivity burst.""" import logging import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils _GR_PLANE_IDX = 1 # GR plane index in RGGB data _IMG_STATS_GRID = 9 # find used to find the center 11.11% _NAME = os.path.splitext(os.path.basename(__file__))[0] _NUM_FRAMES = 4 _NUM_STEPS = 5 _VAR_THRESH = 1.01 # each shot must be 1% noisier than previous def define_raw_stats_fmt(props): """Defines the format using camera props active array width and height.""" aax = props['android.sensor.info.preCorrectionActiveArraySize']['left'] aay = props['android.sensor.info.preCorrectionActiveArraySize']['top'] aaw = props['android.sensor.info.preCorrectionActiveArraySize']['right'] - aax aah = props[ 'android.sensor.info.preCorrectionActiveArraySize']['bottom'] - aay return {'format': 'rawStats', 'gridWidth': aaw // _IMG_STATS_GRID, 'gridHeight': aah // _IMG_STATS_GRID} class RawBurstSensitivityTest(its_base_test.ItsBaseTest): """Captures a set of RAW images with increasing sensitivity & measures noise. Sensitivity range (gain) is determined from camera properties and limited to the analog sensitivity range as captures are RAW only in a burst. Digital sensitivity range from props['android.sensor.info.sensitivityRange'] is not used. Uses RawStats capture format to speed up processing. RawStats defines a grid over the RAW image and returns average and variance of requested areas. white_level is found from camera to normalize variance values from RawStats. Noise (image variance) of center patch should increase with increasing sensitivity. """ def test_raw_burst_sensitivity(self): with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) camera_properties_utils.skip_unless( camera_properties_utils.raw16(props) and camera_properties_utils.manual_sensor(props) and camera_properties_utils.read_3a(props) and camera_properties_utils.per_frame_control(props) and not camera_properties_utils.mono_camera(props)) name_with_log_path = os.path.join(self.log_path, _NAME) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, its_session_utils.CHART_DISTANCE_NO_SCALING) # Find sensitivity range and create capture requests sens_min, _ = props['android.sensor.info.sensitivityRange'] sens_max = props['android.sensor.maxAnalogSensitivity'] sens_step = (sens_max - sens_min) // _NUM_STEPS # Intentionally blur images for noise measurements sens_ae, exp_ae, _, _, _ = cam.do_3a(do_af=False, get_results=True) sens_exp_prod = sens_ae * exp_ae reqs = [] settings = [] for sens in range(sens_min, sens_max, sens_step): exp = int(sens_exp_prod / float(sens)) req = capture_request_utils.manual_capture_request(sens, exp, 0) for i in range(_NUM_FRAMES): reqs.append(req) settings.append((sens, exp)) # Get rawStats capture format fmt = define_raw_stats_fmt(props) # Do captures caps = cam.do_capture(reqs, fmt) # Find white_level for RawStats normalization & CFA order white_level = float(props['android.sensor.info.whiteLevel']) cfa_idxs = image_processing_utils.get_canonical_cfa_order(props) # Extract variances from each shot variances = [] for i, cap in enumerate(caps): sens, exp = settings[i] _, var_image = image_processing_utils.unpack_rawstats_capture(cap) var = var_image[_IMG_STATS_GRID//2, _IMG_STATS_GRID//2, cfa_idxs[_GR_PLANE_IDX]]/white_level**2 variances.append(var) logging.debug('s=%d, e=%d, var=%e', sens, exp, var) # Create a plot x = range(len(variances)) pylab.figure(_NAME) pylab.plot(x, variances, '-ro') pylab.xticks(x) pylab.ticklabel_format(style='sci', axis='y', scilimits=(-6, -6)) pylab.xlabel('Setting Combination') pylab.ylabel('Image Center Patch Variance') pylab.title(_NAME) matplotlib.pyplot.savefig( f'{name_with_log_path}_variances.png') # Find average variance at each step vars_step_means = [] for i in range(_NUM_STEPS): vars_step = [] for j in range(_NUM_FRAMES): vars_step.append(variances[_NUM_FRAMES * i + j]) vars_step_means.append(np.mean(vars_step)) logging.debug('averaged variances: %s', vars_step_means) # Assert each set of shots is noisier than previous and save img on FAIL for variance_idx, variance in enumerate(vars_step_means[:-1]): if variance >= vars_step_means[variance_idx+1] / _VAR_THRESH: image_processing_utils.capture_scene_image( cam, props, name_with_log_path ) raise AssertionError( f'variances [i]: {variances[variance_idx]:.5f}, ' f'[i+1]: {variances[variance_idx+1]:.5f}, THRESH: {_VAR_THRESH}' ) if __name__ == '__main__': test_runner.main()