# Copyright 2014 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Verifies sensitivities on RAW images.""" import logging import math import os.path import matplotlib from matplotlib import pylab from mobly import test_runner import numpy as np import its_base_test import camera_properties_utils import capture_request_utils import image_processing_utils import its_session_utils _BLACK_LEVEL_RTOL = 0.005 # 0.5% _GR_PLANE_IDX = 1 # GR plane index in RGGB data _IMG_STATS_GRID = 9 # Center 11.11% _NAME = os.path.splitext(os.path.basename(__file__))[0] _NUM_FRAMES = 4 _NUM_SENS_STEPS = 5 _VAR_THRESH = 1.01 # Each shot must be 1% noisier than previous def define_raw_stats_fmt(props): """Define format with active array width and height.""" aaw = (props['android.sensor.info.preCorrectionActiveArraySize']['right'] - props['android.sensor.info.preCorrectionActiveArraySize']['left']) aah = (props['android.sensor.info.preCorrectionActiveArraySize']['bottom'] - props['android.sensor.info.preCorrectionActiveArraySize']['top']) logging.debug('Active array W,H: %d,%d', aaw, aah) return {'format': 'rawStats', 'gridWidth': aaw // _IMG_STATS_GRID, 'gridHeight': aah // _IMG_STATS_GRID} class RawSensitivityTest(its_base_test.ItsBaseTest): """Capture a set of raw images with increasing gains and measure the noise.""" def test_raw_sensitivity(self): logging.debug('Starting %s', _NAME) with its_session_utils.ItsSession( device_id=self.dut.serial, camera_id=self.camera_id, hidden_physical_id=self.hidden_physical_id) as cam: props = cam.get_camera_properties() props = cam.override_with_hidden_physical_camera_props(props) camera_properties_utils.skip_unless( camera_properties_utils.raw16(props) and camera_properties_utils.manual_sensor(props) and camera_properties_utils.read_3a(props) and camera_properties_utils.per_frame_control(props) and not camera_properties_utils.mono_camera(props)) name_with_log_path = os.path.join(self.log_path, _NAME) # Load chart for scene its_session_utils.load_scene( cam, props, self.scene, self.tablet, its_session_utils.CHART_DISTANCE_NO_SCALING) # Expose for the scene with min sensitivity sens_min, _ = props['android.sensor.info.sensitivityRange'] # Digital gains might not be visible on RAW data sens_max = props['android.sensor.maxAnalogSensitivity'] sens_step = (sens_max - sens_min) // _NUM_SENS_STEPS # Intentionally blur images for noise measurements s_ae, e_ae, _, _, _ = cam.do_3a(do_af=False, get_results=True) s_e_prod = s_ae * e_ae # Get property constants for captures cfa_idxs = image_processing_utils.get_canonical_cfa_order(props) black_levels = image_processing_utils.get_black_levels(props) white_level = props['android.sensor.info.whiteLevel'] sensitivities = list(range(sens_min, sens_max, sens_step)) variances = [] for s in sensitivities: e = int(s_e_prod / float(s)) req = capture_request_utils.manual_capture_request(s, e, 0) # Capture in rawStats to reduce test run time fmt = define_raw_stats_fmt(props) caps = cam.do_capture([req]*_NUM_FRAMES, fmt) image_processing_utils.assert_capture_width_and_height( caps[0], _IMG_STATS_GRID, _IMG_STATS_GRID ) # Measure mean & variance for i, cap in enumerate(caps): mean_img, var_img = image_processing_utils.unpack_rawstats_capture( cap ) mean = mean_img[_IMG_STATS_GRID//2, _IMG_STATS_GRID//2, cfa_idxs[_GR_PLANE_IDX]] var = var_img[_IMG_STATS_GRID//2, _IMG_STATS_GRID//2, cfa_idxs[_GR_PLANE_IDX]]/white_level**2 logging.debug('cap: %d, mean: %.2f, var: %e', i, mean, var) variances.append(var) # Flag dark images if math.isclose(mean, max(black_levels), rel_tol=_BLACK_LEVEL_RTOL): raise AssertionError(f'Images are too dark! Center mean: {mean:.2f}') # Create plot sensitivities = np.repeat(sensitivities, _NUM_FRAMES) pylab.figure(_NAME) pylab.plot(sensitivities, variances, '-ro') pylab.xticks(sensitivities) pylab.xlabel('Sensitivities') pylab.ylabel('Image Center Patch Variance') pylab.ticklabel_format(axis='y', style='sci', scilimits=(-6, -6)) pylab.title(_NAME) matplotlib.pyplot.savefig(f'{name_with_log_path}_variances.png') # Find average variance at each step vars_step_means = [] for i in range(_NUM_SENS_STEPS): vars_step = [] for j in range(_NUM_FRAMES): vars_step.append(variances[_NUM_FRAMES * i + j]) vars_step_means.append(np.mean(vars_step)) logging.debug('averaged variances: %s', vars_step_means) # Assert each set of shots is noisier than previous and save img on FAIL for variance_idx, variance in enumerate(vars_step_means[:-1]): if variance >= vars_step_means[variance_idx+1] / _VAR_THRESH: image_processing_utils.capture_scene_image( cam, props, name_with_log_path ) raise AssertionError( f'variances [i]: {variances[variance_idx]:.5f}, ' f'[i+1]: {variances[variance_idx+1]:.5f}, THRESH: {_VAR_THRESH}' ) if __name__ == '__main__': test_runner.main()