# Copyright 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processing utility functions.""" import copy import io import logging import math import matplotlib from matplotlib import pylab import matplotlib.pyplot import os import sys import capture_request_utils import colour import error_util import noise_model_constants import numpy from PIL import Image from PIL import ImageCms _CMAP_BLUE = ('black', 'blue', 'lightblue') _CMAP_GREEN = ('black', 'green', 'lightgreen') _CMAP_RED = ('black', 'red', 'lightcoral') _CMAP_SIZE = 6 # 6 inches _NUM_RAW_CHANNELS = 4 # R, Gr, Gb, B LENS_SHADING_MAP_ON = 1 # The matrix is from JFIF spec DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([[1.000, 0.000, 1.402], [1.000, -0.344, -0.714], [1.000, 1.772, 0.000]]) DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128]) MAX_LUT_SIZE = 65536 DEFAULT_GAMMA_LUT = numpy.array([ math.floor((MAX_LUT_SIZE-1) * math.pow(i/(MAX_LUT_SIZE-1), 1/2.2) + 0.5) for i in range(MAX_LUT_SIZE)]) NUM_TRIES = 2 NUM_FRAMES = 4 RGB2GRAY_WEIGHTS = (0.299, 0.587, 0.114) TEST_IMG_DIR = os.path.join(os.environ['CAMERA_ITS_TOP'], 'test_images') # Expected adapted primaries in ICC profile per color space EXPECTED_RX_P3 = 0.682 EXPECTED_RY_P3 = 0.319 EXPECTED_GX_P3 = 0.285 EXPECTED_GY_P3 = 0.675 EXPECTED_BX_P3 = 0.156 EXPECTED_BY_P3 = 0.066 EXPECTED_RX_SRGB = 0.648 EXPECTED_RY_SRGB = 0.331 EXPECTED_GX_SRGB = 0.321 EXPECTED_GY_SRGB = 0.598 EXPECTED_BX_SRGB = 0.156 EXPECTED_BY_SRGB = 0.066 # Chosen empirically - tolerance for the point in triangle test for colorspace # chromaticities COLORSPACE_TRIANGLE_AREA_TOL = 0.00028 def plot_lsc_maps(lsc_maps, plot_name, test_name_with_log_path): """Plot the lens shading correction maps. Args: lsc_maps: 4D np array; r, gr, gb, b lens shading correction maps. plot_name: str; identifier for maps ('full_scale' or 'metadata'). test_name_with_log_path: str; test name with log_path location. Returns: None, but generates and saves plots. """ aspect_ratio = lsc_maps[:, :, 0].shape[1] / lsc_maps[:, :, 0].shape[0] plot_w = 1 + aspect_ratio * _CMAP_SIZE # add 1 for heatmap legend matplotlib.pyplot.figure(plot_name, figsize=(plot_w, _CMAP_SIZE)) pylab.suptitle(plot_name) pylab.subplot(2, 2, 1) # 2x2 top left pylab.title('R') cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_RED) matplotlib.pyplot.pcolormesh(lsc_maps[:, :, 0], cmap=cmap) matplotlib.pyplot.colorbar() pylab.subplot(2, 2, 2) # 2x2 top right pylab.title('Gr') cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_GREEN) matplotlib.pyplot.pcolormesh(lsc_maps[:, :, 1], cmap=cmap) matplotlib.pyplot.colorbar() pylab.subplot(2, 2, 3) # 2x2 bottom left pylab.title('Gb') cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_GREEN) matplotlib.pyplot.pcolormesh(lsc_maps[:, :, 2], cmap=cmap) matplotlib.pyplot.colorbar() pylab.subplot(2, 2, 4) # 2x2 bottom right pylab.title('B') cmap = matplotlib.colors.LinearSegmentedColormap.from_list('', _CMAP_BLUE) matplotlib.pyplot.pcolormesh(lsc_maps[:, :, 3], cmap=cmap) matplotlib.pyplot.colorbar() matplotlib.pyplot.savefig(f'{test_name_with_log_path}_{plot_name}_cmaps.png') def capture_scene_image(cam, props, name_with_log_path): """Take a picture of the scene on test FAIL.""" req = capture_request_utils.auto_capture_request() img = convert_capture_to_rgb_image( cam.do_capture(req, cam.CAP_YUV), props=props) write_image(img, f'{name_with_log_path}_scene.jpg', True) def convert_image_to_uint8(image): image *= 255 return image.astype(numpy.uint8) def assert_props_is_not_none(props): if not props: raise AssertionError('props is None') def assert_capture_width_and_height(cap, width, height): if cap['width'] != width or cap['height'] != height: raise AssertionError( 'Unexpected capture WxH size, expected [{}x{}], actual [{}x{}]'.format( width, height, cap['width'], cap['height'] ) ) def apply_lens_shading_map(color_plane, black_level, white_level, lsc_map): """Apply the lens shading map to the color plane. Args: color_plane: 2D np array for color plane with values [0.0, 1.0]. black_level: float; black level for the color plane. white_level: int; full scale for the color plane. lsc_map: 2D np array lens shading matching size of color_plane. Returns: color_plane with lsc applied. """ logging.debug('color plane pre-lsc min, max: %.4f, %.4f', numpy.min(color_plane), numpy.max(color_plane)) color_plane = (numpy.multiply((color_plane * white_level - black_level), lsc_map) + black_level) / white_level logging.debug('color plane post-lsc min, max: %.4f, %.4f', numpy.min(color_plane), numpy.max(color_plane)) return color_plane def populate_lens_shading_map(img_shape, lsc_map): """Helper function to create LSC coeifficients for RAW image. Args: img_shape: tuple; RAW image shape. lsc_map: 2D low resolution array with lens shading map values. Returns: value for lens shading map at point (x, y) in the image. """ img_w, img_h = img_shape[1], img_shape[0] map_w, map_h = lsc_map.shape[1], lsc_map.shape[0] x, y = numpy.meshgrid(numpy.arange(img_w), numpy.arange(img_h)) # (u,v) is lsc map location, values [0, map_w-1], [0, map_h-1] # Vectorized calculations u = x * (map_w - 1) / (img_w - 1) v = y * (map_h - 1) / (img_h - 1) u_min = numpy.floor(u).astype(int) v_min = numpy.floor(v).astype(int) u_frac = u - u_min v_frac = v - v_min u_max = numpy.where(u_frac > 0, u_min + 1, u_min) v_max = numpy.where(v_frac > 0, v_min + 1, v_min) # Gather LSC values, handling edge cases (optional) lsc_tl = lsc_map[(v_min, u_min)] lsc_tr = lsc_map[(v_min, u_max)] lsc_bl = lsc_map[(v_max, u_min)] lsc_br = lsc_map[(v_max, u_max)] # Bilinear interpolation (vectorized) lsc_t = lsc_tl * (1 - u_frac) + lsc_tr * u_frac lsc_b = lsc_bl * (1 - u_frac) + lsc_br * u_frac return lsc_t * (1 - v_frac) + lsc_b * v_frac def unpack_lsc_map_from_metadata(metadata): """Get lens shading correction map from metadata and turn into 3D array. Args: metadata: dict; metadata from RAW capture. Returns: 3D numpy array of lens shading maps. """ lsc_metadata = metadata['android.statistics.lensShadingCorrectionMap'] lsc_map_w, lsc_map_h = lsc_metadata['width'], lsc_metadata['height'] lsc_map = lsc_metadata['map'] logging.debug( 'lensShadingCorrectionMap (H, W): (%d, %d)', lsc_map_h, lsc_map_w ) return numpy.array(lsc_map).reshape(lsc_map_h, lsc_map_w, _NUM_RAW_CHANNELS) def convert_raw_capture_to_rgb_image(cap_raw, props, raw_fmt, log_path_with_name): """Convert a RAW captured image object to a RGB image. Args: cap_raw: A RAW capture object as returned by its_session_utils.do_capture. props: camera properties object (of static values). raw_fmt: string of type 'raw', 'raw10', 'raw12'. log_path_with_name: string with test name and save location. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ shading_mode = cap_raw['metadata']['android.shading.mode'] lens_shading_map_mode = cap_raw[ 'metadata'].get('android.statistics.lensShadingMapMode') lens_shading_applied = props['android.sensor.info.lensShadingApplied'] control_af_mode = cap_raw['metadata']['android.control.afMode'] focus_distance = cap_raw['metadata']['android.lens.focusDistance'] logging.debug('%s capture AF mode: %s', raw_fmt, control_af_mode) logging.debug('%s capture focus distance: %s', raw_fmt, focus_distance) logging.debug('%s capture shading mode: %d', raw_fmt, shading_mode) logging.debug('lensShadingMapApplied: %r', lens_shading_applied) logging.debug('lensShadingMapMode: %s', lens_shading_map_mode) # Split RAW to RGB conversion in 2 to allow LSC application (if needed). r, gr, gb, b = convert_capture_to_planes(cap_raw, props=props) # get from metadata, upsample, and apply if lens_shading_map_mode == LENS_SHADING_MAP_ON: logging.debug('Applying lens shading map') plot_name_stem_with_log_path = f'{log_path_with_name}_{raw_fmt}' black_levels = get_black_levels(props, cap_raw) white_level = int(props['android.sensor.info.whiteLevel']) lsc_maps = unpack_lsc_map_from_metadata(cap_raw['metadata']) plot_lsc_maps(lsc_maps, 'metadata', plot_name_stem_with_log_path) lsc_map_fs_r = populate_lens_shading_map(r.shape, lsc_maps[:, :, 0]) lsc_map_fs_gr = populate_lens_shading_map(gr.shape, lsc_maps[:, :, 1]) lsc_map_fs_gb = populate_lens_shading_map(gb.shape, lsc_maps[:, :, 2]) lsc_map_fs_b = populate_lens_shading_map(b.shape, lsc_maps[:, :, 3]) plot_lsc_maps( numpy.dstack((lsc_map_fs_r, lsc_map_fs_gr, lsc_map_fs_gb, lsc_map_fs_b)), 'fullscale', plot_name_stem_with_log_path ) r = apply_lens_shading_map( r[:, :, 0], black_levels[0], white_level, lsc_map_fs_r ) gr = apply_lens_shading_map( gr[:, :, 0], black_levels[1], white_level, lsc_map_fs_gr ) gb = apply_lens_shading_map( gb[:, :, 0], black_levels[2], white_level, lsc_map_fs_gb ) b = apply_lens_shading_map( b[:, :, 0], black_levels[3], white_level, lsc_map_fs_b ) img = convert_raw_to_rgb_image(r, gr, gb, b, props, cap_raw['metadata']) return img def convert_capture_to_rgb_image(cap, props=None, apply_ccm_raw_to_rgb=True): """Convert a captured image object to a RGB image. Args: cap: A capture object as returned by its_session_utils.do_capture. props: (Optional) camera properties object (of static values); required for processing raw images. apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ w = cap['width'] h = cap['height'] if cap['format'] == 'raw10' or cap['format'] == 'raw10QuadBayer': assert_props_is_not_none(props) is_quad_bayer = cap['format'] == 'raw10QuadBayer' cap = unpack_raw10_capture(cap, is_quad_bayer) if cap['format'] == 'raw12': assert_props_is_not_none(props) cap = unpack_raw12_capture(cap) if cap['format'] == 'yuv': y = cap['data'][0: w * h] u = cap['data'][w * h: w * h * 5//4] v = cap['data'][w * h * 5//4: w * h * 6//4] return convert_yuv420_planar_to_rgb_image(y, u, v, w, h) elif cap['format'] == 'jpeg' or cap['format'] == 'jpeg_r': return decompress_jpeg_to_rgb_image(cap['data']) elif (cap['format'] in ('raw', 'rawQuadBayer') or cap['format'] in noise_model_constants.VALID_RAW_STATS_FORMATS): assert_props_is_not_none(props) r, gr, gb, b = convert_capture_to_planes(cap, props) return convert_raw_to_rgb_image( r, gr, gb, b, props, cap['metadata'], apply_ccm_raw_to_rgb) elif cap['format'] == 'y8': y = cap['data'][0: w * h] return convert_y8_to_rgb_image(y, w, h) else: raise error_util.CameraItsError(f"Invalid format {cap['format']}") def unpack_raw10_capture(cap, is_quad_bayer=False): """Unpack a raw-10 capture to a raw-16 capture. Args: cap: A raw-10 capture object. is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. Returns: New capture object with raw-16 data. """ # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding # the MSBs of the pixels, and the 5th byte holding 4x2b LSBs. w, h = cap['width'], cap['height'] if w % 4 != 0: raise error_util.CameraItsError('Invalid raw-10 buffer width') cap = copy.deepcopy(cap) cap['data'] = unpack_raw10_image(cap['data'].reshape(h, w * 5 // 4)) cap['format'] = 'rawQuadBayer' if is_quad_bayer else 'raw' return cap def unpack_raw10_image(img): """Unpack a raw-10 image to a raw-16 image. Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs will be set to zero. Args: img: A raw-10 image, as a uint8 numpy array. Returns: Image as a uint16 numpy array, with all row padding stripped. """ if img.shape[1] % 5 != 0: raise error_util.CameraItsError('Invalid raw-10 buffer width') w = img.shape[1] * 4 // 5 h = img.shape[0] # Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words. msbs = numpy.delete(img, numpy.s_[4::5], 1) msbs = msbs.astype(numpy.uint16) msbs = numpy.left_shift(msbs, 2) msbs = msbs.reshape(h, w) # Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words. lsbs = img[::, 4::5].reshape(h, w // 4) lsbs = numpy.right_shift( numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 4, 4, 2)), 3), 6) # Pair the LSB bits group to 0th pixel instead of 3rd pixel lsbs = lsbs.reshape(h, w // 4, 4)[:, :, ::-1] lsbs = lsbs.reshape(h, w) # Fuse the MSBs and LSBs back together img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w) return img16 def unpack_raw12_capture(cap): """Unpack a raw-12 capture to a raw-16 capture. Args: cap: A raw-12 capture object. Returns: New capture object with raw-16 data. """ # Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding # the MSBs of the pixels, and the 5th byte holding 4x2b LSBs. w, h = cap['width'], cap['height'] if w % 2 != 0: raise error_util.CameraItsError('Invalid raw-12 buffer width') cap = copy.deepcopy(cap) cap['data'] = unpack_raw12_image(cap['data'].reshape(h, w * 3 // 2)) cap['format'] = 'raw' return cap def unpack_raw12_image(img): """Unpack a raw-12 image to a raw-16 image. Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs will be set to zero. Args: img: A raw-12 image, as a uint8 numpy array. Returns: Image as a uint16 numpy array, with all row padding stripped. """ if img.shape[1] % 3 != 0: raise error_util.CameraItsError('Invalid raw-12 buffer width') w = img.shape[1] * 2 // 3 h = img.shape[0] # Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words. msbs = numpy.delete(img, numpy.s_[2::3], 1) msbs = msbs.astype(numpy.uint16) msbs = numpy.left_shift(msbs, 4) msbs = msbs.reshape(h, w) # Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words. lsbs = img[::, 2::3].reshape(h, w // 2) lsbs = numpy.right_shift( numpy.packbits(numpy.unpackbits(lsbs).reshape((h, w // 2, 2, 4)), 3), 4) # Pair the LSB bits group to pixel 0 instead of pixel 1 lsbs = lsbs.reshape(h, w // 2, 2)[:, :, ::-1] lsbs = lsbs.reshape(h, w) # Fuse the MSBs and LSBs back together img16 = numpy.bitwise_or(msbs, lsbs).reshape(h, w) return img16 def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane, w, h, ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM, yuv_off=DEFAULT_YUV_OFFSETS): """Convert a YUV420 8-bit planar image to an RGB image. Args: y_plane: The packed 8-bit Y plane. u_plane: The packed 8-bit U plane. v_plane: The packed 8-bit V plane. w: The width of the image. h: The height of the image. ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB. yuv_off: (Optional) offsets to subtract from each of Y,U,V values. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ y = numpy.subtract(y_plane, yuv_off[0]) u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8) v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8) u = u.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0) v = v.reshape(h // 2, w // 2).repeat(2, axis=1).repeat(2, axis=0) yuv = numpy.dstack([y, u.reshape(w * h), v.reshape(w * h)]) flt = numpy.empty([h, w, 3], dtype=numpy.float32) flt.reshape(w * h * 3)[:] = yuv.reshape(h * w * 3)[:] flt = numpy.dot(flt.reshape(w * h, 3), ccm_yuv_to_rgb.T).clip(0, 255) rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) rgb.reshape(w * h * 3)[:] = flt.reshape(w * h * 3)[:] return rgb.astype(numpy.float32) / 255.0 def decompress_jpeg_to_rgb_image(jpeg_buffer): """Decompress a JPEG-compressed image, returning as an RGB image. Args: jpeg_buffer: The JPEG stream. Returns: A numpy array for the RGB image, with pixels in [0,1]. """ img = Image.open(io.BytesIO(jpeg_buffer)) w = img.size[0] h = img.size[1] return numpy.array(img).reshape((h, w, 3)) / 255.0 def decompress_jpeg_to_yuv_image(jpeg_buffer): """Decompress a JPEG-compressed image, returning as a YUV image. Args: jpeg_buffer: The JPEG stream. Returns: A numpy array for the YUV image, with pixels in [0,1]. """ img = Image.open(io.BytesIO(jpeg_buffer)) img = img.convert('YCbCr') w = img.size[0] h = img.size[1] return numpy.array(img).reshape((h, w, 3)) / 255.0 def extract_luma_from_patch(cap, patch_x, patch_y, patch_w, patch_h): """Extract luma from capture.""" y, _, _ = convert_capture_to_planes(cap) patch = get_image_patch(y, patch_x, patch_y, patch_w, patch_h) luma = compute_image_means(patch)[0] return luma def convert_image_to_numpy_array(image_path): """Converts image at image_path to numpy array and returns the array. Args: image_path: file path Returns: numpy array """ if not os.path.exists(image_path): raise AssertionError(f'{image_path} does not exist.') image = Image.open(image_path) return numpy.array(image) def _convert_quad_bayer_img_to_bayer_channels(quad_bayer_img, props=None): """Convert a quad Bayer image to the Bayer image channels. Args: quad_bayer_img: The quad Bayer image. props: The camera properties. Returns: A list of reordered standard Bayer channels of the Bayer image. """ height, width, num_channels = quad_bayer_img.shape if num_channels != noise_model_constants.NUM_QUAD_BAYER_CHANNELS: raise AssertionError( 'The number of channels in the quad Bayer image must be ' f'{noise_model_constants.NUM_QUAD_BAYER_CHANNELS}.' ) quad_bayer_cfa_order = get_canonical_cfa_order(props, is_quad_bayer=True) # Bayer channels are in the order of R, Gr, Gb and B. bayer_channels = [] for ch in range(4): channel_img = numpy.zeros(shape=(height, width), dtype='<f') # Average every four quad Bayer channels into a standard Bayer channel. for i in quad_bayer_cfa_order[4 * ch: 4 * (ch + 1)]: channel_img[:, :] += quad_bayer_img[:, :, i] bayer_channels.append(channel_img / 4) return bayer_channels def subsample(image, num_channels=4): """Subsamples the image to separate its color channels. Args: image: 2-D numpy array of raw image. num_channels: The number of channels in the image. Returns: 3-D numpy image with each channel separated. """ if num_channels not in noise_model_constants.VALID_NUM_CHANNELS: raise error_util.CameraItsError( f'Invalid number of channels {num_channels}, which should be in ' f'{noise_model_constants.VALID_NUM_CHANNELS}.' ) size_h, size_v = image.shape[1], image.shape[0] # Subsample step size, which is the horizontal or vertical pixel interval # between two adjacent pixels of the same channel. stride = int(numpy.sqrt(num_channels)) subsample_img = lambda img, i, h, v, s: img[i // s: v: s, i % s: h: s] channel_img = numpy.empty(( image.shape[0] // stride, image.shape[1] // stride, num_channels, )) for i in range(num_channels): sub_img = subsample_img(image, i, size_h, size_v, stride) channel_img[:, :, i] = sub_img return channel_img def convert_capture_to_planes(cap, props=None): """Convert a captured image object to separate image planes. Decompose an image into multiple images, corresponding to different planes. For YUV420 captures ("yuv"): Returns Y,U,V planes, where the Y plane is full-res and the U,V planes are each 1/2 x 1/2 of the full res. For standard Bayer or quad Bayer captures ("raw", "raw10", "raw12", "rawQuadBayer", "rawStats", "rawQuadBayerStats", "raw10QuadBayer", "raw10Stats", "raw10QuadBayerStats"): Returns planes in the order R, Gr, Gb, B, regardless of the Bayer pattern layout. For full-res raw images ("raw", "rawQuadBayer", "raw10", "raw10QuadBayer", "raw12"), each plane is 1/2 x 1/2 of the full res. For standard Bayer stats images, the mean image is returned. For quad Bayer stats images, the average mean image is returned. For JPEG captures ("jpeg"): Returns R,G,B full-res planes. Args: cap: A capture object as returned by its_session_utils.do_capture. props: (Optional) camera properties object (of static values); required for processing raw images. Returns: A tuple of float numpy arrays (one per plane), consisting of pixel values in the range [0.0, 1.0]. """ w = cap['width'] h = cap['height'] if cap['format'] in ('raw10', 'raw10QuadBayer'): assert_props_is_not_none(props) is_quad_bayer = cap['format'] == 'raw10QuadBayer' cap = unpack_raw10_capture(cap, is_quad_bayer) if cap['format'] == 'raw12': assert_props_is_not_none(props) cap = unpack_raw12_capture(cap) if cap['format'] == 'yuv': y = cap['data'][0:w * h] u = cap['data'][w * h:w * h * 5 // 4] v = cap['data'][w * h * 5 // 4:w * h * 6 // 4] return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1), (u.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1), (v.astype(numpy.float32) / 255.0).reshape(h // 2, w // 2, 1)) elif cap['format'] == 'jpeg': rgb = decompress_jpeg_to_rgb_image(cap['data']).reshape(w * h * 3) return (rgb[::3].reshape(h, w, 1), rgb[1::3].reshape(h, w, 1), rgb[2::3].reshape(h, w, 1)) elif cap['format'] in ('raw', 'rawQuadBayer'): assert_props_is_not_none(props) is_quad_bayer = 'QuadBayer' in cap['format'] white_level = get_white_level(props, cap['metadata']) img = numpy.ndarray( shape=(h * w,), dtype='<u2', buffer=cap['data'][0:w * h * 2]) img = img.astype(numpy.float32).reshape(h, w) / white_level if is_quad_bayer: pixel_array_size = props.get( 'android.sensor.info.pixelArraySizeMaximumResolution' ) active_array_size = props.get( 'android.sensor.info.preCorrectionActiveArraySizeMaximumResolution' ) else: pixel_array_size = props.get('android.sensor.info.pixelArraySize') active_array_size = props.get( 'android.sensor.info.preCorrectionActiveArraySize' ) # Crop the raw image to the active array region. if pixel_array_size and active_array_size: # Note that the Rect class is defined such that the left,top values # are "inside" while the right,bottom values are "outside"; that is, # it's inclusive of the top,left sides only. So, the width is # computed as right-left, rather than right-left+1, etc. wfull = pixel_array_size['width'] hfull = pixel_array_size['height'] xcrop = active_array_size['left'] ycrop = active_array_size['top'] wcrop = active_array_size['right'] - xcrop hcrop = active_array_size['bottom'] - ycrop if not wfull >= wcrop >= 0: raise AssertionError(f'wcrop: {wcrop} not in wfull: {wfull}') if not hfull >= hcrop >= 0: raise AssertionError(f'hcrop: {hcrop} not in hfull: {hfull}') if not wfull - wcrop >= xcrop >= 0: raise AssertionError(f'xcrop: {xcrop} not in wfull-crop: {wfull-wcrop}') if not hfull - hcrop >= ycrop >= 0: raise AssertionError(f'ycrop: {ycrop} not in hfull-crop: {hfull-hcrop}') if w == wfull and h == hfull: # Crop needed; extract the center region. img = img[ycrop:ycrop + hcrop, xcrop:xcrop + wcrop] w = wcrop h = hcrop elif w == wcrop and h == hcrop: logging.debug('Image is already cropped. No cropping needed.') else: raise error_util.CameraItsError('Invalid image size metadata') idxs = get_canonical_cfa_order(props, is_quad_bayer) if is_quad_bayer: # Subsample image array based on the color map. quad_bayer_img = subsample( img, noise_model_constants.NUM_QUAD_BAYER_CHANNELS ) bayer_channels = _convert_quad_bayer_img_to_bayer_channels( quad_bayer_img, props ) return bayer_channels else: # Separate the image planes. imgs = [ img[::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1), img[::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1), img[1::2].reshape(w * h // 2)[::2].reshape(h // 2, w // 2, 1), img[1::2].reshape(w * h // 2)[1::2].reshape(h // 2, w // 2, 1), ] return [imgs[i] for i in idxs] elif cap['format'] in ( 'rawStats', 'raw10Stats', 'rawQuadBayerStats', 'raw10QuadBayerStats', ): assert_props_is_not_none(props) is_quad_bayer = 'QuadBayer' in cap['format'] white_level = get_white_level(props, cap['metadata']) if is_quad_bayer: num_channels = noise_model_constants.NUM_QUAD_BAYER_CHANNELS else: num_channels = noise_model_constants.NUM_BAYER_CHANNELS mean_image, _ = unpack_rawstats_capture(cap, num_channels) if is_quad_bayer: bayer_channels = _convert_quad_bayer_img_to_bayer_channels( mean_image, props ) bayer_channels = [ bayer_channels[i] / white_level for i in range(len(bayer_channels)) ] return bayer_channels else: # Standard Bayer canonical color channel indices. idxs = get_canonical_cfa_order(props, is_quad_bayer=False) # Normalizes the range to [0, 1] without subtracting the black level. return [mean_image[:, :, i] / white_level for i in idxs] else: raise error_util.CameraItsError(f"Invalid format {cap['format']}") def downscale_image(img, f): """Shrink an image by a given integer factor. This function computes output pixel values by averaging over rectangular regions of the input image; it doesn't skip or sample pixels, and all input image pixels are evenly weighted. If the downscaling factor doesn't cleanly divide the width and/or height, then the remaining pixels on the right or bottom edge are discarded prior to the downscaling. Args: img: The input image as an ndarray. f: The downscaling factor, which should be an integer. Returns: The new (downscaled) image, as an ndarray. """ h, w, chans = img.shape f = int(f) assert f >= 1 h = (h//f)*f w = (w//f)*f img = img[0:h:, 0:w:, ::] chs = [] for i in range(chans): ch = img.reshape(h*w*chans)[i::chans].reshape(h, w) ch = ch.reshape(h, w//f, f).mean(2).reshape(h, w//f) ch = ch.T.reshape(w//f, h//f, f).mean(2).T.reshape(h//f, w//f) chs.append(ch.reshape(h*w//(f*f))) img = numpy.vstack(chs).T.reshape(h//f, w//f, chans) return img def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane, props, cap_res, apply_ccm_raw_to_rgb=True): """Convert a Bayer raw-16 image to an RGB image. Includes some extremely rudimentary demosaicking and color processing operations; the output of this function shouldn't be used for any image quality analysis. Args: r_plane: gr_plane: gb_plane: b_plane: Numpy arrays for each color plane in the Bayer image, with pixels in the [0.0, 1.0] range. props: Camera properties object. cap_res: Capture result (metadata) object. apply_ccm_raw_to_rgb: (Optional) boolean to apply color correction matrix. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0] """ # Values required for the RAW to RGB conversion. assert_props_is_not_none(props) white_level = get_white_level(props, cap_res) gains = cap_res['android.colorCorrection.gains'] ccm = cap_res['android.colorCorrection.transform'] # Reorder black levels and gains to R,Gr,Gb,B, to match the order # of the planes. black_levels = get_black_levels(props, cap_res, is_quad_bayer=False) logging.debug('dynamic black levels: %s', black_levels) gains = get_gains_in_canonical_order(props, gains) # Convert CCM from rational to float, as numpy arrays. ccm = numpy.array(capture_request_utils.rational_to_float(ccm)).reshape(3, 3) # Need to scale the image back to the full [0,1] range after subtracting # the black level from each pixel. scale = white_level / (white_level - max(black_levels)) # Three-channel black levels, normalized to [0,1] by white_level. black_levels = numpy.array( [b / white_level for b in [black_levels[i] for i in [0, 1, 3]]]) # Three-channel gains. gains = numpy.array([gains[i] for i in [0, 1, 3]]) h, w = r_plane.shape[:2] img = numpy.dstack([r_plane, (gr_plane + gb_plane) / 2.0, b_plane]) img = (((img.reshape(h, w, 3) - black_levels) * scale) * gains).clip(0.0, 1.0) if apply_ccm_raw_to_rgb: img = numpy.dot( img.reshape(w * h, 3), ccm.T).reshape((h, w, 3)).clip(0.0, 1.0) return img def convert_y8_to_rgb_image(y_plane, w, h): """Convert a Y 8-bit image to an RGB image. Args: y_plane: The packed 8-bit Y plane. w: The width of the image. h: The height of the image. Returns: RGB float-3 image array, with pixel values in [0.0, 1.0]. """ y3 = numpy.dstack([y_plane, y_plane, y_plane]) rgb = numpy.empty([h, w, 3], dtype=numpy.uint8) rgb.reshape(w * h * 3)[:] = y3.reshape(w * h * 3)[:] return rgb.astype(numpy.float32) / 255.0 def write_rgb_uint8_image(img, file_name): """Save a uint8 numpy array image to a file. Supported formats: PNG, JPEG, and others; see PIL docs for more. Args: img: numpy image array data. file_name: path of file to save to; the extension specifies the format. """ if img.dtype != 'uint8': raise AssertionError(f'Incorrect input type: {img.dtype}! Expected: uint8') else: Image.fromarray(img, 'RGB').save(file_name) def write_image(img, fname, apply_gamma=False, is_yuv=False): """Save a float-3 numpy array image to a file. Supported formats: PNG, JPEG, and others; see PIL docs for more. Image can be 3-channel, which is interpreted as RGB or YUV, or can be 1-channel, which is greyscale. Can optionally specify that the image should be gamma-encoded prior to writing it out; this should be done if the image contains linear pixel values, to make the image look "normal". Args: img: Numpy image array data. fname: Path of file to save to; the extension specifies the format. apply_gamma: (Optional) apply gamma to the image prior to writing it. is_yuv: Whether the image is in YUV format. """ if apply_gamma: img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT) (h, w, chans) = img.shape if chans == 3: if not is_yuv: Image.fromarray((img * 255.0).astype(numpy.uint8), 'RGB').save(fname) else: Image.fromarray((img * 255.0).astype(numpy.uint8), 'YCbCr').save(fname) elif chans == 1: img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h, w, 3) Image.fromarray(img3, 'RGB').save(fname) else: raise error_util.CameraItsError('Unsupported image type') def read_image(fname): """Read image function to match write_image() above.""" return Image.open(fname) def apply_lut_to_image(img, lut): """Applies a LUT to every pixel in a float image array. Internally converts to a 16b integer image, since the LUT can work with up to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also have fewer than 65536 entries, however it must be sized as a power of 2 (and for smaller luts, the scale must match the bitdepth). For a 16b lut of 65536 entries, the operation performed is: lut[r * 65535] / 65535 -> r' lut[g * 65535] / 65535 -> g' lut[b * 65535] / 65535 -> b' For a 10b lut of 1024 entries, the operation becomes: lut[r * 1023] / 1023 -> r' lut[g * 1023] / 1023 -> g' lut[b * 1023] / 1023 -> b' Args: img: Numpy float image array, with pixel values in [0,1]. lut: Numpy table encoding a LUT, mapping 16b integer values. Returns: Float image array after applying LUT to each pixel. """ n = len(lut) if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0: raise error_util.CameraItsError(f'Invalid arg LUT size: {n}') m = float(n - 1) return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32) def get_gains_in_canonical_order(props, gains): """Reorders the gains tuple to the canonical R,Gr,Gb,B order. Args: props: Camera properties object. gains: List of 4 values, in R,G_even,G_odd,B order. Returns: List of gains values, in R,Gr,Gb,B order. """ cfa_pat = props['android.sensor.info.colorFilterArrangement'] if cfa_pat in [0, 1]: # RGGB or GRBG, so G_even is Gr return gains elif cfa_pat in [2, 3]: # GBRG or BGGR, so G_even is Gb return [gains[0], gains[2], gains[1], gains[3]] else: raise error_util.CameraItsError('Not supported') def get_white_level(props, cap_metadata=None): """Gets white level to use for a given capture. Uses a dynamic value from the capture result if available, else falls back to the static global value in the camera characteristics. Args: props: The camera properties object. cap_metadata: A capture results metadata object. Returns: Float white level value. """ if (cap_metadata is not None and 'android.sensor.dynamicWhiteLevel' in cap_metadata and cap_metadata['android.sensor.dynamicWhiteLevel'] is not None): white_level = cap_metadata['android.sensor.dynamicWhiteLevel'] logging.debug('dynamic white level: %.2f', white_level) else: white_level = props['android.sensor.info.whiteLevel'] logging.debug('white level: %.2f', white_level) return float(white_level) def get_black_levels(props, cap=None, is_quad_bayer=False): """Gets black levels to use for a given capture. Uses a dynamic value from the capture result if available, else falls back to the static global value in the camera characteristics. Args: props: The camera properties object. cap: A capture object. is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. Returns: A list of black level values reordered in canonical order. """ if (cap is not None and 'android.sensor.dynamicBlackLevel' in cap and cap['android.sensor.dynamicBlackLevel'] is not None): black_levels = cap['android.sensor.dynamicBlackLevel'] else: black_levels = props['android.sensor.blackLevelPattern'] idxs = get_canonical_cfa_order(props, is_quad_bayer) if is_quad_bayer: ordered_black_levels = [black_levels[i // 4] for i in idxs] else: ordered_black_levels = [black_levels[i] for i in idxs] return ordered_black_levels def get_canonical_cfa_order(props, is_quad_bayer=False): """Returns a list of channel indices according to color filter arrangement. Color filter arrangement index is a integer ranging from 0 to 3, which maps the color filter arrangement in the following way. 0: R, Gr, Gb, B, 1: Gr, R, B, Gb, 2: Gb, B, R, Gr, 3: B, Gb, Gr, R. This function return a list of channel indices that can be used to reorder the stats data as the canonical order: (1) For standard Bayer: R, Gr, Gb, B. (2) For quad Bayer: R0, R1, R2, R3, Gr0, Gr1, Gr2, Gr3, Gb0, Gb1, Gb2, Gb3, B0, B1, B2, B3. Args: props: Camera properties object. is_quad_bayer: Boolean flag for Bayer or Quad Bayer capture. Returns: A list of channel indices with values ranging from: (1) [0, 3] for standard Bayer, (2) [0, 15] for quad Bayer. """ cfa_pat = props['android.sensor.info.colorFilterArrangement'] if not 0 <= cfa_pat < 4: raise error_util.CameraItsError('Not supported') channel_indices = [] if is_quad_bayer: color_map = noise_model_constants.QUAD_BAYER_COLOR_FILTER_MAP[cfa_pat] for ch in noise_model_constants.BAYER_COLORS: channel_indices.extend(color_map[ch]) else: color_map = noise_model_constants.BAYER_COLOR_FILTER_MAP[cfa_pat] channel_indices = [ color_map[ch] for ch in noise_model_constants.BAYER_COLORS ] return channel_indices def unpack_rawstats_capture(cap, num_channels=4): """Unpacks a stats image capture to the mean and variance images. Args: cap: A capture object as returned by its_session_utils.do_capture. num_channels: The number of color channels in the stats image capture, which can be one of noise_model_constants.VALID_NUM_CHANNELS. Returns: Tuple (mean_image var_image) of float-4 images, with non-normalized pixel values computed from the RAW10/RAW16 images on the device """ if cap['format'] not in noise_model_constants.VALID_RAW_STATS_FORMATS: raise AssertionError(f"Unsupported stats format: {cap['format']}") if num_channels not in noise_model_constants.VALID_NUM_CHANNELS: raise AssertionError( f'Unsupported number of channels {num_channels}, which should be in' f' {noise_model_constants.VALID_NUM_CHANNELS}.' ) w = cap['width'] h = cap['height'] img = numpy.ndarray( shape=(2 * h * w * num_channels,), dtype='<f', buffer=cap['data'] ) analysis_image = img.reshape((2, h, w, num_channels)) mean_image = analysis_image[0, :, :, :].reshape(h, w, num_channels) var_image = analysis_image[1, :, :, :].reshape(h, w, num_channels) return mean_image, var_image def get_image_patch(img, xnorm, ynorm, wnorm, hnorm): """Get a patch (tile) of an image. Args: img: Numpy float image array, with pixel values in [0,1]. xnorm: ynorm: wnorm: hnorm: Normalized (in [0,1]) coords for the tile. Returns: Numpy float image array of the patch. """ hfull = img.shape[0] wfull = img.shape[1] xtile = int(math.ceil(xnorm * wfull)) ytile = int(math.ceil(ynorm * hfull)) wtile = int(math.floor(wnorm * wfull)) htile = int(math.floor(hnorm * hfull)) if len(img.shape) == 2: return img[ytile:ytile + htile, xtile:xtile + wtile].copy() else: return img[ytile:ytile + htile, xtile:xtile + wtile, :].copy() def compute_image_means(img): """Calculate the mean of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of mean values, one per color channel in the image. """ means = [] chans = img.shape[2] for i in range(chans): means.append(numpy.mean(img[:, :, i], dtype=numpy.float64)) return means def compute_image_variances(img): """Calculate the variance of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of variance values, one per color channel in the image. """ variances = [] chans = img.shape[2] for i in range(chans): variances.append(numpy.var(img[:, :, i], dtype=numpy.float64)) return variances def compute_image_sharpness(img): """Calculate the sharpness of input image. Args: img: numpy float RGB/luma image array, with pixel values in [0,1]. Returns: Sharpness estimation value based on the average of gradient magnitude. Larger value means the image is sharper. """ chans = img.shape[2] if chans != 1 and chans != 3: raise AssertionError(f'Not RGB or MONO image! depth: {chans}') if chans == 1: luma = img[:, :, 0] else: luma = convert_rgb_to_grayscale(img) gy, gx = numpy.gradient(luma) return numpy.average(numpy.sqrt(gy*gy + gx*gx)) def compute_image_max_gradients(img): """Calculate the maximum gradient of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of gradient max values, one per color channel in the image. """ grads = [] chans = img.shape[2] for i in range(chans): grads.append(numpy.amax(numpy.gradient(img[:, :, i]))) return grads def compute_image_snrs(img): """Calculate the SNR (dB) of each color channel in the image. Args: img: Numpy float image array, with pixel values in [0,1]. Returns: A list of SNR values in dB, one per color channel in the image. """ means = compute_image_means(img) variances = compute_image_variances(img) std_devs = [math.sqrt(v) for v in variances] snrs = [20 * math.log10(m/s) for m, s in zip(means, std_devs)] return snrs def convert_rgb_to_grayscale(img): """Convert a 3-D array RGB image to grayscale image. Args: img: numpy 3-D array RGB image of type [0.0, 1.0] float or [0, 255] uint8. Returns: 2-D grayscale image of same type as input. """ chans = img.shape[2] if chans != 3: raise AssertionError(f'Not an RGB image! Depth: {chans}') img_gray = numpy.dot(img[..., :3], RGB2GRAY_WEIGHTS) if img.dtype == 'uint8': return img_gray.round().astype(numpy.uint8) else: return img_gray def normalize_img(img): """Normalize the image values to between 0 and 1. Args: img: 2-D numpy array of image values Returns: Normalized image """ return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img)) def rotate_img_per_argv(img): """Rotate an image 180 degrees if "rotate" is in argv. Args: img: 2-D numpy array of image values Returns: Rotated image """ img_out = img if 'rotate180' in sys.argv: img_out = numpy.fliplr(numpy.flipud(img_out)) return img_out def stationary_lens_cap(cam, req, fmt): """Take up to NUM_TRYS caps and save the 1st one with lens stationary. Args: cam: open device session req: capture request fmt: format for capture Returns: capture """ tries = 0 done = False reqs = [req] * NUM_FRAMES while not done: logging.debug('Waiting for lens to move to correct location.') cap = cam.do_capture(reqs, fmt) done = (cap[NUM_FRAMES - 1]['metadata']['android.lens.state'] == 0) logging.debug('status: %s', done) tries += 1 if tries == NUM_TRIES: raise error_util.CameraItsError('Cannot settle lens after %d tries!' % tries) return cap[NUM_FRAMES - 1] def compute_image_rms_difference_1d(rgb_x, rgb_y): """Calculate the RMS difference between 2 RBG images as 1D arrays. Args: rgb_x: image array rgb_y: image array Returns: rms_diff """ len_rgb_x = len(rgb_x) len_rgb_y = len(rgb_y) if len_rgb_y != len_rgb_x: raise AssertionError('RGB images have different number of planes! ' f'x: {len_rgb_x}, y: {len_rgb_y}') return math.sqrt(sum([pow(rgb_x[i] - rgb_y[i], 2.0) for i in range(len_rgb_x)]) / len_rgb_x) def compute_image_rms_difference_3d(rgb_x, rgb_y): """Calculate the RMS difference between 2 RBG images as 3D arrays. Args: rgb_x: image array in the form of w * h * channels rgb_y: image array in the form of w * h * channels Returns: rms_diff """ shape_rgb_x = numpy.shape(rgb_x) shape_rgb_y = numpy.shape(rgb_y) if shape_rgb_y != shape_rgb_x: raise AssertionError('RGB images have different number of planes! ' f'x: {shape_rgb_x}, y: {shape_rgb_y}') if len(shape_rgb_x) != 3: raise AssertionError(f'RGB images dimension {len(shape_rgb_x)} is not 3!') mean_square_sum = 0.0 for i in range(shape_rgb_x[0]): for j in range(shape_rgb_x[1]): for k in range(shape_rgb_x[2]): mean_square_sum += pow(float(rgb_x[i][j][k]) - float(rgb_y[i][j][k]), 2.0) return (math.sqrt(mean_square_sum / (shape_rgb_x[0] * shape_rgb_x[1] * shape_rgb_x[2]))) def compute_image_sad(img_x, img_y): """Calculate the sum of absolute differences between 2 images. Args: img_x: image array in the form of w * h * channels img_y: image array in the form of w * h * channels Returns: sad """ img_x = img_x[:, :, 1:].ravel() img_y = img_y[:, :, 1:].ravel() return numpy.sum(numpy.abs(numpy.subtract(img_x, img_y, dtype=float))) def get_img(buffer): """Return a PIL.Image of the capture buffer. Args: buffer: data field from the capture result. Returns: A PIL.Image """ return Image.open(io.BytesIO(buffer)) def jpeg_has_icc_profile(jpeg_img): """Checks if a jpeg PIL.Image has an icc profile attached. Args: jpeg_img: The PIL.Image. Returns: True if an icc profile is present, False otherwise. """ return jpeg_img.info.get('icc_profile') is not None def get_primary_chromaticity(primary): """Given an ImageCms primary, returns just the xy chromaticity coordinates. Args: primary: The primary from the ImageCms profile. Returns: (float, float): The xy chromaticity coordinates of the primary. """ ((_, _, _), (x, y, _)) = primary return x, y def is_jpeg_icc_profile_correct(jpeg_img, color_space, icc_profile_path=None): """Compare a jpeg's icc profile to a color space's expected parameters. Args: jpeg_img: The PIL.Image. color_space: 'DISPLAY_P3' or 'SRGB' icc_profile_path: Optional path to an icc file to be created with the raw contents. Returns: True if the icc profile matches expectations, False otherwise. """ icc = jpeg_img.info.get('icc_profile') f = io.BytesIO(icc) icc_profile = ImageCms.getOpenProfile(f) if icc_profile_path is not None: raw_icc_bytes = f.getvalue() f = open(icc_profile_path, 'wb') f.write(raw_icc_bytes) f.close() cms_profile = icc_profile.profile (rx, ry) = get_primary_chromaticity(cms_profile.red_primary) (gx, gy) = get_primary_chromaticity(cms_profile.green_primary) (bx, by) = get_primary_chromaticity(cms_profile.blue_primary) if color_space == 'DISPLAY_P3': # Expected primaries based on Apple's Display P3 primaries expected_rx = EXPECTED_RX_P3 expected_ry = EXPECTED_RY_P3 expected_gx = EXPECTED_GX_P3 expected_gy = EXPECTED_GY_P3 expected_bx = EXPECTED_BX_P3 expected_by = EXPECTED_BY_P3 elif color_space == 'SRGB': # Expected primaries based on Pixel sRGB profile expected_rx = EXPECTED_RX_SRGB expected_ry = EXPECTED_RY_SRGB expected_gx = EXPECTED_GX_SRGB expected_gy = EXPECTED_GY_SRGB expected_bx = EXPECTED_BX_SRGB expected_by = EXPECTED_BY_SRGB else: # Unsupported color space for comparison return False cmp_values = [ [rx, expected_rx], [ry, expected_ry], [gx, expected_gx], [gy, expected_gy], [bx, expected_bx], [by, expected_by] ] for (actual, expected) in cmp_values: if not math.isclose(actual, expected, abs_tol=0.001): # Values significantly differ return False return True def area_of_triangle(x1, y1, x2, y2, x3, y3): """Calculates the area of a triangle formed by three points. Args: x1 (float): The x-coordinate of the first point. y1 (float): The y-coordinate of the first point. x2 (float): The x-coordinate of the second point. y2 (float): The y-coordinate of the second point. x3 (float): The x-coordinate of the third point. y3 (float): The y-coordinate of the third point. Returns: float: The area of the triangle. """ area = abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0) return area def point_in_triangle(x1, y1, x2, y2, x3, y3, xp, yp, abs_tol): """Checks if the point (xp, yp) is inside the triangle. Args: x1 (float): The x-coordinate of the first point. y1 (float): The y-coordinate of the first point. x2 (float): The x-coordinate of the second point. y2 (float): The y-coordinate of the second point. x3 (float): The x-coordinate of the third point. y3 (float): The y-coordinate of the third point. xp (float): The x-coordinate of the point to check. yp (float): The y-coordinate of the point to check. abs_tol (float): Absolute tolerance amount. Returns: bool: True if the point is inside the triangle, False otherwise. """ a = area_of_triangle(x1, y1, x2, y2, x3, y3) a1 = area_of_triangle(xp, yp, x2, y2, x3, y3) a2 = area_of_triangle(x1, y1, xp, yp, x3, y3) a3 = area_of_triangle(x1, y1, x2, y2, xp, yp) return math.isclose(a, (a1 + a2 + a3), abs_tol=abs_tol) def distance(p, q): """Returns the Euclidean distance from point p to point q. Args: p: an Iterable of numbers q: an Iterable of numbers """ return math.sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) def p3_img_has_wide_gamut(wide_img): """Check if a DISPLAY_P3 image contains wide gamut pixels. Given a DISPLAY_P3 image that should have a wider gamut than SRGB, checks all pixel values to see if any reside outside the SRGB gamut. This is done by converting to CIE xy chromaticities using a Bradford chromatic adaptation for consistency with ICC profiles. Args: wide_img: The PIL.Image in the DISPLAY_P3 color space. Returns: True if the gamut of wide_img is greater than that of SRGB. False otherwise. """ w = wide_img.size[0] h = wide_img.size[1] wide_arr = numpy.array(wide_img) img_arr = colour.RGB_to_XYZ( wide_arr / 255.0, colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint, colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.whitepoint, colour.models.rgb.datasets.display_p3.RGB_COLOURSPACE_DISPLAY_P3.matrix_RGB_to_XYZ, 'Bradford', lambda x: colour.eotf(x, 'sRGB')) xy_arr = colour.XYZ_to_xy(img_arr) srgb_colorspace = colour.models.RGB_COLOURSPACE_sRGB srgb_primaries = srgb_colorspace.primaries for y in range(h): for x in range(w): # Check if the pixel chromaticity is inside or outside the SRGB gamut. # This check is not guaranteed not to emit false positives / negatives, # however the probability of either on an arbitrary DISPLAY_P3 camera # capture is exceedingly unlikely. if not point_in_triangle(*srgb_primaries.reshape(6), xy_arr[y][x][0], xy_arr[y][x][1], COLORSPACE_TRIANGLE_AREA_TOL): return True return False