/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "C2SoftHevcEnc" #include #include #include #include #include #include #include #include #include #include #include #include #include "ihevc_typedefs.h" #include "itt_video_api.h" #include "ihevce_api.h" #include "ihevce_plugin.h" #include "C2SoftHevcEnc.h" namespace android { namespace { constexpr char COMPONENT_NAME[] = "c2.android.hevc.encoder"; void ParseGop( const C2StreamGopTuning::output &gop, uint32_t *syncInterval, uint32_t *iInterval, uint32_t *maxBframes) { uint32_t syncInt = 1; uint32_t iInt = 1; for (size_t i = 0; i < gop.flexCount(); ++i) { const C2GopLayerStruct &layer = gop.m.values[i]; if (layer.count == UINT32_MAX) { syncInt = 0; } else if (syncInt <= UINT32_MAX / (layer.count + 1)) { syncInt *= (layer.count + 1); } if ((layer.type_ & I_FRAME) == 0) { if (layer.count == UINT32_MAX) { iInt = 0; } else if (iInt <= UINT32_MAX / (layer.count + 1)) { iInt *= (layer.count + 1); } } if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME) && maxBframes) { *maxBframes = layer.count; } } if (syncInterval) { *syncInterval = syncInt; } if (iInterval) { *iInterval = iInt; } } } // namepsace class C2SoftHevcEnc::IntfImpl : public SimpleInterface::BaseParams { public: explicit IntfImpl(const std::shared_ptr &helper) : SimpleInterface::BaseParams( helper, COMPONENT_NAME, C2Component::KIND_ENCODER, C2Component::DOMAIN_VIDEO, MEDIA_MIMETYPE_VIDEO_HEVC) { noPrivateBuffers(); // TODO: account for our buffers here noInputReferences(); noOutputReferences(); noTimeStretch(); setDerivedInstance(this); addParameter( DefineParam(mGop, C2_PARAMKEY_GOP) .withDefault(C2StreamGopTuning::output::AllocShared( 0 /* flexCount */, 0u /* stream */)) .withFields({C2F(mGop, m.values[0].type_).any(), C2F(mGop, m.values[0].count).any()}) .withSetter(GopSetter) .build()); addParameter( DefineParam(mActualInputDelay, C2_PARAMKEY_INPUT_DELAY) .withDefault(new C2PortActualDelayTuning::input( DEFAULT_B_FRAMES + DEFAULT_RC_LOOKAHEAD)) .withFields({C2F(mActualInputDelay, value).inRange( 0, MAX_B_FRAMES + MAX_RC_LOOKAHEAD)}) .calculatedAs(InputDelaySetter, mGop) .build()); addParameter( DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES) .withConstValue(new C2ComponentAttributesSetting( C2Component::ATTRIB_IS_TEMPORAL)) .build()); addParameter( DefineParam(mUsage, C2_PARAMKEY_INPUT_STREAM_USAGE) .withConstValue(new C2StreamUsageTuning::input( 0u, (uint64_t)C2MemoryUsage::CPU_READ)) .build()); // matches size limits in codec library addParameter( DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE) .withDefault(new C2StreamPictureSizeInfo::input(0u, 64, 64)) .withFields({ C2F(mSize, width).inRange(2, 1920, 2), C2F(mSize, height).inRange(2, 1088, 2), }) .withSetter(SizeSetter) .build()); addParameter( DefineParam(mFrameRate, C2_PARAMKEY_FRAME_RATE) .withDefault(new C2StreamFrameRateInfo::output(0u, 1.)) .withFields({C2F(mFrameRate, value).greaterThan(0.)}) .withSetter( Setter::StrictValueWithNoDeps) .build()); // matches limits in codec library addParameter( DefineParam(mBitrateMode, C2_PARAMKEY_BITRATE_MODE) .withDefault(new C2StreamBitrateModeTuning::output( 0u, C2Config::BITRATE_VARIABLE)) .withFields({ C2F(mBitrateMode, value).oneOf({ C2Config::BITRATE_CONST, C2Config::BITRATE_VARIABLE, C2Config::BITRATE_IGNORE}) }) .withSetter( Setter::StrictValueWithNoDeps) .build()); addParameter( DefineParam(mBitrate, C2_PARAMKEY_BITRATE) .withDefault(new C2StreamBitrateInfo::output(0u, 64000)) .withFields({C2F(mBitrate, value).inRange(4096, 12000000)}) .withSetter(BitrateSetter) .build()); // matches levels allowed within codec library addParameter( DefineParam(mComplexity, C2_PARAMKEY_COMPLEXITY) .withDefault(new C2StreamComplexityTuning::output(0u, 0)) .withFields({C2F(mComplexity, value).inRange(0, 10)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mQuality, C2_PARAMKEY_QUALITY) .withDefault(new C2StreamQualityTuning::output(0u, 80)) .withFields({C2F(mQuality, value).inRange(0, 100)}) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL) .withDefault(new C2StreamProfileLevelInfo::output( 0u, PROFILE_HEVC_MAIN, LEVEL_HEVC_MAIN_1)) .withFields({ C2F(mProfileLevel, profile) .oneOf({C2Config::PROFILE_HEVC_MAIN, C2Config::PROFILE_HEVC_MAIN_STILL}), C2F(mProfileLevel, level) .oneOf({LEVEL_HEVC_MAIN_1, LEVEL_HEVC_MAIN_2, LEVEL_HEVC_MAIN_2_1, LEVEL_HEVC_MAIN_3, LEVEL_HEVC_MAIN_3_1, LEVEL_HEVC_MAIN_4, LEVEL_HEVC_MAIN_4_1, LEVEL_HEVC_MAIN_5, LEVEL_HEVC_MAIN_5_1, LEVEL_HEVC_MAIN_5_2}), }) .withSetter(ProfileLevelSetter, mSize, mFrameRate, mBitrate) .build()); addParameter( DefineParam(mRequestSync, C2_PARAMKEY_REQUEST_SYNC_FRAME) .withDefault(new C2StreamRequestSyncFrameTuning::output(0u, C2_FALSE)) .withFields({C2F(mRequestSync, value).oneOf({ C2_FALSE, C2_TRUE }) }) .withSetter(Setter::NonStrictValueWithNoDeps) .build()); addParameter( DefineParam(mSyncFramePeriod, C2_PARAMKEY_SYNC_FRAME_INTERVAL) .withDefault( new C2StreamSyncFrameIntervalTuning::output(0u, 1000000)) .withFields({C2F(mSyncFramePeriod, value).any()}) .withSetter( Setter::StrictValueWithNoDeps) .build()); addParameter( DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS) .withDefault(new C2StreamColorAspectsInfo::input( 0u, C2Color::RANGE_UNSPECIFIED, C2Color::PRIMARIES_UNSPECIFIED, C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED)) .withFields({ C2F(mColorAspects, range).inRange( C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER), C2F(mColorAspects, primaries).inRange( C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER), C2F(mColorAspects, transfer).inRange( C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER), C2F(mColorAspects, matrix).inRange( C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER) }) .withSetter(ColorAspectsSetter) .build()); addParameter( DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS) .withDefault(new C2StreamColorAspectsInfo::output( 0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED, C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED)) .withFields({ C2F(mCodedColorAspects, range).inRange( C2Color::RANGE_UNSPECIFIED, C2Color::RANGE_OTHER), C2F(mCodedColorAspects, primaries).inRange( C2Color::PRIMARIES_UNSPECIFIED, C2Color::PRIMARIES_OTHER), C2F(mCodedColorAspects, transfer).inRange( C2Color::TRANSFER_UNSPECIFIED, C2Color::TRANSFER_OTHER), C2F(mCodedColorAspects, matrix).inRange( C2Color::MATRIX_UNSPECIFIED, C2Color::MATRIX_OTHER) }) .withSetter(CodedColorAspectsSetter, mColorAspects) .build()); addParameter( DefineParam(mPictureQuantization, C2_PARAMKEY_PICTURE_QUANTIZATION) .withDefault(C2StreamPictureQuantizationTuning::output::AllocShared( 0 /* flexCount */, 0u /* stream */)) .withFields({C2F(mPictureQuantization, m.values[0].type_).oneOf( {C2Config::picture_type_t(I_FRAME), C2Config::picture_type_t(P_FRAME), C2Config::picture_type_t(B_FRAME)}), C2F(mPictureQuantization, m.values[0].min).any(), C2F(mPictureQuantization, m.values[0].max).any()}) .withSetter(PictureQuantizationSetter) .build()); } static C2R InputDelaySetter( bool mayBlock, C2P &me, const C2P &gop) { (void)mayBlock; uint32_t maxBframes = 0; ParseGop(gop.v, nullptr, nullptr, &maxBframes); me.set().value = maxBframes + DEFAULT_RC_LOOKAHEAD; return C2R::Ok(); } static C2R BitrateSetter(bool mayBlock, C2P& me) { (void)mayBlock; C2R res = C2R::Ok(); if (me.v.value < 4096) { me.set().value = 4096; } return res; } static C2R SizeSetter(bool mayBlock, const C2P& oldMe, C2P& me) { (void)mayBlock; C2R res = C2R::Ok(); if (!me.F(me.v.width).supportsAtAll(me.v.width)) { res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width))); me.set().width = oldMe.v.width; } if (!me.F(me.v.height).supportsAtAll(me.v.height)) { res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height))); me.set().height = oldMe.v.height; } return res; } static C2R ProfileLevelSetter( bool mayBlock, C2P &me, const C2P &size, const C2P &frameRate, const C2P &bitrate) { (void)mayBlock; if (!me.F(me.v.profile).supportsAtAll(me.v.profile)) { me.set().profile = PROFILE_HEVC_MAIN; } struct LevelLimits { C2Config::level_t level; uint64_t samplesPerSec; uint64_t samples; uint32_t bitrate; }; constexpr LevelLimits kLimits[] = { { LEVEL_HEVC_MAIN_1, 552960, 36864, 128000 }, { LEVEL_HEVC_MAIN_2, 3686400, 122880, 1500000 }, { LEVEL_HEVC_MAIN_2_1, 7372800, 245760, 3000000 }, { LEVEL_HEVC_MAIN_3, 16588800, 552960, 6000000 }, { LEVEL_HEVC_MAIN_3_1, 33177600, 983040, 10000000 }, { LEVEL_HEVC_MAIN_4, 66846720, 2228224, 12000000 }, { LEVEL_HEVC_MAIN_4_1, 133693440, 2228224, 20000000 }, { LEVEL_HEVC_MAIN_5, 267386880, 8912896, 25000000 }, { LEVEL_HEVC_MAIN_5_1, 534773760, 8912896, 40000000 }, { LEVEL_HEVC_MAIN_5_2, 1069547520, 8912896, 60000000 }, { LEVEL_HEVC_MAIN_6, 1069547520, 35651584, 60000000 }, { LEVEL_HEVC_MAIN_6_1, 2139095040, 35651584, 120000000 }, { LEVEL_HEVC_MAIN_6_2, 4278190080, 35651584, 240000000 }, }; uint64_t samples = size.v.width * size.v.height; uint64_t samplesPerSec = samples * frameRate.v.value; // Check if the supplied level meets the MB / bitrate requirements. If // not, update the level with the lowest level meeting the requirements. bool found = false; // By default needsUpdate = false in case the supplied level does meet // the requirements. bool needsUpdate = false; if (!me.F(me.v.level).supportsAtAll(me.v.level)) { needsUpdate = true; } for (const LevelLimits &limit : kLimits) { if (samples <= limit.samples && samplesPerSec <= limit.samplesPerSec && bitrate.v.value <= limit.bitrate) { // This is the lowest level that meets the requirements, and if // we haven't seen the supplied level yet, that means we don't // need the update. if (needsUpdate) { ALOGD("Given level %x does not cover current configuration: " "adjusting to %x", me.v.level, limit.level); me.set().level = limit.level; } found = true; break; } if (me.v.level == limit.level) { // We break out of the loop when the lowest feasible level is // found. The fact that we're here means that our level doesn't // meet the requirement and needs to be updated. needsUpdate = true; } } if (!found || me.v.level > LEVEL_HEVC_MAIN_5_2) { // We set to the highest supported level. me.set().level = LEVEL_HEVC_MAIN_5_2; } return C2R::Ok(); } static C2R GopSetter(bool mayBlock, C2P &me) { (void)mayBlock; for (size_t i = 0; i < me.v.flexCount(); ++i) { const C2GopLayerStruct &layer = me.v.m.values[0]; if (layer.type_ == C2Config::picture_type_t(P_FRAME | B_FRAME) && layer.count > MAX_B_FRAMES) { me.set().m.values[i].count = MAX_B_FRAMES; } } return C2R::Ok(); } UWORD32 getProfile_l() const { switch (mProfileLevel->profile) { case PROFILE_HEVC_MAIN: [[fallthrough]]; case PROFILE_HEVC_MAIN_STILL: return 1; default: ALOGD("Unrecognized profile: %x", mProfileLevel->profile); return 1; } } UWORD32 getLevel_l() const { struct Level { C2Config::level_t c2Level; UWORD32 hevcLevel; }; constexpr Level levels[] = { { LEVEL_HEVC_MAIN_1, 30 }, { LEVEL_HEVC_MAIN_2, 60 }, { LEVEL_HEVC_MAIN_2_1, 63 }, { LEVEL_HEVC_MAIN_3, 90 }, { LEVEL_HEVC_MAIN_3_1, 93 }, { LEVEL_HEVC_MAIN_4, 120 }, { LEVEL_HEVC_MAIN_4_1, 123 }, { LEVEL_HEVC_MAIN_5, 150 }, { LEVEL_HEVC_MAIN_5_1, 153 }, { LEVEL_HEVC_MAIN_5_2, 156 }, { LEVEL_HEVC_MAIN_6, 180 }, { LEVEL_HEVC_MAIN_6_1, 183 }, { LEVEL_HEVC_MAIN_6_2, 186 }, }; for (const Level &level : levels) { if (mProfileLevel->level == level.c2Level) { return level.hevcLevel; } } ALOGD("Unrecognized level: %x", mProfileLevel->level); return 156; } uint32_t getSyncFramePeriod_l() const { if (mSyncFramePeriod->value < 0 || mSyncFramePeriod->value == INT64_MAX) { return 0; } double period = mSyncFramePeriod->value / 1e6 * mFrameRate->value; return (uint32_t)c2_max(c2_min(period + 0.5, double(UINT32_MAX)), 1.); } std::shared_ptr getSize_l() const { return mSize; } std::shared_ptr getFrameRate_l() const { return mFrameRate; } std::shared_ptr getBitrateMode_l() const { return mBitrateMode; } std::shared_ptr getBitrate_l() const { return mBitrate; } std::shared_ptr getRequestSync_l() const { return mRequestSync; } std::shared_ptr getComplexity_l() const { return mComplexity; } std::shared_ptr getQuality_l() const { return mQuality; } std::shared_ptr getGop_l() const { return mGop; } static C2R ColorAspectsSetter(bool mayBlock, C2P &me) { (void)mayBlock; if (me.v.range > C2Color::RANGE_OTHER) { me.set().range = C2Color::RANGE_OTHER; } if (me.v.primaries > C2Color::PRIMARIES_OTHER) { me.set().primaries = C2Color::PRIMARIES_OTHER; } if (me.v.transfer > C2Color::TRANSFER_OTHER) { me.set().transfer = C2Color::TRANSFER_OTHER; } if (me.v.matrix > C2Color::MATRIX_OTHER) { me.set().matrix = C2Color::MATRIX_OTHER; } return C2R::Ok(); } static C2R CodedColorAspectsSetter(bool mayBlock, C2P &me, const C2P &coded) { (void)mayBlock; me.set().range = coded.v.range; me.set().primaries = coded.v.primaries; me.set().transfer = coded.v.transfer; me.set().matrix = coded.v.matrix; return C2R::Ok(); } static C2R PictureQuantizationSetter(bool mayBlock, C2P &me) { (void)mayBlock; // these are the ones we're going to set, so want them to default // to the DEFAULT values for the codec int32_t iMin = HEVC_QP_MIN, pMin = HEVC_QP_MIN, bMin = HEVC_QP_MIN; int32_t iMax = HEVC_QP_MAX, pMax = HEVC_QP_MAX, bMax = HEVC_QP_MAX; for (size_t i = 0; i < me.v.flexCount(); ++i) { const C2PictureQuantizationStruct &layer = me.v.m.values[i]; // layerMin is clamped to [HEVC_QP_MIN, layerMax] to avoid error // cases where layer.min > layer.max int32_t layerMax = std::clamp(layer.max, HEVC_QP_MIN, HEVC_QP_MAX); int32_t layerMin = std::clamp(layer.min, HEVC_QP_MIN, layerMax); if (layer.type_ == C2Config::picture_type_t(I_FRAME)) { iMax = layerMax; iMin = layerMin; ALOGV("iMin %d iMax %d", iMin, iMax); } else if (layer.type_ == C2Config::picture_type_t(P_FRAME)) { pMax = layerMax; pMin = layerMin; ALOGV("pMin %d pMax %d", pMin, pMax); } else if (layer.type_ == C2Config::picture_type_t(B_FRAME)) { bMax = layerMax; bMin = layerMin; ALOGV("bMin %d bMax %d", bMin, bMax); } } ALOGV("PictureQuantizationSetter(entry): i %d-%d p %d-%d b %d-%d", iMin, iMax, pMin, pMax, bMin, bMax); int32_t maxFrameQP = std::min(std::min(iMax, pMax), bMax); int32_t minFrameQP = std::max(std::max(iMin, pMin), bMin); if (minFrameQP > maxFrameQP) { minFrameQP = maxFrameQP; } // put them back into the structure for (size_t i = 0; i < me.v.flexCount(); ++i) { const C2PictureQuantizationStruct &layer = me.v.m.values[i]; if (layer.type_ == C2Config::picture_type_t(I_FRAME) || layer.type_ == C2Config::picture_type_t(P_FRAME) || layer.type_ == C2Config::picture_type_t(B_FRAME)) { me.set().m.values[i].max = maxFrameQP; me.set().m.values[i].min = minFrameQP; } } ALOGV("PictureQuantizationSetter(exit): i = p = b = %d-%d", minFrameQP, maxFrameQP); return C2R::Ok(); } std::shared_ptr getCodedColorAspects_l() { return mCodedColorAspects; } std::shared_ptr getPictureQuantization_l() const { return mPictureQuantization; } private: std::shared_ptr mUsage; std::shared_ptr mSize; std::shared_ptr mFrameRate; std::shared_ptr mRequestSync; std::shared_ptr mBitrate; std::shared_ptr mBitrateMode; std::shared_ptr mComplexity; std::shared_ptr mQuality; std::shared_ptr mProfileLevel; std::shared_ptr mSyncFramePeriod; std::shared_ptr mGop; std::shared_ptr mColorAspects; std::shared_ptr mCodedColorAspects; std::shared_ptr mPictureQuantization; }; static size_t GetCPUCoreCount() { long cpuCoreCount = 0; #if defined(_SC_NPROCESSORS_ONLN) cpuCoreCount = sysconf(_SC_NPROCESSORS_ONLN); #else // _SC_NPROC_ONLN must be defined... cpuCoreCount = sysconf(_SC_NPROC_ONLN); #endif if (cpuCoreCount < 1) cpuCoreCount = 1; return (size_t)cpuCoreCount; } C2SoftHevcEnc::C2SoftHevcEnc(const char* name, c2_node_id_t id, const std::shared_ptr& intfImpl) : SimpleC2Component( std::make_shared>(name, id, intfImpl)), mIntf(intfImpl), mIvVideoColorFormat(IV_YUV_420P), mHevcEncProfile(1), mHevcEncLevel(30), mStarted(false), mSpsPpsHeaderReceived(false), mSignalledEos(false), mSignalledError(false), mCodecCtx(nullptr) { // If dump is enabled, then create an empty file GENERATE_FILE_NAMES(); CREATE_DUMP_FILE(mInFile); CREATE_DUMP_FILE(mOutFile); mTimeStart = mTimeEnd = systemTime(); } C2SoftHevcEnc::~C2SoftHevcEnc() { onRelease(); } c2_status_t C2SoftHevcEnc::onInit() { return C2_OK; } c2_status_t C2SoftHevcEnc::onStop() { return C2_OK; } void C2SoftHevcEnc::onReset() { releaseEncoder(); } void C2SoftHevcEnc::onRelease() { releaseEncoder(); } c2_status_t C2SoftHevcEnc::onFlush_sm() { return C2_OK; } static void fillEmptyWork(const std::unique_ptr& work) { uint32_t flags = 0; if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) { flags |= C2FrameData::FLAG_END_OF_STREAM; ALOGV("Signalling EOS"); } work->worklets.front()->output.flags = (C2FrameData::flags_t)flags; work->worklets.front()->output.buffers.clear(); work->worklets.front()->output.ordinal = work->input.ordinal; work->workletsProcessed = 1u; } static int getQpFromQuality(int quality) { int qp; #define MIN_QP 4 #define MAX_QP 50 /* Quality: 100 -> Qp : MIN_QP * Quality: 0 -> Qp : MAX_QP * Qp = ((MIN_QP - MAX_QP) * quality / 100) + MAX_QP; */ qp = ((MIN_QP - MAX_QP) * quality / 100) + MAX_QP; qp = std::min(qp, MAX_QP); qp = std::max(qp, MIN_QP); return qp; } c2_status_t C2SoftHevcEnc::initEncParams() { mCodecCtx = nullptr; mNumCores = std::min(GetCPUCoreCount(), (size_t) CODEC_MAX_CORES); memset(&mEncParams, 0, sizeof(ihevce_static_cfg_params_t)); // default configuration IHEVCE_PLUGIN_STATUS_T err = ihevce_set_def_params(&mEncParams); if (IHEVCE_EOK != err) { ALOGE("HEVC default init failed : 0x%x", err); return C2_CORRUPTED; } mBframes = 0; if (mGop && mGop->flexCount() > 0) { uint32_t syncInterval = 1; uint32_t iInterval = 1; uint32_t maxBframes = 0; ParseGop(*mGop, &syncInterval, &iInterval, &maxBframes); if (syncInterval > 0) { ALOGD("Updating IDR interval from GOP: old %u new %u", mIDRInterval, syncInterval); mIDRInterval = syncInterval; } if (iInterval > 0) { ALOGD("Updating I interval from GOP: old %u new %u", mIInterval, iInterval); mIInterval = iInterval; } if (mBframes != maxBframes) { ALOGD("Updating max B frames from GOP: old %u new %u", mBframes, maxBframes); mBframes = maxBframes; } } ColorAspects sfAspects; if (!C2Mapper::map(mColorAspects->primaries, &sfAspects.mPrimaries)) { sfAspects.mPrimaries = android::ColorAspects::PrimariesUnspecified; } if (!C2Mapper::map(mColorAspects->range, &sfAspects.mRange)) { sfAspects.mRange = android::ColorAspects::RangeUnspecified; } if (!C2Mapper::map(mColorAspects->matrix, &sfAspects.mMatrixCoeffs)) { sfAspects.mMatrixCoeffs = android::ColorAspects::MatrixUnspecified; } if (!C2Mapper::map(mColorAspects->transfer, &sfAspects.mTransfer)) { sfAspects.mTransfer = android::ColorAspects::TransferUnspecified; } int32_t primaries, transfer, matrixCoeffs; bool range; ColorUtils::convertCodecColorAspectsToIsoAspects(sfAspects, &primaries, &transfer, &matrixCoeffs, &range); mEncParams.s_out_strm_prms.i4_vui_enable = 1; mEncParams.s_vui_sei_prms.u1_colour_description_present_flag = 1; mEncParams.s_vui_sei_prms.u1_colour_primaries = primaries; mEncParams.s_vui_sei_prms.u1_transfer_characteristics = transfer; mEncParams.s_vui_sei_prms.u1_matrix_coefficients = matrixCoeffs; mEncParams.s_vui_sei_prms.u1_video_full_range_flag = range; // update configuration mEncParams.s_src_prms.i4_width = mSize->width; mEncParams.s_src_prms.i4_height = mSize->height; mEncParams.s_src_prms.i4_frm_rate_denom = 1000; mEncParams.s_src_prms.i4_frm_rate_num = mFrameRate->value * mEncParams.s_src_prms.i4_frm_rate_denom; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P5; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0] = mBitrate->value; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0] = mBitrate->value << 1; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_codec_level = mHevcEncLevel; mEncParams.s_coding_tools_prms.i4_max_i_open_gop_period = mIDRInterval; mEncParams.s_coding_tools_prms.i4_max_cra_open_gop_period = mIInterval; mIvVideoColorFormat = IV_YUV_420P; mEncParams.s_multi_thrd_prms.i4_max_num_cores = mNumCores; mEncParams.s_out_strm_prms.i4_codec_profile = mHevcEncProfile; mEncParams.s_lap_prms.i4_rc_look_ahead_pics = DEFAULT_RC_LOOKAHEAD; if (mBframes == 0) { mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 0; } else if (mBframes <= 2) { mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 1; } else if (mBframes <= 6) { mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 2; } else { mEncParams.s_coding_tools_prms.i4_max_temporal_layers = 3; } // we resolved out-of-bound and unspecified values in PictureQuantizationSetter() // so we can start with defaults that are overridden as needed. int32_t maxFrameQP = mEncParams.s_config_prms.i4_max_frame_qp; int32_t minFrameQP = mEncParams.s_config_prms.i4_min_frame_qp; for (size_t i = 0; i < mQpBounds->flexCount(); ++i) { const C2PictureQuantizationStruct &layer = mQpBounds->m.values[i]; // no need to loop, hevc library takes same range for I/P/B picture type if (layer.type_ == C2Config::picture_type_t(I_FRAME) || layer.type_ == C2Config::picture_type_t(P_FRAME) || layer.type_ == C2Config::picture_type_t(B_FRAME)) { maxFrameQP = layer.max; minFrameQP = layer.min; break; } } mEncParams.s_config_prms.i4_max_frame_qp = maxFrameQP; mEncParams.s_config_prms.i4_min_frame_qp = minFrameQP; ALOGV("MaxFrameQp: %d MinFrameQp: %d", maxFrameQP, minFrameQP); mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_frame_qp[0] = std::clamp(kDefaultInitQP, minFrameQP, maxFrameQP); switch (mBitrateMode->value) { case C2Config::BITRATE_IGNORE: { mEncParams.s_config_prms.i4_rate_control_mode = 3; // ensure initial qp values are within our newly configured bounds int32_t frameQp = getQpFromQuality(mQuality->value); mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_frame_qp[0] = std::clamp(frameQp, minFrameQP, maxFrameQP); break; } case C2Config::BITRATE_CONST: mEncParams.s_config_prms.i4_rate_control_mode = 5; break; case C2Config::BITRATE_VARIABLE: [[fallthrough]]; default: mEncParams.s_config_prms.i4_rate_control_mode = 2; break; break; } if (mComplexity->value == 10) { mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P0; } else if (mComplexity->value >= 8) { mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P2; } else if (mComplexity->value >= 7) { mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P3; } else if (mComplexity->value >= 5) { mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P4; } else { mEncParams.s_tgt_lyr_prms.as_tgt_params[0].i4_quality_preset = IHEVCE_QUALITY_P5; } return C2_OK; } c2_status_t C2SoftHevcEnc::releaseEncoder() { mSpsPpsHeaderReceived = false; mSignalledEos = false; mSignalledError = false; mStarted = false; if (mCodecCtx) { IHEVCE_PLUGIN_STATUS_T err = ihevce_close(mCodecCtx); if (IHEVCE_EOK != err) return C2_CORRUPTED; mCodecCtx = nullptr; } return C2_OK; } c2_status_t C2SoftHevcEnc::drain(uint32_t drainMode, const std::shared_ptr& pool) { return drainInternal(drainMode, pool, nullptr); } c2_status_t C2SoftHevcEnc::initEncoder() { CHECK(!mCodecCtx); { IntfImpl::Lock lock = mIntf->lock(); mSize = mIntf->getSize_l(); mBitrateMode = mIntf->getBitrateMode_l(); mBitrate = mIntf->getBitrate_l(); mFrameRate = mIntf->getFrameRate_l(); mHevcEncProfile = mIntf->getProfile_l(); mHevcEncLevel = mIntf->getLevel_l(); mIDRInterval = mIntf->getSyncFramePeriod_l(); mIInterval = mIntf->getSyncFramePeriod_l(); mComplexity = mIntf->getComplexity_l(); mQuality = mIntf->getQuality_l(); mGop = mIntf->getGop_l(); mRequestSync = mIntf->getRequestSync_l(); mColorAspects = mIntf->getCodedColorAspects_l(); mQpBounds = mIntf->getPictureQuantization_l();; } c2_status_t status = initEncParams(); if (C2_OK != status) { ALOGE("Failed to initialize encoder params : 0x%x", status); mSignalledError = true; return status; } IHEVCE_PLUGIN_STATUS_T err = IHEVCE_EOK; err = ihevce_init(&mEncParams, &mCodecCtx); if (IHEVCE_EOK != err) { ALOGE("HEVC encoder init failed : 0x%x", err); return C2_CORRUPTED; } mStarted = true; return C2_OK; } c2_status_t C2SoftHevcEnc::setEncodeArgs(ihevce_inp_buf_t* ps_encode_ip, const C2GraphicView* const input, uint64_t workIndex) { ihevce_static_cfg_params_t* params = &mEncParams; memset(ps_encode_ip, 0, sizeof(*ps_encode_ip)); if (!input) { return C2_OK; } if (input->width() < mSize->width || input->height() < mSize->height) { /* Expect width height to be configured */ ALOGW("unexpected Capacity Aspect %d(%d) x %d(%d)", input->width(), mSize->width, input->height(), mSize->height); return C2_BAD_VALUE; } const C2PlanarLayout& layout = input->layout(); uint8_t* yPlane = const_cast(input->data()[C2PlanarLayout::PLANE_Y]); uint8_t* uPlane = const_cast(input->data()[C2PlanarLayout::PLANE_U]); uint8_t* vPlane = const_cast(input->data()[C2PlanarLayout::PLANE_V]); int32_t yStride = layout.planes[C2PlanarLayout::PLANE_Y].rowInc; int32_t uStride = layout.planes[C2PlanarLayout::PLANE_U].rowInc; int32_t vStride = layout.planes[C2PlanarLayout::PLANE_V].rowInc; const uint32_t width = mSize->width; const uint32_t height = mSize->height; // width and height must be even if (width & 1u || height & 1u) { ALOGW("height(%u) and width(%u) must both be even", height, width); return C2_BAD_VALUE; } size_t yPlaneSize = width * height; switch (layout.type) { case C2PlanarLayout::TYPE_RGB: [[fallthrough]]; case C2PlanarLayout::TYPE_RGBA: { MemoryBlock conversionBuffer = mConversionBuffers.fetch(yPlaneSize * 3 / 2); mConversionBuffersInUse.emplace(conversionBuffer.data(), conversionBuffer); yPlane = conversionBuffer.data(); uPlane = yPlane + yPlaneSize; vPlane = uPlane + yPlaneSize / 4; yStride = width; uStride = vStride = yStride / 2; ConvertRGBToPlanarYUV(yPlane, yStride, height, conversionBuffer.size(), *input, mColorAspects->matrix, mColorAspects->range); break; } case C2PlanarLayout::TYPE_YUV: { if (!IsYUV420(*input)) { ALOGE("input is not YUV420"); return C2_BAD_VALUE; } if (layout.planes[layout.PLANE_Y].colInc == 1 && layout.planes[layout.PLANE_U].colInc == 1 && layout.planes[layout.PLANE_V].colInc == 1 && uStride == vStride && yStride == 2 * vStride) { // I420 compatible - already set up above break; } // copy to I420 yStride = width; uStride = vStride = yStride / 2; MemoryBlock conversionBuffer = mConversionBuffers.fetch(yPlaneSize * 3 / 2); mConversionBuffersInUse.emplace(conversionBuffer.data(), conversionBuffer); MediaImage2 img = CreateYUV420PlanarMediaImage2(width, height, yStride, height); status_t err = ImageCopy(conversionBuffer.data(), &img, *input); if (err != OK) { ALOGE("Buffer conversion failed: %d", err); return C2_BAD_VALUE; } yPlane = conversionBuffer.data(); uPlane = yPlane + yPlaneSize; vPlane = uPlane + yPlaneSize / 4; break; } case C2PlanarLayout::TYPE_YUVA: ALOGE("YUVA plane type is not supported"); return C2_BAD_VALUE; default: ALOGE("Unrecognized plane type: %d", layout.type); return C2_BAD_VALUE; } switch (mIvVideoColorFormat) { case IV_YUV_420P: { // input buffer is supposed to be const but Ittiam API wants bare // pointer. ps_encode_ip->apv_inp_planes[0] = yPlane; ps_encode_ip->apv_inp_planes[1] = uPlane; ps_encode_ip->apv_inp_planes[2] = vPlane; ps_encode_ip->ai4_inp_strd[0] = yStride; ps_encode_ip->ai4_inp_strd[1] = uStride; ps_encode_ip->ai4_inp_strd[2] = vStride; ps_encode_ip->ai4_inp_size[0] = yStride * height; ps_encode_ip->ai4_inp_size[1] = uStride * height >> 1; ps_encode_ip->ai4_inp_size[2] = vStride * height >> 1; break; } case IV_YUV_422ILE: { // TODO break; } case IV_YUV_420SP_UV: case IV_YUV_420SP_VU: default: { ps_encode_ip->apv_inp_planes[0] = yPlane; ps_encode_ip->apv_inp_planes[1] = uPlane; ps_encode_ip->apv_inp_planes[2] = nullptr; ps_encode_ip->ai4_inp_strd[0] = yStride; ps_encode_ip->ai4_inp_strd[1] = uStride; ps_encode_ip->ai4_inp_strd[2] = 0; ps_encode_ip->ai4_inp_size[0] = yStride * height; ps_encode_ip->ai4_inp_size[1] = uStride * height >> 1; ps_encode_ip->ai4_inp_size[2] = 0; break; } } ps_encode_ip->i4_curr_bitrate = params->s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0]; ps_encode_ip->i4_curr_peak_bitrate = params->s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0]; ps_encode_ip->i4_curr_rate_factor = params->s_config_prms.i4_rate_factor; ps_encode_ip->u8_pts = workIndex; return C2_OK; } void C2SoftHevcEnc::finishWork(uint64_t index, const std::unique_ptr& work, const std::shared_ptr& pool, ihevce_out_buf_t* ps_encode_op) { std::shared_ptr block; C2MemoryUsage usage = {C2MemoryUsage::CPU_READ, C2MemoryUsage::CPU_WRITE}; c2_status_t status = pool->fetchLinearBlock(ps_encode_op->i4_bytes_generated, usage, &block); if (C2_OK != status) { ALOGE("fetchLinearBlock for Output failed with status 0x%x", status); mSignalledError = true; work->result = status; work->workletsProcessed = 1u; return; } C2WriteView wView = block->map().get(); if (C2_OK != wView.error()) { ALOGE("write view map failed with status 0x%x", wView.error()); mSignalledError = true; work->result = wView.error(); work->workletsProcessed = 1u; return; } memcpy(wView.data(), ps_encode_op->pu1_output_buf, ps_encode_op->i4_bytes_generated); std::shared_ptr buffer = createLinearBuffer(block, 0, ps_encode_op->i4_bytes_generated); DUMP_TO_FILE(mOutFile, ps_encode_op->pu1_output_buf, ps_encode_op->i4_bytes_generated); if (ps_encode_op->i4_is_key_frame) { ALOGV("IDR frame produced"); buffer->setInfo(std::make_shared( 0u /* stream id */, C2Config::SYNC_FRAME)); } auto fillWork = [buffer](const std::unique_ptr& work) { work->worklets.front()->output.flags = (C2FrameData::flags_t)0; work->worklets.front()->output.buffers.clear(); work->worklets.front()->output.buffers.push_back(buffer); work->worklets.front()->output.ordinal = work->input.ordinal; work->workletsProcessed = 1u; }; if (work && c2_cntr64_t(index) == work->input.ordinal.frameIndex) { fillWork(work); if (mSignalledEos) { work->worklets.front()->output.flags = C2FrameData::FLAG_END_OF_STREAM; } } else { finish(index, fillWork); } } c2_status_t C2SoftHevcEnc::drainInternal( uint32_t drainMode, const std::shared_ptr &pool, const std::unique_ptr &work) { if (drainMode == NO_DRAIN) { ALOGW("drain with NO_DRAIN: no-op"); return C2_OK; } if (drainMode == DRAIN_CHAIN) { ALOGW("DRAIN_CHAIN not supported"); return C2_OMITTED; } while (true) { ihevce_out_buf_t s_encode_op{}; memset(&s_encode_op, 0, sizeof(s_encode_op)); ihevce_encode(mCodecCtx, nullptr, &s_encode_op); if (s_encode_op.i4_bytes_generated) { finishWork(s_encode_op.u8_pts, work, pool, &s_encode_op); } else { if (work->workletsProcessed != 1u) fillEmptyWork(work); break; } } return C2_OK; } void C2SoftHevcEnc::process(const std::unique_ptr& work, const std::shared_ptr& pool) { // Initialize output work work->result = C2_OK; work->workletsProcessed = 0u; work->worklets.front()->output.flags = work->input.flags; if (mSignalledError || mSignalledEos) { work->result = C2_BAD_VALUE; ALOGD("Signalled Error / Signalled Eos"); return; } c2_status_t status = C2_OK; // Initialize encoder if not already initialized if (!mStarted) { status = initEncoder(); if (C2_OK != status) { ALOGE("Failed to initialize encoder : 0x%x", status); mSignalledError = true; work->result = status; work->workletsProcessed = 1u; return; } } std::shared_ptr view; std::shared_ptr inputBuffer = nullptr; bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0); if (eos) mSignalledEos = true; if (!work->input.buffers.empty()) { inputBuffer = work->input.buffers[0]; view = std::make_shared( inputBuffer->data().graphicBlocks().front().map().get()); if (view->error() != C2_OK) { ALOGE("graphic view map err = %d", view->error()); mSignalledError = true; work->result = C2_CORRUPTED; work->workletsProcessed = 1u; return; } //(b/232396154) //workaround for incorrect crop size in view when using surface mode view->setCrop_be(C2Rect(mSize->width, mSize->height)); } IHEVCE_PLUGIN_STATUS_T err = IHEVCE_EOK; if (!mSpsPpsHeaderReceived) { ihevce_out_buf_t s_header_op{}; err = ihevce_encode_header(mCodecCtx, &s_header_op); if (err == IHEVCE_EOK && s_header_op.i4_bytes_generated) { std::unique_ptr csd = C2StreamInitDataInfo::output::AllocUnique( s_header_op.i4_bytes_generated, 0u); if (!csd) { ALOGE("CSD allocation failed"); mSignalledError = true; work->result = C2_NO_MEMORY; work->workletsProcessed = 1u; return; } memcpy(csd->m.value, s_header_op.pu1_output_buf, s_header_op.i4_bytes_generated); DUMP_TO_FILE(mOutFile, csd->m.value, csd->flexCount()); work->worklets.front()->output.configUpdate.push_back( std::move(csd)); mSpsPpsHeaderReceived = true; } if (!inputBuffer) { work->workletsProcessed = 1u; return; } } // handle dynamic bitrate change { IntfImpl::Lock lock = mIntf->lock(); std::shared_ptr bitrate = mIntf->getBitrate_l(); lock.unlock(); if (bitrate != mBitrate) { mBitrate = bitrate; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_tgt_bitrate[0] = mBitrate->value; mEncParams.s_tgt_lyr_prms.as_tgt_params[0].ai4_peak_bitrate[0] = mBitrate->value << 1; } } ihevce_inp_buf_t s_encode_ip{}; ihevce_out_buf_t s_encode_op{}; uint64_t workIndex = work->input.ordinal.frameIndex.peekull(); status = setEncodeArgs(&s_encode_ip, view.get(), workIndex); if (C2_OK != status) { ALOGE("setEncodeArgs failed : 0x%x", status); mSignalledError = true; work->result = status; work->workletsProcessed = 1u; return; } // handle request key frame { IntfImpl::Lock lock = mIntf->lock(); std::shared_ptr requestSync; requestSync = mIntf->getRequestSync_l(); lock.unlock(); if (requestSync != mRequestSync) { // we can handle IDR immediately if (requestSync->value) { // unset request C2StreamRequestSyncFrameTuning::output clearSync(0u, C2_FALSE); std::vector> failures; mIntf->config({ &clearSync }, C2_MAY_BLOCK, &failures); ALOGV("Got sync request"); //Force this as an IDR frame s_encode_ip.i4_force_idr_flag = 1; } mRequestSync = requestSync; } } nsecs_t timeDelay = 0; nsecs_t timeTaken = 0; memset(&s_encode_op, 0, sizeof(s_encode_op)); mTimeStart = systemTime(); timeDelay = mTimeStart - mTimeEnd; if (inputBuffer) { err = ihevce_encode(mCodecCtx, &s_encode_ip, &s_encode_op); if (IHEVCE_EOK != err) { ALOGE("Encode Frame failed : 0x%x", err); mSignalledError = true; work->result = C2_CORRUPTED; work->workletsProcessed = 1u; return; } } else if (!eos) { fillEmptyWork(work); } /* Compute time taken for decode() */ mTimeEnd = systemTime(); timeTaken = mTimeEnd - mTimeStart; ALOGV("timeTaken=%6" PRId64 " delay=%6" PRId64 " numBytes=%6d", timeTaken, timeDelay, s_encode_op.i4_bytes_generated); if (s_encode_op.i4_bytes_generated) { finishWork(s_encode_op.u8_pts, work, pool, &s_encode_op); } if (eos) { drainInternal(DRAIN_COMPONENT_WITH_EOS, pool, work); } } class C2SoftHevcEncFactory : public C2ComponentFactory { public: C2SoftHevcEncFactory() : mHelper(std::static_pointer_cast( GetCodec2PlatformComponentStore()->getParamReflector())) {} c2_status_t createComponent( c2_node_id_t id, std::shared_ptr* const component, std::function deleter) override { *component = std::shared_ptr( new C2SoftHevcEnc( COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } c2_status_t createInterface( c2_node_id_t id, std::shared_ptr* const interface, std::function deleter) override { *interface = std::shared_ptr( new SimpleInterface( COMPONENT_NAME, id, std::make_shared(mHelper)), deleter); return C2_OK; } ~C2SoftHevcEncFactory() override = default; private: std::shared_ptr mHelper; }; } // namespace android __attribute__((cfi_canonical_jump_table)) extern "C" ::C2ComponentFactory* CreateCodec2Factory() { ALOGV("in %s", __func__); return new ::android::C2SoftHevcEncFactory(); } __attribute__((cfi_canonical_jump_table)) extern "C" void DestroyCodec2Factory(::C2ComponentFactory* factory) { ALOGV("in %s", __func__); delete factory; }