/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "media/QuaternionUtil.h" #include namespace android { namespace media { using Eigen::NumTraits; using Eigen::Quaternionf; using Eigen::Vector3f; namespace { Vector3f LogSU2(const Quaternionf& q) { // Implementation of the logarithmic map of SU(2) using atan. // This follows Hertzberg et al. "Integrating Generic Sensor Fusion Algorithms // with Sound State Representations through Encapsulation of Manifolds", Eq. // (31) // We use asin and acos instead of atan to enable the use of Eigen Autodiff // with SU2. const float sign_of_w = q.w() < 0.f ? -1.f : 1.f; const float abs_w = sign_of_w * q.w(); const Vector3f v = sign_of_w * q.vec(); const float squared_norm_of_v = v.squaredNorm(); assert(abs(1.f - abs_w * abs_w - squared_norm_of_v) < NumTraits::dummy_precision()); if (squared_norm_of_v > NumTraits::dummy_precision()) { const float norm_of_v = sqrt(squared_norm_of_v); if (abs_w > NumTraits::dummy_precision()) { // asin(x) = acos(x) at x = 1/sqrt(2). if (norm_of_v <= float(M_SQRT1_2)) { return (asin(norm_of_v) / norm_of_v) * v; } return (acos(abs_w) / norm_of_v) * v; } return (M_PI_2 / norm_of_v) * v; } // Taylor expansion at squared_norm_of_v == 0 return (1.f / abs_w - squared_norm_of_v / (3.f * pow(abs_w, 3))) * v; } Quaternionf ExpSU2(const Vector3f& delta) { Quaternionf q_delta; const float theta_squared = delta.squaredNorm(); if (theta_squared > NumTraits::dummy_precision()) { const float theta = sqrt(theta_squared); q_delta.w() = cos(theta); q_delta.vec() = (sin(theta) / theta) * delta; } else { // taylor expansions around theta == 0 q_delta.w() = 1.f - 0.5f * theta_squared; q_delta.vec() = (1.f - 1.f / 6.f * theta_squared) * delta; } return q_delta; } } // namespace Quaternionf rotationVectorToQuaternion(const Vector3f& rotationVector) { // SU(2) is a double cover of SO(3), thus we have to half the tangent vector // delta const Vector3f half_delta = 0.5f * rotationVector; return ExpSU2(half_delta); } Vector3f quaternionToRotationVector(const Quaternionf& quaternion) { // SU(2) is a double cover of SO(3), thus we have to multiply the tangent // vector delta by two return 2.f * LogSU2(quaternion); } Quaternionf rotateX(float angle) { return rotationVectorToQuaternion(Vector3f(1, 0, 0) * angle); } Quaternionf rotateY(float angle) { return rotationVectorToQuaternion(Vector3f(0, 1, 0) * angle); } Quaternionf rotateZ(float angle) { return rotationVectorToQuaternion(Vector3f(0, 0, 1) * angle); } } // namespace media } // namespace android