/* ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioFlinger" // #define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Threads.h" #include "Client.h" #include "IAfEffect.h" #include "MelReporter.h" #include "ResamplerBufferProvider.h" #include #include #include #include #include #include #include #ifdef DEBUG_CPU_USAGE #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef ADD_BATTERY_DATA #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif // TODO: Move these macro/inlines to a header file. #define max(a, b) ((a) > (b) ? (a) : (b)) template static inline T min(const T& a, const T& b) { return a < b ? a : b; } namespace android { using audioflinger::SyncEvent; using media::IEffectClient; using content::AttributionSourceState; // Keep in sync with java definition in media/java/android/media/AudioRecord.java static constexpr int32_t kMaxSharedAudioHistoryMs = 5000; // retry counts for buffer fill timeout // 50 * ~20msecs = 1 second static const int8_t kMaxTrackRetries = 50; static const int8_t kMaxTrackStartupRetries = 50; // allow less retry attempts on direct output thread. // direct outputs can be a scarce resource in audio hardware and should // be released as quickly as possible. // Notes: // 1) The retry duration kMaxTrackRetriesDirectMs may be increased // in case the data write is bursty for the AudioTrack. The application // should endeavor to write at least once every kMaxTrackRetriesDirectMs // to prevent an underrun situation. If the data is bursty, then // the application can also throttle the data sent to be even. // 2) For compressed audio data, any data present in the AudioTrack buffer // will be sent and reset the retry count. This delivers data as // it arrives, with approximately kDirectMinSleepTimeUs = 10ms checking interval. // 3) For linear PCM or proportional PCM, we wait one period for a period's worth // of data to be available, then any remaining data is delivered. // This is required to ensure the last bit of data is delivered before underrun. // // Sleep time per cycle is kDirectMinSleepTimeUs for compressed tracks // or the size of the HAL period for proportional / linear PCM tracks. static const int32_t kMaxTrackRetriesDirectMs = 200; // don't warn about blocked writes or record buffer overflows more often than this static const nsecs_t kWarningThrottleNs = seconds(5); // RecordThread loop sleep time upon application overrun or audio HAL read error static const int kRecordThreadSleepUs = 5000; // maximum time to wait in sendConfigEvent_l() for a status to be received static const nsecs_t kConfigEventTimeoutNs = seconds(2); // minimum sleep time for the mixer thread loop when tracks are active but in underrun static const uint32_t kMinThreadSleepTimeUs = 5000; // maximum divider applied to the active sleep time in the mixer thread loop static const uint32_t kMaxThreadSleepTimeShift = 2; // minimum normal sink buffer size, expressed in milliseconds rather than frames // FIXME This should be based on experimentally observed scheduling jitter static const uint32_t kMinNormalSinkBufferSizeMs = 20; // maximum normal sink buffer size static const uint32_t kMaxNormalSinkBufferSizeMs = 24; // minimum capture buffer size in milliseconds to _not_ need a fast capture thread // FIXME This should be based on experimentally observed scheduling jitter static const uint32_t kMinNormalCaptureBufferSizeMs = 12; // Offloaded output thread standby delay: allows track transition without going to standby static const nsecs_t kOffloadStandbyDelayNs = seconds(1); // Direct output thread minimum sleep time in idle or active(underrun) state static const nsecs_t kDirectMinSleepTimeUs = 10000; // Minimum amount of time between checking to see if the timestamp is advancing // for underrun detection. If we check too frequently, we may not detect a // timestamp update and will falsely detect underrun. static constexpr nsecs_t kMinimumTimeBetweenTimestampChecksNs = 150 /* ms */ * 1'000'000; // The universal constant for ubiquitous 20ms value. The value of 20ms seems to provide a good // balance between power consumption and latency, and allows threads to be scheduled reliably // by the CFS scheduler. // FIXME Express other hardcoded references to 20ms with references to this constant and move // it appropriately. #define FMS_20 20 // Whether to use fast mixer static const enum { FastMixer_Never, // never initialize or use: for debugging only FastMixer_Always, // always initialize and use, even if not needed: for debugging only // normal mixer multiplier is 1 FastMixer_Static, // initialize if needed, then use all the time if initialized, // multiplier is calculated based on min & max normal mixer buffer size FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load, // multiplier is calculated based on min & max normal mixer buffer size // FIXME for FastMixer_Dynamic: // Supporting this option will require fixing HALs that can't handle large writes. // For example, one HAL implementation returns an error from a large write, // and another HAL implementation corrupts memory, possibly in the sample rate converter. // We could either fix the HAL implementations, or provide a wrapper that breaks // up large writes into smaller ones, and the wrapper would need to deal with scheduler. } kUseFastMixer = FastMixer_Static; // Whether to use fast capture static const enum { FastCapture_Never, // never initialize or use: for debugging only FastCapture_Always, // always initialize and use, even if not needed: for debugging only FastCapture_Static, // initialize if needed, then use all the time if initialized } kUseFastCapture = FastCapture_Static; // Priorities for requestPriority static const int kPriorityAudioApp = 2; static const int kPriorityFastMixer = 3; static const int kPriorityFastCapture = 3; // Request real-time priority for PlaybackThread in ARC static const int kPriorityPlaybackThreadArc = 1; // IAudioFlinger::createTrack() has an in/out parameter 'pFrameCount' for the total size of the // track buffer in shared memory. Zero on input means to use a default value. For fast tracks, // AudioFlinger derives the default from HAL buffer size and 'fast track multiplier'. // This is the default value, if not specified by property. static const int kFastTrackMultiplier = 2; // The minimum and maximum allowed values static const int kFastTrackMultiplierMin = 1; static const int kFastTrackMultiplierMax = 2; // The actual value to use, which can be specified per-device via property af.fast_track_multiplier. static int sFastTrackMultiplier = kFastTrackMultiplier; // See Thread::readOnlyHeap(). // Initially this heap is used to allocate client buffers for "fast" AudioRecord. // Eventually it will be the single buffer that FastCapture writes into via HAL read(), // and that all "fast" AudioRecord clients read from. In either case, the size can be small. static const size_t kRecordThreadReadOnlyHeapSize = 0xD000; static const nsecs_t kDefaultStandbyTimeInNsecs = seconds(3); static nsecs_t getStandbyTimeInNanos() { static nsecs_t standbyTimeInNanos = []() { const int ms = property_get_int32("ro.audio.flinger_standbytime_ms", kDefaultStandbyTimeInNsecs / NANOS_PER_MILLISECOND); ALOGI("%s: Using %d ms as standby time", __func__, ms); return milliseconds(ms); }(); return standbyTimeInNanos; } // Set kEnableExtendedChannels to true to enable greater than stereo output // for the MixerThread and device sink. Number of channels allowed is // FCC_2 <= channels <= FCC_LIMIT. constexpr bool kEnableExtendedChannels = true; // Returns true if channel mask is permitted for the PCM sink in the MixerThread /* static */ bool IAfThreadBase::isValidPcmSinkChannelMask(audio_channel_mask_t channelMask) { switch (audio_channel_mask_get_representation(channelMask)) { case AUDIO_CHANNEL_REPRESENTATION_POSITION: { // Haptic channel mask is only applicable for channel position mask. const uint32_t channelCount = audio_channel_count_from_out_mask( static_cast(channelMask & ~AUDIO_CHANNEL_HAPTIC_ALL)); const uint32_t maxChannelCount = kEnableExtendedChannels ? FCC_LIMIT : FCC_2; if (channelCount < FCC_2 // mono is not supported at this time || channelCount > maxChannelCount) { return false; } // check that channelMask is the "canonical" one we expect for the channelCount. return audio_channel_position_mask_is_out_canonical(channelMask); } case AUDIO_CHANNEL_REPRESENTATION_INDEX: if (kEnableExtendedChannels) { const uint32_t channelCount = audio_channel_count_from_out_mask(channelMask); if (channelCount >= FCC_2 // mono is not supported at this time && channelCount <= FCC_LIMIT) { return true; } } return false; default: return false; } } // Set kEnableExtendedPrecision to true to use extended precision in MixerThread constexpr bool kEnableExtendedPrecision = true; // Returns true if format is permitted for the PCM sink in the MixerThread /* static */ bool IAfThreadBase::isValidPcmSinkFormat(audio_format_t format) { switch (format) { case AUDIO_FORMAT_PCM_16_BIT: return true; case AUDIO_FORMAT_PCM_FLOAT: case AUDIO_FORMAT_PCM_24_BIT_PACKED: case AUDIO_FORMAT_PCM_32_BIT: case AUDIO_FORMAT_PCM_8_24_BIT: return kEnableExtendedPrecision; default: return false; } } // ---------------------------------------------------------------------------- // formatToString() needs to be exact for MediaMetrics purposes. // Do not use media/TypeConverter.h toString(). /* static */ std::string IAfThreadBase::formatToString(audio_format_t format) { std::string result; FormatConverter::toString(format, result); return result; } // TODO: move all toString helpers to audio.h // under #ifdef __cplusplus #endif static std::string patchSinksToString(const struct audio_patch *patch) { std::stringstream ss; for (size_t i = 0; i < patch->num_sinks; ++i) { if (i > 0) { ss << "|"; } ss << "(" << toString(patch->sinks[i].ext.device.type) << ", " << patch->sinks[i].ext.device.address << ")"; } return ss.str(); } static std::string patchSourcesToString(const struct audio_patch *patch) { std::stringstream ss; for (size_t i = 0; i < patch->num_sources; ++i) { if (i > 0) { ss << "|"; } ss << "(" << toString(patch->sources[i].ext.device.type) << ", " << patch->sources[i].ext.device.address << ")"; } return ss.str(); } static std::string toString(audio_latency_mode_t mode) { // We convert to the AIDL type to print (eventually the legacy type will be removed). const auto result = legacy2aidl_audio_latency_mode_t_AudioLatencyMode(mode); return result.has_value() ? media::audio::common::toString(*result) : "UNKNOWN"; } // Could be made a template, but other toString overloads for std::vector are confused. static std::string toString(const std::vector& elements) { std::string s("{ "); for (const auto& e : elements) { s.append(toString(e)); s.append(" "); } s.append("}"); return s; } static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT; static void sFastTrackMultiplierInit() { char value[PROPERTY_VALUE_MAX]; if (property_get("af.fast_track_multiplier", value, NULL) > 0) { char *endptr; unsigned long ul = strtoul(value, &endptr, 0); if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) { sFastTrackMultiplier = (int) ul; } } } // ---------------------------------------------------------------------------- #ifdef ADD_BATTERY_DATA // To collect the amplifier usage static void addBatteryData(uint32_t params) { sp service = IMediaDeathNotifier::getMediaPlayerService(); if (service == NULL) { // it already logged return; } service->addBatteryData(params); } #endif // Track the CLOCK_BOOTTIME versus CLOCK_MONOTONIC timebase offset struct { // call when you acquire a partial wakelock void acquire(const sp &wakeLockToken) { pthread_mutex_lock(&mLock); if (wakeLockToken.get() == nullptr) { adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); } else { if (mCount == 0) { adjustTimebaseOffset(&mBoottimeOffset, ExtendedTimestamp::TIMEBASE_BOOTTIME); } ++mCount; } pthread_mutex_unlock(&mLock); } // call when you release a partial wakelock. void release(const sp &wakeLockToken) { if (wakeLockToken.get() == nullptr) { return; } pthread_mutex_lock(&mLock); if (--mCount < 0) { ALOGE("negative wakelock count"); mCount = 0; } pthread_mutex_unlock(&mLock); } // retrieves the boottime timebase offset from monotonic. int64_t getBoottimeOffset() { pthread_mutex_lock(&mLock); int64_t boottimeOffset = mBoottimeOffset; pthread_mutex_unlock(&mLock); return boottimeOffset; } // Adjusts the timebase offset between TIMEBASE_MONOTONIC // and the selected timebase. // Currently only TIMEBASE_BOOTTIME is allowed. // // This only needs to be called upon acquiring the first partial wakelock // after all other partial wakelocks are released. // // We do an empirical measurement of the offset rather than parsing // /proc/timer_list since the latter is not a formal kernel ABI. static void adjustTimebaseOffset(int64_t *offset, ExtendedTimestamp::Timebase timebase) { int clockbase; switch (timebase) { case ExtendedTimestamp::TIMEBASE_BOOTTIME: clockbase = SYSTEM_TIME_BOOTTIME; break; default: LOG_ALWAYS_FATAL("invalid timebase %d", timebase); break; } // try three times to get the clock offset, choose the one // with the minimum gap in measurements. const int tries = 3; nsecs_t bestGap = 0, measured = 0; // not required, initialized for clang-tidy for (int i = 0; i < tries; ++i) { const nsecs_t tmono = systemTime(SYSTEM_TIME_MONOTONIC); const nsecs_t tbase = systemTime(clockbase); const nsecs_t tmono2 = systemTime(SYSTEM_TIME_MONOTONIC); const nsecs_t gap = tmono2 - tmono; if (i == 0 || gap < bestGap) { bestGap = gap; measured = tbase - ((tmono + tmono2) >> 1); } } // to avoid micro-adjusting, we don't change the timebase // unless it is significantly different. // // Assumption: It probably takes more than toleranceNs to // suspend and resume the device. static int64_t toleranceNs = 10000; // 10 us if (llabs(*offset - measured) > toleranceNs) { ALOGV("Adjusting timebase offset old: %lld new: %lld", (long long)*offset, (long long)measured); *offset = measured; } } pthread_mutex_t mLock; int32_t mCount; int64_t mBoottimeOffset; } gBoottime = { PTHREAD_MUTEX_INITIALIZER, 0, 0 }; // static, so use POD initialization // ---------------------------------------------------------------------------- // CPU Stats // ---------------------------------------------------------------------------- class CpuStats { public: CpuStats(); void sample(const String8 &title); #ifdef DEBUG_CPU_USAGE private: ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns audio_utils::Statistics mWcStats; // statistics on thread CPU usage in wall clock ns audio_utils::Statistics mHzStats; // statistics on thread CPU usage in cycles int mCpuNum; // thread's current CPU number int mCpukHz; // frequency of thread's current CPU in kHz #endif }; CpuStats::CpuStats() #ifdef DEBUG_CPU_USAGE : mCpuNum(-1), mCpukHz(-1) #endif { } void CpuStats::sample(const String8 &title #ifndef DEBUG_CPU_USAGE __unused #endif ) { #ifdef DEBUG_CPU_USAGE // get current thread's delta CPU time in wall clock ns double wcNs; bool valid = mCpuUsage.sampleAndEnable(wcNs); // record sample for wall clock statistics if (valid) { mWcStats.add(wcNs); } // get the current CPU number int cpuNum = sched_getcpu(); // get the current CPU frequency in kHz int cpukHz = mCpuUsage.getCpukHz(cpuNum); // check if either CPU number or frequency changed if (cpuNum != mCpuNum || cpukHz != mCpukHz) { mCpuNum = cpuNum; mCpukHz = cpukHz; // ignore sample for purposes of cycles valid = false; } // if no change in CPU number or frequency, then record sample for cycle statistics if (valid && mCpukHz > 0) { const double cycles = wcNs * cpukHz * 0.000001; mHzStats.add(cycles); } const unsigned n = mWcStats.getN(); // mCpuUsage.elapsed() is expensive, so don't call it every loop if ((n & 127) == 1) { const long long elapsed = mCpuUsage.elapsed(); if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) { const double perLoop = elapsed / (double) n; const double perLoop100 = perLoop * 0.01; const double perLoop1k = perLoop * 0.001; const double mean = mWcStats.getMean(); const double stddev = mWcStats.getStdDev(); const double minimum = mWcStats.getMin(); const double maximum = mWcStats.getMax(); const double meanCycles = mHzStats.getMean(); const double stddevCycles = mHzStats.getStdDev(); const double minCycles = mHzStats.getMin(); const double maxCycles = mHzStats.getMax(); mCpuUsage.resetElapsed(); mWcStats.reset(); mHzStats.reset(); ALOGD("CPU usage for %s over past %.1f secs\n" " (%u mixer loops at %.1f mean ms per loop):\n" " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n" " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n" " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f", title.c_str(), elapsed * .000000001, n, perLoop * .000001, mean * .001, stddev * .001, minimum * .001, maximum * .001, mean / perLoop100, stddev / perLoop100, minimum / perLoop100, maximum / perLoop100, meanCycles / perLoop1k, stddevCycles / perLoop1k, minCycles / perLoop1k, maxCycles / perLoop1k); } } #endif }; // ---------------------------------------------------------------------------- // ThreadBase // ---------------------------------------------------------------------------- // static const char* ThreadBase::threadTypeToString(ThreadBase::type_t type) { switch (type) { case MIXER: return "MIXER"; case DIRECT: return "DIRECT"; case DUPLICATING: return "DUPLICATING"; case RECORD: return "RECORD"; case OFFLOAD: return "OFFLOAD"; case MMAP_PLAYBACK: return "MMAP_PLAYBACK"; case MMAP_CAPTURE: return "MMAP_CAPTURE"; case SPATIALIZER: return "SPATIALIZER"; case BIT_PERFECT: return "BIT_PERFECT"; default: return "unknown"; } } ThreadBase::ThreadBase(const sp& afThreadCallback, audio_io_handle_t id, type_t type, bool systemReady, bool isOut) : Thread(false /*canCallJava*/), mType(type), mAfThreadCallback(afThreadCallback), mThreadMetrics(std::string(AMEDIAMETRICS_KEY_PREFIX_AUDIO_THREAD) + std::to_string(id), isOut), mIsOut(isOut), // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize // are set by PlaybackThread::readOutputParameters_l() or // RecordThread::readInputParameters_l() //FIXME: mStandby should be true here. Is this some kind of hack? mStandby(false), mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id), // mName will be set by concrete (non-virtual) subclass mDeathRecipient(new PMDeathRecipient(this)), mSystemReady(systemReady), mSignalPending(false) { mThreadMetrics.logConstructor(getpid(), threadTypeToString(type), id); memset(&mPatch, 0, sizeof(struct audio_patch)); } ThreadBase::~ThreadBase() { // mConfigEvents should be empty, but just in case it isn't, free the memory it owns mConfigEvents.clear(); // do not lock the mutex in destructor releaseWakeLock_l(); if (mPowerManager != 0) { sp binder = IInterface::asBinder(mPowerManager); binder->unlinkToDeath(mDeathRecipient); } sendStatistics(true /* force */); } status_t ThreadBase::readyToRun() { status_t status = initCheck(); if (status == NO_ERROR) { ALOGI("AudioFlinger's thread %p tid=%d ready to run", this, getTid()); } else { ALOGE("No working audio driver found."); } return status; } void ThreadBase::exit() { ALOGV("ThreadBase::exit"); // do any cleanup required for exit to succeed preExit(); { // This lock prevents the following race in thread (uniprocessor for illustration): // if (!exitPending()) { // // context switch from here to exit() // // exit() calls requestExit(), what exitPending() observes // // exit() calls signal(), which is dropped since no waiters // // context switch back from exit() to here // mWaitWorkCV.wait(...); // // now thread is hung // } audio_utils::lock_guard lock(mutex()); requestExit(); mWaitWorkCV.notify_all(); } // When Thread::requestExitAndWait is made virtual and this method is renamed to // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();" // For TimeCheck: track waiting on the thread join of getTid(). audio_utils::mutex::scoped_join_wait_check sjw(getTid()); requestExitAndWait(); } status_t ThreadBase::setParameters(const String8& keyValuePairs) { ALOGV("ThreadBase::setParameters() %s", keyValuePairs.c_str()); audio_utils::lock_guard _l(mutex()); return sendSetParameterConfigEvent_l(keyValuePairs); } // sendConfigEvent_l() must be called with ThreadBase::mLock held // Can temporarily release the lock if waiting for a reply from processConfigEvents_l(). status_t ThreadBase::sendConfigEvent_l(sp& event) NO_THREAD_SAFETY_ANALYSIS // condition variable { status_t status = NO_ERROR; if (event->mRequiresSystemReady && !mSystemReady) { event->mWaitStatus = false; mPendingConfigEvents.add(event); return status; } mConfigEvents.add(event); ALOGV("sendConfigEvent_l() num events %zu event %d", mConfigEvents.size(), event->mType); mWaitWorkCV.notify_one(); mutex().unlock(); { audio_utils::unique_lock _l(event->mutex()); while (event->mWaitStatus) { if (event->mCondition.wait_for( _l, std::chrono::nanoseconds(kConfigEventTimeoutNs), getTid()) == std::cv_status::timeout) { event->mStatus = TIMED_OUT; event->mWaitStatus = false; } } status = event->mStatus; } mutex().lock(); return status; } void ThreadBase::sendIoConfigEvent(audio_io_config_event_t event, pid_t pid, audio_port_handle_t portId) { audio_utils::lock_guard _l(mutex()); sendIoConfigEvent_l(event, pid, portId); } // sendIoConfigEvent_l() must be called with ThreadBase::mutex() held void ThreadBase::sendIoConfigEvent_l(audio_io_config_event_t event, pid_t pid, audio_port_handle_t portId) { // The audio statistics history is exponentially weighted to forget events // about five or more seconds in the past. In order to have // crisper statistics for mediametrics, we reset the statistics on // an IoConfigEvent, to reflect different properties for a new device. mIoJitterMs.reset(); mLatencyMs.reset(); mProcessTimeMs.reset(); mMonopipePipeDepthStats.reset(); mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS); sp configEvent = (ConfigEvent *)new IoConfigEvent(event, pid, portId); sendConfigEvent_l(configEvent); } void ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio, bool forApp) { audio_utils::lock_guard _l(mutex()); sendPrioConfigEvent_l(pid, tid, prio, forApp); } // sendPrioConfigEvent_l() must be called with ThreadBase::mutex() held void ThreadBase::sendPrioConfigEvent_l( pid_t pid, pid_t tid, int32_t prio, bool forApp) { sp configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio, forApp); sendConfigEvent_l(configEvent); } // sendSetParameterConfigEvent_l() must be called with ThreadBase::mutex() held status_t ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair) { sp configEvent; AudioParameter param(keyValuePair); int value; if (param.getInt(String8(AudioParameter::keyMonoOutput), value) == NO_ERROR) { setMasterMono_l(value != 0); if (param.size() == 1) { return NO_ERROR; // should be a solo parameter - we don't pass down } param.remove(String8(AudioParameter::keyMonoOutput)); configEvent = new SetParameterConfigEvent(param.toString()); } else { configEvent = new SetParameterConfigEvent(keyValuePair); } return sendConfigEvent_l(configEvent); } status_t ThreadBase::sendCreateAudioPatchConfigEvent( const struct audio_patch *patch, audio_patch_handle_t *handle) { audio_utils::lock_guard _l(mutex()); sp configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle); status_t status = sendConfigEvent_l(configEvent); if (status == NO_ERROR) { CreateAudioPatchConfigEventData *data = (CreateAudioPatchConfigEventData *)configEvent->mData.get(); *handle = data->mHandle; } return status; } status_t ThreadBase::sendReleaseAudioPatchConfigEvent( const audio_patch_handle_t handle) { audio_utils::lock_guard _l(mutex()); sp configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle); return sendConfigEvent_l(configEvent); } status_t ThreadBase::sendUpdateOutDeviceConfigEvent( const DeviceDescriptorBaseVector& outDevices) { if (type() != RECORD) { // The update out device operation is only for record thread. return INVALID_OPERATION; } audio_utils::lock_guard _l(mutex()); sp configEvent = (ConfigEvent *)new UpdateOutDevicesConfigEvent(outDevices); return sendConfigEvent_l(configEvent); } void ThreadBase::sendResizeBufferConfigEvent_l(int32_t maxSharedAudioHistoryMs) { ALOG_ASSERT(type() == RECORD, "sendResizeBufferConfigEvent_l() called on non record thread"); sp configEvent = (ConfigEvent *)new ResizeBufferConfigEvent(maxSharedAudioHistoryMs); sendConfigEvent_l(configEvent); } void ThreadBase::sendCheckOutputStageEffectsEvent() { audio_utils::lock_guard _l(mutex()); sendCheckOutputStageEffectsEvent_l(); } void ThreadBase::sendCheckOutputStageEffectsEvent_l() { sp configEvent = (ConfigEvent *)new CheckOutputStageEffectsEvent(); sendConfigEvent_l(configEvent); } void ThreadBase::sendHalLatencyModesChangedEvent_l() { sp configEvent = sp::make(); sendConfigEvent_l(configEvent); } // post condition: mConfigEvents.isEmpty() void ThreadBase::processConfigEvents_l() { bool configChanged = false; while (!mConfigEvents.isEmpty()) { ALOGV("processConfigEvents_l() remaining events %zu", mConfigEvents.size()); sp event = mConfigEvents[0]; mConfigEvents.removeAt(0); switch (event->mType) { case CFG_EVENT_PRIO: { PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get(); // FIXME Need to understand why this has to be done asynchronously int err = requestPriority(data->mPid, data->mTid, data->mPrio, data->mForApp, true /*asynchronous*/); if (err != 0) { ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d", data->mPrio, data->mPid, data->mTid, err); } } break; case CFG_EVENT_IO: { IoConfigEventData *data = (IoConfigEventData *)event->mData.get(); ioConfigChanged_l(data->mEvent, data->mPid, data->mPortId); } break; case CFG_EVENT_SET_PARAMETER: { SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get(); if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) { configChanged = true; mLocalLog.log("CFG_EVENT_SET_PARAMETER: (%s) configuration changed", data->mKeyValuePairs.c_str()); } } break; case CFG_EVENT_CREATE_AUDIO_PATCH: { const DeviceTypeSet oldDevices = getDeviceTypes_l(); CreateAudioPatchConfigEventData *data = (CreateAudioPatchConfigEventData *)event->mData.get(); event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle); const DeviceTypeSet newDevices = getDeviceTypes_l(); configChanged = oldDevices != newDevices; mLocalLog.log("CFG_EVENT_CREATE_AUDIO_PATCH: old device %s (%s) new device %s (%s)", dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(), dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str()); } break; case CFG_EVENT_RELEASE_AUDIO_PATCH: { const DeviceTypeSet oldDevices = getDeviceTypes_l(); ReleaseAudioPatchConfigEventData *data = (ReleaseAudioPatchConfigEventData *)event->mData.get(); event->mStatus = releaseAudioPatch_l(data->mHandle); const DeviceTypeSet newDevices = getDeviceTypes_l(); configChanged = oldDevices != newDevices; mLocalLog.log("CFG_EVENT_RELEASE_AUDIO_PATCH: old device %s (%s) new device %s (%s)", dumpDeviceTypes(oldDevices).c_str(), toString(oldDevices).c_str(), dumpDeviceTypes(newDevices).c_str(), toString(newDevices).c_str()); } break; case CFG_EVENT_UPDATE_OUT_DEVICE: { UpdateOutDevicesConfigEventData *data = (UpdateOutDevicesConfigEventData *)event->mData.get(); updateOutDevices(data->mOutDevices); } break; case CFG_EVENT_RESIZE_BUFFER: { ResizeBufferConfigEventData *data = (ResizeBufferConfigEventData *)event->mData.get(); resizeInputBuffer_l(data->mMaxSharedAudioHistoryMs); } break; case CFG_EVENT_CHECK_OUTPUT_STAGE_EFFECTS: { setCheckOutputStageEffects(); } break; case CFG_EVENT_HAL_LATENCY_MODES_CHANGED: { onHalLatencyModesChanged_l(); } break; default: ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType); break; } { audio_utils::lock_guard _l(event->mutex()); if (event->mWaitStatus) { event->mWaitStatus = false; event->mCondition.notify_one(); } } ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this); } if (configChanged) { cacheParameters_l(); } } String8 channelMaskToString(audio_channel_mask_t mask, bool output) { String8 s; const audio_channel_representation_t representation = audio_channel_mask_get_representation(mask); switch (representation) { // Travel all single bit channel mask to convert channel mask to string. case AUDIO_CHANNEL_REPRESENTATION_POSITION: { if (output) { if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, "); if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low-frequency, "); if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, "); if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, "); if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, "); if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, "); if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, "); if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,"); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, "); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, "); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, "); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, "); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, "); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, "); if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_LEFT) s.append("top-side-left, "); if (mask & AUDIO_CHANNEL_OUT_TOP_SIDE_RIGHT) s.append("top-side-right, "); if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_LEFT) s.append("bottom-front-left, "); if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_CENTER) s.append("bottom-front-center, "); if (mask & AUDIO_CHANNEL_OUT_BOTTOM_FRONT_RIGHT) s.append("bottom-front-right, "); if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY_2) s.append("low-frequency-2, "); if (mask & AUDIO_CHANNEL_OUT_HAPTIC_B) s.append("haptic-B, "); if (mask & AUDIO_CHANNEL_OUT_HAPTIC_A) s.append("haptic-A, "); if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, "); } else { if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, "); if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, "); if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, "); if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, "); if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, "); if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, "); if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, "); if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, "); if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, "); if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, "); if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, "); if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, "); if (mask & AUDIO_CHANNEL_IN_BACK_LEFT) s.append("back-left, "); if (mask & AUDIO_CHANNEL_IN_BACK_RIGHT) s.append("back-right, "); if (mask & AUDIO_CHANNEL_IN_CENTER) s.append("center, "); if (mask & AUDIO_CHANNEL_IN_LOW_FREQUENCY) s.append("low-frequency, "); if (mask & AUDIO_CHANNEL_IN_TOP_LEFT) s.append("top-left, "); if (mask & AUDIO_CHANNEL_IN_TOP_RIGHT) s.append("top-right, "); if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, "); if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, "); if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, "); } const int len = s.length(); if (len > 2) { (void) s.lockBuffer(len); // needed? s.unlockBuffer(len - 2); // remove trailing ", " } return s; } case AUDIO_CHANNEL_REPRESENTATION_INDEX: s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask)); return s; default: s.appendFormat("unknown mask, representation:%d bits:%#x", representation, audio_channel_mask_get_bits(mask)); return s; } } void ThreadBase::dump(int fd, const Vector& args) NO_THREAD_SAFETY_ANALYSIS // conditional try lock { dprintf(fd, "\n%s thread %p, name %s, tid %d, type %d (%s):\n", isOutput() ? "Output" : "Input", this, mThreadName, getTid(), type(), threadTypeToString(type())); const bool locked = afutils::dumpTryLock(mutex()); if (!locked) { dprintf(fd, " Thread may be deadlocked\n"); } dumpBase_l(fd, args); dumpInternals_l(fd, args); dumpTracks_l(fd, args); dumpEffectChains_l(fd, args); if (locked) { mutex().unlock(); } dprintf(fd, " Local log:\n"); mLocalLog.dump(fd, " " /* prefix */, 40 /* lines */); // --all does the statistics bool dumpAll = false; for (const auto &arg : args) { if (arg == String16("--all")) { dumpAll = true; } } if (dumpAll || type() == SPATIALIZER) { const std::string sched = mThreadSnapshot.toString(); if (!sched.empty()) { (void)write(fd, sched.c_str(), sched.size()); } } } void ThreadBase::dumpBase_l(int fd, const Vector& /* args */) { dprintf(fd, " I/O handle: %d\n", mId); dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no"); dprintf(fd, " Sample rate: %u Hz\n", mSampleRate); dprintf(fd, " HAL frame count: %zu\n", mFrameCount); dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, IAfThreadBase::formatToString(mHALFormat).c_str()); dprintf(fd, " HAL buffer size: %zu bytes\n", mBufferSize); dprintf(fd, " Channel count: %u\n", mChannelCount); dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask, channelMaskToString(mChannelMask, mType != RECORD).c_str()); dprintf(fd, " Processing format: 0x%x (%s)\n", mFormat, IAfThreadBase::formatToString(mFormat).c_str()); dprintf(fd, " Processing frame size: %zu bytes\n", mFrameSize); dprintf(fd, " Pending config events:"); size_t numConfig = mConfigEvents.size(); if (numConfig) { const size_t SIZE = 256; char buffer[SIZE]; for (size_t i = 0; i < numConfig; i++) { mConfigEvents[i]->dump(buffer, SIZE); dprintf(fd, "\n %s", buffer); } dprintf(fd, "\n"); } else { dprintf(fd, " none\n"); } // Note: output device may be used by capture threads for effects such as AEC. dprintf(fd, " Output devices: %s (%s)\n", dumpDeviceTypes(outDeviceTypes_l()).c_str(), toString(outDeviceTypes_l()).c_str()); dprintf(fd, " Input device: %#x (%s)\n", inDeviceType_l(), toString(inDeviceType_l()).c_str()); dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, toString(mAudioSource).c_str()); // Dump timestamp statistics for the Thread types that support it. if (mType == RECORD || mType == MIXER || mType == DUPLICATING || mType == DIRECT || mType == OFFLOAD || mType == SPATIALIZER) { dprintf(fd, " Timestamp stats: %s\n", mTimestampVerifier.toString().c_str()); dprintf(fd, " Timestamp corrected: %s\n", isTimestampCorrectionEnabled_l() ? "yes" : "no"); } if (mLastIoBeginNs > 0) { // MMAP may not set this dprintf(fd, " Last %s occurred (msecs): %lld\n", isOutput() ? "write" : "read", (long long) (systemTime() - mLastIoBeginNs) / NANOS_PER_MILLISECOND); } if (mProcessTimeMs.getN() > 0) { dprintf(fd, " Process time ms stats: %s\n", mProcessTimeMs.toString().c_str()); } if (mIoJitterMs.getN() > 0) { dprintf(fd, " Hal %s jitter ms stats: %s\n", isOutput() ? "write" : "read", mIoJitterMs.toString().c_str()); } if (mLatencyMs.getN() > 0) { dprintf(fd, " Threadloop %s latency stats: %s\n", isOutput() ? "write" : "read", mLatencyMs.toString().c_str()); } if (mMonopipePipeDepthStats.getN() > 0) { dprintf(fd, " Monopipe %s pipe depth stats: %s\n", isOutput() ? "write" : "read", mMonopipePipeDepthStats.toString().c_str()); } } void ThreadBase::dumpEffectChains_l(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; size_t numEffectChains = mEffectChains.size(); snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains); write(fd, buffer, strlen(buffer)); for (size_t i = 0; i < numEffectChains; ++i) { sp chain = mEffectChains[i]; if (chain != 0) { chain->dump(fd, args); } } } void ThreadBase::acquireWakeLock() { audio_utils::lock_guard _l(mutex()); acquireWakeLock_l(); } String16 ThreadBase::getWakeLockTag() { switch (mType) { case MIXER: return String16("AudioMix"); case DIRECT: return String16("AudioDirectOut"); case DUPLICATING: return String16("AudioDup"); case RECORD: return String16("AudioIn"); case OFFLOAD: return String16("AudioOffload"); case MMAP_PLAYBACK: return String16("MmapPlayback"); case MMAP_CAPTURE: return String16("MmapCapture"); case SPATIALIZER: return String16("AudioSpatial"); default: ALOG_ASSERT(false); return String16("AudioUnknown"); } } void ThreadBase::acquireWakeLock_l() { getPowerManager_l(); if (mPowerManager != 0) { sp binder = new BBinder(); // Uses AID_AUDIOSERVER for wakelock. updateWakeLockUids_l() updates with client uids. binder::Status status = mPowerManager->acquireWakeLockAsync(binder, POWERMANAGER_PARTIAL_WAKE_LOCK, getWakeLockTag(), String16("audioserver"), {} /* workSource */, {} /* historyTag */); if (status.isOk()) { mWakeLockToken = binder; } ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status.exceptionCode()); } gBoottime.acquire(mWakeLockToken); mTimestamp.mTimebaseOffset[ExtendedTimestamp::TIMEBASE_BOOTTIME] = gBoottime.getBoottimeOffset(); } void ThreadBase::releaseWakeLock() { audio_utils::lock_guard _l(mutex()); releaseWakeLock_l(); } void ThreadBase::releaseWakeLock_l() { gBoottime.release(mWakeLockToken); if (mWakeLockToken != 0) { ALOGV("releaseWakeLock_l() %s", mThreadName); if (mPowerManager != 0) { mPowerManager->releaseWakeLockAsync(mWakeLockToken, 0); } mWakeLockToken.clear(); } } void ThreadBase::getPowerManager_l() { if (mSystemReady && mPowerManager == 0) { // use checkService() to avoid blocking if power service is not up yet sp binder = defaultServiceManager()->checkService(String16("power")); if (binder == 0) { ALOGW("Thread %s cannot connect to the power manager service", mThreadName); } else { mPowerManager = interface_cast(binder); binder->linkToDeath(mDeathRecipient); } } } void ThreadBase::updateWakeLockUids_l(const SortedVector& uids) { getPowerManager_l(); #if !LOG_NDEBUG std::stringstream s; for (uid_t uid : uids) { s << uid << " "; } ALOGD("updateWakeLockUids_l %s uids:%s", mThreadName, s.str().c_str()); #endif if (mWakeLockToken == NULL) { // token may be NULL if AudioFlinger::systemReady() not called. if (mSystemReady) { ALOGE("no wake lock to update, but system ready!"); } else { ALOGW("no wake lock to update, system not ready yet"); } return; } if (mPowerManager != 0) { std::vector uidsAsInt(uids.begin(), uids.end()); // powermanager expects uids as ints binder::Status status = mPowerManager->updateWakeLockUidsAsync( mWakeLockToken, uidsAsInt); ALOGV("updateWakeLockUids_l() %s status %d", mThreadName, status.exceptionCode()); } } void ThreadBase::clearPowerManager() { audio_utils::lock_guard _l(mutex()); releaseWakeLock_l(); mPowerManager.clear(); } void ThreadBase::updateOutDevices( const DeviceDescriptorBaseVector& outDevices __unused) { ALOGE("%s should only be called in RecordThread", __func__); } void ThreadBase::resizeInputBuffer_l(int32_t /* maxSharedAudioHistoryMs */) { ALOGE("%s should only be called in RecordThread", __func__); } void ThreadBase::PMDeathRecipient::binderDied(const wp& /* who */) { sp thread = mThread.promote(); if (thread != 0) { thread->clearPowerManager(); } ALOGW("power manager service died !!!"); } void ThreadBase::setEffectSuspended_l( const effect_uuid_t *type, bool suspend, audio_session_t sessionId) { sp chain = getEffectChain_l(sessionId); if (chain != 0) { if (type != NULL) { chain->setEffectSuspended_l(type, suspend); } else { chain->setEffectSuspendedAll_l(suspend); } } updateSuspendedSessions_l(type, suspend, sessionId); } void ThreadBase::checkSuspendOnAddEffectChain_l(const sp& chain) { ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId()); if (index < 0) { return; } const KeyedVector >& sessionEffects = mSuspendedSessions.valueAt(index); for (size_t i = 0; i < sessionEffects.size(); i++) { const sp& desc = sessionEffects.valueAt(i); for (int j = 0; j < desc->mRefCount; j++) { if (sessionEffects.keyAt(i) == IAfEffectChain::kKeyForSuspendAll) { chain->setEffectSuspendedAll_l(true); } else { ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x", desc->mType.timeLow); chain->setEffectSuspended_l(&desc->mType, true); } } } } void ThreadBase::updateSuspendedSessions_l(const effect_uuid_t* type, bool suspend, audio_session_t sessionId) { ssize_t index = mSuspendedSessions.indexOfKey(sessionId); KeyedVector > sessionEffects; if (suspend) { if (index >= 0) { sessionEffects = mSuspendedSessions.valueAt(index); } else { mSuspendedSessions.add(sessionId, sessionEffects); } } else { if (index < 0) { return; } sessionEffects = mSuspendedSessions.valueAt(index); } int key = IAfEffectChain::kKeyForSuspendAll; if (type != NULL) { key = type->timeLow; } index = sessionEffects.indexOfKey(key); sp desc; if (suspend) { if (index >= 0) { desc = sessionEffects.valueAt(index); } else { desc = new SuspendedSessionDesc(); if (type != NULL) { desc->mType = *type; } sessionEffects.add(key, desc); ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key); } desc->mRefCount++; } else { if (index < 0) { return; } desc = sessionEffects.valueAt(index); if (--desc->mRefCount == 0) { ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key); sessionEffects.removeItemsAt(index); if (sessionEffects.isEmpty()) { ALOGV("updateSuspendedSessions_l() restore removing session %d", sessionId); mSuspendedSessions.removeItem(sessionId); } } } if (!sessionEffects.isEmpty()) { mSuspendedSessions.replaceValueFor(sessionId, sessionEffects); } } void ThreadBase::checkSuspendOnEffectEnabled(bool enabled, audio_session_t sessionId, bool threadLocked) NO_THREAD_SAFETY_ANALYSIS // manual locking { if (!threadLocked) { mutex().lock(); } if (mType != RECORD) { // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on // another session. This gives the priority to well behaved effect control panels // and applications not using global effects. // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect // global effects if (!audio_is_global_session(sessionId)) { setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX); } } if (!threadLocked) { mutex().unlock(); } } // checkEffectCompatibility_l() must be called with ThreadBase::mutex() held status_t RecordThread::checkEffectCompatibility_l( const effect_descriptor_t *desc, audio_session_t sessionId) { // No global output effect sessions on record threads if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE) { ALOGW("checkEffectCompatibility_l(): global effect %s on record thread %s", desc->name, mThreadName); return BAD_VALUE; } // only pre processing effects on record thread if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC) { ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on record thread %s", desc->name, mThreadName); return BAD_VALUE; } // always allow effects without processing load or latency if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) { return NO_ERROR; } audio_input_flags_t flags = mInput->flags; if (hasFastCapture() || (flags & AUDIO_INPUT_FLAG_FAST)) { if (flags & AUDIO_INPUT_FLAG_RAW) { ALOGW("checkEffectCompatibility_l(): effect %s on record thread %s in raw mode", desc->name, mThreadName); return BAD_VALUE; } if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { ALOGW("checkEffectCompatibility_l(): non HW effect %s on record thread %s in fast mode", desc->name, mThreadName); return BAD_VALUE; } } if (IAfEffectModule::isHapticGenerator(&desc->type)) { ALOGE("%s(): HapticGenerator is not supported in RecordThread", __func__); return BAD_VALUE; } return NO_ERROR; } // checkEffectCompatibility_l() must be called with ThreadBase::mutex() held status_t PlaybackThread::checkEffectCompatibility_l( const effect_descriptor_t *desc, audio_session_t sessionId) { // no preprocessing on playback threads if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC) { ALOGW("%s: pre processing effect %s created on playback" " thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } // always allow effects without processing load or latency if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) == EFFECT_FLAG_NO_PROCESS) { return NO_ERROR; } if (IAfEffectModule::isHapticGenerator(&desc->type) && mHapticChannelCount == 0) { ALOGW("%s: thread (%s) doesn't support haptic playback while the effect is HapticGenerator", __func__, threadTypeToString(mType)); return BAD_VALUE; } if (IAfEffectModule::isSpatializer(&desc->type) && mType != SPATIALIZER) { ALOGW("%s: attempt to create a spatializer effect on a thread of type %d", __func__, mType); return BAD_VALUE; } switch (mType) { case MIXER: { audio_output_flags_t flags = mOutput->flags; if (hasFastMixer() || (flags & AUDIO_OUTPUT_FLAG_FAST)) { if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { // global effects are applied only to non fast tracks if they are SW if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { break; } } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) { // only post processing on output stage session if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) { ALOGW("%s: non post processing effect %s not allowed on output stage session", __func__, desc->name); return BAD_VALUE; } } else if (sessionId == AUDIO_SESSION_DEVICE) { // only post processing on output stage session if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) { ALOGW("%s: non post processing effect %s not allowed on device session", __func__, desc->name); return BAD_VALUE; } } else { // no restriction on effects applied on non fast tracks if ((hasAudioSession_l(sessionId) & ThreadBase::FAST_SESSION) == 0) { break; } } if (flags & AUDIO_OUTPUT_FLAG_RAW) { ALOGW("%s: effect %s on playback thread in raw mode", __func__, desc->name); return BAD_VALUE; } if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) == 0) { ALOGW("%s: non HW effect %s on playback thread in fast mode", __func__, desc->name); return BAD_VALUE; } } } break; case OFFLOAD: // nothing actionable on offload threads, if the effect: // - is offloadable: the effect can be created // - is NOT offloadable: the effect should still be created, but EffectHandle::enable() // will take care of invalidating the tracks of the thread break; case DIRECT: // Reject any effect on Direct output threads for now, since the format of // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo). ALOGW("%s: effect %s on DIRECT output thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; case DUPLICATING: if (audio_is_global_session(sessionId)) { ALOGW("%s: global effect %s on DUPLICATING thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } if ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_POST_PROC) { ALOGW("%s: post processing effect %s on DUPLICATING thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) { ALOGW("%s: HW tunneled effect %s on DUPLICATING thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } break; case SPATIALIZER: // Global effects (AUDIO_SESSION_OUTPUT_MIX) are not supported on spatializer mixer // as there is no common accumulation buffer for sptialized and non sptialized tracks. // Post processing effects (AUDIO_SESSION_OUTPUT_STAGE or AUDIO_SESSION_DEVICE) // are supported and added after the spatializer. if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { ALOGW("%s: global effect %s not supported on spatializer thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } else if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) { // only post processing , downmixer or spatializer effects on output stage session if (IAfEffectModule::isSpatializer(&desc->type) || memcmp(&desc->type, EFFECT_UIID_DOWNMIX, sizeof(effect_uuid_t)) == 0) { break; } if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) { ALOGW("%s: non post processing effect %s not allowed on output stage session", __func__, desc->name); return BAD_VALUE; } } else if (sessionId == AUDIO_SESSION_DEVICE) { // only post processing on output stage session if ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_POST_PROC) { ALOGW("%s: non post processing effect %s not allowed on device session", __func__, desc->name); return BAD_VALUE; } } break; case BIT_PERFECT: if ((desc->flags & EFFECT_FLAG_HW_ACC_TUNNEL) != 0) { // Allow HW accelerated effects of tunnel type break; } // As bit-perfect tracks will not be allowed to apply audio effect that will touch the audio // data, effects will not be allowed on 1) global effects (AUDIO_SESSION_OUTPUT_MIX), // 2) post-processing effects (AUDIO_SESSION_OUTPUT_STAGE or AUDIO_SESSION_DEVICE) and // 3) there is any bit-perfect track with the given session id. if (sessionId == AUDIO_SESSION_OUTPUT_MIX || sessionId == AUDIO_SESSION_OUTPUT_STAGE || sessionId == AUDIO_SESSION_DEVICE) { ALOGW("%s: effect %s not supported on bit-perfect thread %s", __func__, desc->name, mThreadName); return BAD_VALUE; } else if ((hasAudioSession_l(sessionId) & ThreadBase::BIT_PERFECT_SESSION) != 0) { ALOGW("%s: effect %s not supported as there is a bit-perfect track with session as %d", __func__, desc->name, sessionId); return BAD_VALUE; } break; default: LOG_ALWAYS_FATAL("checkEffectCompatibility_l(): wrong thread type %d", mType); } return NO_ERROR; } // ThreadBase::createEffect_l() must be called with AudioFlinger::mutex() held sp ThreadBase::createEffect_l( const sp& client, const sp& effectClient, int32_t priority, audio_session_t sessionId, effect_descriptor_t *desc, int *enabled, status_t *status, bool pinned, bool probe, bool notifyFramesProcessed) { sp effect; sp handle; status_t lStatus; sp chain; bool chainCreated = false; bool effectCreated = false; audio_unique_id_t effectId = AUDIO_UNIQUE_ID_USE_UNSPECIFIED; lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGW("createEffect_l() Audio driver not initialized."); goto Exit; } ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId); { // scope for mutex() audio_utils::lock_guard _l(mutex()); lStatus = checkEffectCompatibility_l(desc, sessionId); if (probe || lStatus != NO_ERROR) { goto Exit; } // check for existing effect chain with the requested audio session chain = getEffectChain_l(sessionId); if (chain == 0) { // create a new chain for this session ALOGV("createEffect_l() new effect chain for session %d", sessionId); chain = IAfEffectChain::create(this, sessionId, mAfThreadCallback); addEffectChain_l(chain); chain->setStrategy(getStrategyForSession_l(sessionId)); chainCreated = true; } else { effect = chain->getEffectFromDesc(desc); } ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get()); if (effect == 0) { effectId = mAfThreadCallback->nextUniqueId(AUDIO_UNIQUE_ID_USE_EFFECT); // create a new effect module if none present in the chain lStatus = chain->createEffect(effect, desc, effectId, sessionId, pinned); if (lStatus != NO_ERROR) { goto Exit; } effectCreated = true; // FIXME: use vector of device and address when effect interface is ready. effect->setDevices(outDeviceTypeAddrs()); effect->setInputDevice(inDeviceTypeAddr()); effect->setMode(mAfThreadCallback->getMode()); effect->setAudioSource(mAudioSource); } if (effect->isHapticGenerator()) { // TODO(b/184194057): Use the vibrator information from the vibrator that will be used // for the HapticGenerator. const std::optional defaultVibratorInfo = std::move(mAfThreadCallback->getDefaultVibratorInfo_l()); if (defaultVibratorInfo) { audio_utils::lock_guard _cl(chain->mutex()); // Only set the vibrator info when it is a valid one. effect->setVibratorInfo_l(*defaultVibratorInfo); } } // create effect handle and connect it to effect module handle = IAfEffectHandle::create( effect, client, effectClient, priority, notifyFramesProcessed); lStatus = handle->initCheck(); if (lStatus == OK) { lStatus = effect->addHandle(handle.get()); sendCheckOutputStageEffectsEvent_l(); } if (enabled != NULL) { *enabled = (int)effect->isEnabled(); } } Exit: if (!probe && lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) { audio_utils::lock_guard _l(mutex()); if (effectCreated) { chain->removeEffect(effect); } if (chainCreated) { removeEffectChain_l(chain); } // handle must be cleared by caller to avoid deadlock. } *status = lStatus; return handle; } void ThreadBase::disconnectEffectHandle(IAfEffectHandle* handle, bool unpinIfLast) { bool remove = false; sp effect; { audio_utils::lock_guard _l(mutex()); sp effectBase = handle->effect().promote(); if (effectBase == nullptr) { return; } effect = effectBase->asEffectModule(); if (effect == nullptr) { return; } // restore suspended effects if the disconnected handle was enabled and the last one. remove = (effect->removeHandle(handle) == 0) && (!effect->isPinned() || unpinIfLast); if (remove) { removeEffect_l(effect, true); } sendCheckOutputStageEffectsEvent_l(); } if (remove) { mAfThreadCallback->updateOrphanEffectChains(effect); if (handle->enabled()) { effect->checkSuspendOnEffectEnabled(false, false /*threadLocked*/); } } } void ThreadBase::onEffectEnable(const sp& effect) { if (isOffloadOrMmap()) { audio_utils::lock_guard _l(mutex()); broadcast_l(); } if (!effect->isOffloadable()) { if (mType == ThreadBase::OFFLOAD) { PlaybackThread *t = (PlaybackThread *)this; t->invalidateTracks(AUDIO_STREAM_MUSIC); } if (effect->sessionId() == AUDIO_SESSION_OUTPUT_MIX) { mAfThreadCallback->onNonOffloadableGlobalEffectEnable(); } } } void ThreadBase::onEffectDisable() { if (isOffloadOrMmap()) { audio_utils::lock_guard _l(mutex()); broadcast_l(); } } sp ThreadBase::getEffect(audio_session_t sessionId, int effectId) const { audio_utils::lock_guard _l(mutex()); return getEffect_l(sessionId, effectId); } sp ThreadBase::getEffect_l(audio_session_t sessionId, int effectId) const { sp chain = getEffectChain_l(sessionId); return chain != 0 ? chain->getEffectFromId_l(effectId) : 0; } std::vector ThreadBase::getEffectIds_l(audio_session_t sessionId) const { sp chain = getEffectChain_l(sessionId); return chain != nullptr ? chain->getEffectIds_l() : std::vector{}; } // PlaybackThread::addEffect_ll() must be called with AudioFlinger::mutex() and // ThreadBase::mutex() held status_t ThreadBase::addEffect_ll(const sp& effect) { // check for existing effect chain with the requested audio session audio_session_t sessionId = effect->sessionId(); sp chain = getEffectChain_l(sessionId); bool chainCreated = false; ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(), "%s: on offloaded thread %p: effect %s does not support offload flags %#x", __func__, this, effect->desc().name, effect->desc().flags); if (chain == 0) { // create a new chain for this session ALOGV("%s: new effect chain for session %d", __func__, sessionId); chain = IAfEffectChain::create(this, sessionId, mAfThreadCallback); addEffectChain_l(chain); chain->setStrategy(getStrategyForSession_l(sessionId)); chainCreated = true; } ALOGV("%s: %p chain %p effect %p", __func__, this, chain.get(), effect.get()); if (chain->getEffectFromId_l(effect->id()) != 0) { ALOGW("%s: %p effect %s already present in chain %p", __func__, this, effect->desc().name, chain.get()); return BAD_VALUE; } effect->setOffloaded_l(mType == OFFLOAD, mId); status_t status = chain->addEffect(effect); if (status != NO_ERROR) { if (chainCreated) { removeEffectChain_l(chain); } return status; } effect->setDevices(outDeviceTypeAddrs()); effect->setInputDevice(inDeviceTypeAddr()); effect->setMode(mAfThreadCallback->getMode()); effect->setAudioSource(mAudioSource); return NO_ERROR; } void ThreadBase::removeEffect_l(const sp& effect, bool release) { ALOGV("%s %p effect %p", __FUNCTION__, this, effect.get()); effect_descriptor_t desc = effect->desc(); if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { detachAuxEffect_l(effect->id()); } sp chain = effect->getCallback()->chain().promote(); if (chain != 0) { // remove effect chain if removing last effect if (chain->removeEffect(effect, release) == 0) { removeEffectChain_l(chain); } } else { ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get()); } } void ThreadBase::lockEffectChains_l(Vector>& effectChains) NO_THREAD_SAFETY_ANALYSIS // calls EffectChain::lock() { effectChains = mEffectChains; for (const auto& effectChain : effectChains) { effectChain->mutex().lock(); } } void ThreadBase::unlockEffectChains(const Vector>& effectChains) NO_THREAD_SAFETY_ANALYSIS // calls EffectChain::unlock() { for (const auto& effectChain : effectChains) { effectChain->mutex().unlock(); } } sp ThreadBase::getEffectChain(audio_session_t sessionId) const { audio_utils::lock_guard _l(mutex()); return getEffectChain_l(sessionId); } sp ThreadBase::getEffectChain_l(audio_session_t sessionId) const { size_t size = mEffectChains.size(); for (size_t i = 0; i < size; i++) { if (mEffectChains[i]->sessionId() == sessionId) { return mEffectChains[i]; } } return 0; } void ThreadBase::setMode(audio_mode_t mode) { audio_utils::lock_guard _l(mutex()); size_t size = mEffectChains.size(); for (size_t i = 0; i < size; i++) { mEffectChains[i]->setMode_l(mode); } } void ThreadBase::toAudioPortConfig(struct audio_port_config* config) { config->type = AUDIO_PORT_TYPE_MIX; config->ext.mix.handle = mId; config->sample_rate = mSampleRate; config->format = mHALFormat; config->channel_mask = mChannelMask; config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK| AUDIO_PORT_CONFIG_FORMAT; } void ThreadBase::systemReady() { audio_utils::lock_guard _l(mutex()); if (mSystemReady) { return; } mSystemReady = true; for (size_t i = 0; i < mPendingConfigEvents.size(); i++) { sendConfigEvent_l(mPendingConfigEvents.editItemAt(i)); } mPendingConfigEvents.clear(); } template ssize_t ThreadBase::ActiveTracks::add(const sp& track) { ssize_t index = mActiveTracks.indexOf(track); if (index >= 0) { ALOGW("ActiveTracks::add track %p already there", track.get()); return index; } logTrack("add", track); mActiveTracksGeneration++; mLatestActiveTrack = track; track->beginBatteryAttribution(); mHasChanged = true; return mActiveTracks.add(track); } template ssize_t ThreadBase::ActiveTracks::remove(const sp& track) { ssize_t index = mActiveTracks.remove(track); if (index < 0) { ALOGW("ActiveTracks::remove nonexistent track %p", track.get()); return index; } logTrack("remove", track); mActiveTracksGeneration++; track->endBatteryAttribution(); // mLatestActiveTrack is not cleared even if is the same as track. mHasChanged = true; #ifdef TEE_SINK track->dumpTee(-1 /* fd */, "_REMOVE"); #endif track->logEndInterval(); // log to MediaMetrics return index; } template void ThreadBase::ActiveTracks::clear() { for (const sp &track : mActiveTracks) { track->endBatteryAttribution(); logTrack("clear", track); } mLastActiveTracksGeneration = mActiveTracksGeneration; if (!mActiveTracks.empty()) { mHasChanged = true; } mActiveTracks.clear(); mLatestActiveTrack.clear(); } template void ThreadBase::ActiveTracks::updatePowerState_l( const sp& thread, bool force) { // Updates ActiveTracks client uids to the thread wakelock. if (mActiveTracksGeneration != mLastActiveTracksGeneration || force) { thread->updateWakeLockUids_l(getWakeLockUids()); mLastActiveTracksGeneration = mActiveTracksGeneration; } } template bool ThreadBase::ActiveTracks::readAndClearHasChanged() { bool hasChanged = mHasChanged; mHasChanged = false; for (const sp &track : mActiveTracks) { // Do not short-circuit as all hasChanged states must be reset // as all the metadata are going to be sent hasChanged |= track->readAndClearHasChanged(); } return hasChanged; } template void ThreadBase::ActiveTracks::logTrack( const char *funcName, const sp &track) const { if (mLocalLog != nullptr) { String8 result; track->appendDump(result, false /* active */); mLocalLog->log("AT::%-10s(%p) %s", funcName, track.get(), result.c_str()); } } void ThreadBase::broadcast_l() { // Thread could be blocked waiting for async // so signal it to handle state changes immediately // If threadLoop is currently unlocked a signal of mWaitWorkCV will // be lost so we also flag to prevent it blocking on mWaitWorkCV mSignalPending = true; mWaitWorkCV.notify_all(); } // Call only from threadLoop() or when it is idle. // Do not call from high performance code as this may do binder rpc to the MediaMetrics service. void ThreadBase::sendStatistics(bool force) NO_THREAD_SAFETY_ANALYSIS { // Do not log if we have no stats. // We choose the timestamp verifier because it is the most likely item to be present. const int64_t nstats = mTimestampVerifier.getN() - mLastRecordedTimestampVerifierN; if (nstats == 0) { return; } // Don't log more frequently than once per 12 hours. // We use BOOTTIME to include suspend time. const int64_t timeNs = systemTime(SYSTEM_TIME_BOOTTIME); const int64_t sinceNs = timeNs - mLastRecordedTimeNs; // ok if mLastRecordedTimeNs = 0 if (!force && sinceNs <= 12 * NANOS_PER_HOUR) { return; } mLastRecordedTimestampVerifierN = mTimestampVerifier.getN(); mLastRecordedTimeNs = timeNs; std::unique_ptr item(mediametrics::Item::create("audiothread")); #define MM_PREFIX "android.media.audiothread." // avoid cut-n-paste errors. // thread configuration item->setInt32(MM_PREFIX "id", (int32_t)mId); // IO handle // item->setInt32(MM_PREFIX "portId", (int32_t)mPortId); item->setCString(MM_PREFIX "type", threadTypeToString(mType)); item->setInt32(MM_PREFIX "sampleRate", (int32_t)mSampleRate); item->setInt64(MM_PREFIX "channelMask", (int64_t)mChannelMask); item->setCString(MM_PREFIX "encoding", toString(mFormat).c_str()); item->setInt32(MM_PREFIX "frameCount", (int32_t)mFrameCount); item->setCString(MM_PREFIX "outDevice", toString(outDeviceTypes_l()).c_str()); item->setCString(MM_PREFIX "inDevice", toString(inDeviceType_l()).c_str()); // thread statistics if (mIoJitterMs.getN() > 0) { item->setDouble(MM_PREFIX "ioJitterMs.mean", mIoJitterMs.getMean()); item->setDouble(MM_PREFIX "ioJitterMs.std", mIoJitterMs.getStdDev()); } if (mProcessTimeMs.getN() > 0) { item->setDouble(MM_PREFIX "processTimeMs.mean", mProcessTimeMs.getMean()); item->setDouble(MM_PREFIX "processTimeMs.std", mProcessTimeMs.getStdDev()); } const auto tsjitter = mTimestampVerifier.getJitterMs(); if (tsjitter.getN() > 0) { item->setDouble(MM_PREFIX "timestampJitterMs.mean", tsjitter.getMean()); item->setDouble(MM_PREFIX "timestampJitterMs.std", tsjitter.getStdDev()); } if (mLatencyMs.getN() > 0) { item->setDouble(MM_PREFIX "latencyMs.mean", mLatencyMs.getMean()); item->setDouble(MM_PREFIX "latencyMs.std", mLatencyMs.getStdDev()); } if (mMonopipePipeDepthStats.getN() > 0) { item->setDouble(MM_PREFIX "monopipePipeDepthStats.mean", mMonopipePipeDepthStats.getMean()); item->setDouble(MM_PREFIX "monopipePipeDepthStats.std", mMonopipePipeDepthStats.getStdDev()); } item->selfrecord(); } product_strategy_t ThreadBase::getStrategyForStream(audio_stream_type_t stream) const { if (!mAfThreadCallback->isAudioPolicyReady()) { return PRODUCT_STRATEGY_NONE; } return AudioSystem::getStrategyForStream(stream); } // startMelComputation_l() must be called with AudioFlinger::mutex() held void ThreadBase::startMelComputation_l( const sp& /*processor*/) { // Do nothing ALOGW("%s: ThreadBase does not support CSD", __func__); } // stopMelComputation_l() must be called with AudioFlinger::mutex() held void ThreadBase::stopMelComputation_l() { // Do nothing ALOGW("%s: ThreadBase does not support CSD", __func__); } // ---------------------------------------------------------------------------- // Playback // ---------------------------------------------------------------------------- PlaybackThread::PlaybackThread(const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, type_t type, bool systemReady, audio_config_base_t *mixerConfig) : ThreadBase(afThreadCallback, id, type, systemReady, true /* isOut */), mNormalFrameCount(0), mSinkBuffer(NULL), mMixerBufferEnabled(kEnableExtendedPrecision || type == SPATIALIZER), mMixerBuffer(NULL), mMixerBufferSize(0), mMixerBufferFormat(AUDIO_FORMAT_INVALID), mMixerBufferValid(false), mEffectBufferEnabled(kEnableExtendedPrecision || type == SPATIALIZER), mEffectBuffer(NULL), mEffectBufferSize(0), mEffectBufferFormat(AUDIO_FORMAT_INVALID), mEffectBufferValid(false), mSuspended(0), mBytesWritten(0), mFramesWritten(0), mSuspendedFrames(0), mActiveTracks(&this->mLocalLog), // mStreamTypes[] initialized in constructor body mTracks(type == MIXER), mOutput(output), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false), mMixerStatus(MIXER_IDLE), mMixerStatusIgnoringFastTracks(MIXER_IDLE), mStandbyDelayNs(getStandbyTimeInNanos()), mBytesRemaining(0), mCurrentWriteLength(0), mUseAsyncWrite(false), mWriteAckSequence(0), mDrainSequence(0), mScreenState(mAfThreadCallback->getScreenState()), // index 0 is reserved for normal mixer's submix mFastTrackAvailMask(((1 << FastMixerState::sMaxFastTracks) - 1) & ~1), mHwSupportsPause(false), mHwPaused(false), mFlushPending(false), mLeftVolFloat(-1.0), mRightVolFloat(-1.0), mDownStreamPatch{}, mIsTimestampAdvancing(kMinimumTimeBetweenTimestampChecksNs) { snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id); mNBLogWriter = afThreadCallback->newWriter_l(kLogSize, mThreadName); // Assumes constructor is called by AudioFlinger with its mutex() held, but // it would be safer to explicitly pass initial masterVolume/masterMute as // parameter. // // If the HAL we are using has support for master volume or master mute, // then do not attenuate or mute during mixing (just leave the volume at 1.0 // and the mute set to false). mMasterVolume = afThreadCallback->masterVolume_l(); mMasterMute = afThreadCallback->masterMute_l(); if (mOutput->audioHwDev) { if (mOutput->audioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } if (mOutput->audioHwDev->canSetMasterMute()) { mMasterMute = false; } mIsMsdDevice = strcmp( mOutput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0; } if (mixerConfig != nullptr && mixerConfig->channel_mask != AUDIO_CHANNEL_NONE) { mMixerChannelMask = mixerConfig->channel_mask; } readOutputParameters_l(); if (mType != SPATIALIZER && mMixerChannelMask != mChannelMask) { LOG_ALWAYS_FATAL("HAL channel mask %#x does not match mixer channel mask %#x", mChannelMask, mMixerChannelMask); } // TODO: We may also match on address as well as device type for // AUDIO_DEVICE_OUT_BUS, AUDIO_DEVICE_OUT_ALL_A2DP, AUDIO_DEVICE_OUT_REMOTE_SUBMIX if (type == MIXER || type == DIRECT || type == OFFLOAD) { // TODO: This property should be ensure that only contains one single device type. mTimestampCorrectedDevice = (audio_devices_t)property_get_int64( "audio.timestamp.corrected_output_device", (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_OUT_BUS // turn on by default for MSD : AUDIO_DEVICE_NONE)); } for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) { const audio_stream_type_t stream{static_cast(i)}; mStreamTypes[stream].volume = 0.0f; mStreamTypes[stream].mute = mAfThreadCallback->streamMute_l(stream); } // Audio patch and call assistant volume are always max mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f; mStreamTypes[AUDIO_STREAM_PATCH].mute = false; mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f; mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false; } PlaybackThread::~PlaybackThread() { mAfThreadCallback->unregisterWriter(mNBLogWriter); free(mSinkBuffer); free(mMixerBuffer); free(mEffectBuffer); free(mPostSpatializerBuffer); } // Thread virtuals void PlaybackThread::onFirstRef() { if (!isStreamInitialized()) { ALOGE("The stream is not open yet"); // This should not happen. } else { // Callbacks take strong or weak pointers as a parameter. // Since PlaybackThread passes itself as a callback handler, it can only // be done outside of the constructor. Creating weak and especially strong // pointers to a refcounted object in its own constructor is strongly // discouraged, see comments in system/core/libutils/include/utils/RefBase.h. // Even if a function takes a weak pointer, it is possible that it will // need to convert it to a strong pointer down the line. if (mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING && mOutput->stream->setCallback(this) == OK) { mUseAsyncWrite = true; mCallbackThread = sp::make(this); } if (mOutput->stream->setEventCallback(this) != OK) { ALOGD("Failed to add event callback"); } } run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO); mThreadSnapshot.setTid(getTid()); } // ThreadBase virtuals void PlaybackThread::preExit() { ALOGV(" preExit()"); status_t result = mOutput->stream->exit(); ALOGE_IF(result != OK, "Error when calling exit(): %d", result); } void PlaybackThread::dumpTracks_l(int fd, const Vector& /* args */) { String8 result; result.appendFormat(" Stream volumes in dB: "); for (int i = 0; i < AUDIO_STREAM_CNT; ++i) { const stream_type_t *st = &mStreamTypes[i]; if (i > 0) { result.appendFormat(", "); } result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume)); if (st->mute) { result.append("M"); } } result.append("\n"); write(fd, result.c_str(), result.length()); result.clear(); // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way. FastTrackUnderruns underruns = getFastTrackUnderruns(0); dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n", underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty); size_t numtracks = mTracks.size(); size_t numactive = mActiveTracks.size(); dprintf(fd, " %zu Tracks", numtracks); size_t numactiveseen = 0; const char *prefix = " "; if (numtracks) { dprintf(fd, " of which %zu are active\n", numactive); result.append(prefix); mTracks[0]->appendDumpHeader(result); for (size_t i = 0; i < numtracks; ++i) { sp track = mTracks[i]; if (track != 0) { bool active = mActiveTracks.indexOf(track) >= 0; if (active) { numactiveseen++; } result.append(prefix); track->appendDump(result, active); } } } else { result.append("\n"); } if (numactiveseen != numactive) { // some tracks in the active list were not in the tracks list result.append(" The following tracks are in the active list but" " not in the track list\n"); result.append(prefix); mActiveTracks[0]->appendDumpHeader(result); for (size_t i = 0; i < numactive; ++i) { sp track = mActiveTracks[i]; if (mTracks.indexOf(track) < 0) { result.append(prefix); track->appendDump(result, true /* active */); } } } write(fd, result.c_str(), result.size()); } void PlaybackThread::dumpInternals_l(int fd, const Vector& args) { dprintf(fd, " Master volume: %f\n", mMasterVolume); dprintf(fd, " Master mute: %s\n", mMasterMute ? "on" : "off"); dprintf(fd, " Mixer channel Mask: %#x (%s)\n", mMixerChannelMask, channelMaskToString(mMixerChannelMask, true /* output */).c_str()); if (mHapticChannelMask != AUDIO_CHANNEL_NONE) { dprintf(fd, " Haptic channel mask: %#x (%s)\n", mHapticChannelMask, channelMaskToString(mHapticChannelMask, true /* output */).c_str()); } dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount); dprintf(fd, " Total writes: %d\n", mNumWrites); dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites); dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no"); dprintf(fd, " Suspend count: %d\n", (int32_t)mSuspended); dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask); dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs); AudioStreamOut *output = mOutput; audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE; dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, toString(flags).c_str()); dprintf(fd, " Frames written: %lld\n", (long long)mFramesWritten); dprintf(fd, " Suspended frames: %lld\n", (long long)mSuspendedFrames); if (mPipeSink.get() != nullptr) { dprintf(fd, " PipeSink frames written: %lld\n", (long long)mPipeSink->framesWritten()); } if (output != nullptr) { dprintf(fd, " Hal stream dump:\n"); (void)output->stream->dump(fd, args); } } // PlaybackThread::createTrack_l() must be called with AudioFlinger::mutex() held sp PlaybackThread::createTrack_l( const sp& client, audio_stream_type_t streamType, const audio_attributes_t& attr, uint32_t *pSampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, size_t *pNotificationFrameCount, uint32_t notificationsPerBuffer, float speed, const sp& sharedBuffer, audio_session_t sessionId, audio_output_flags_t *flags, pid_t creatorPid, const AttributionSourceState& attributionSource, pid_t tid, status_t *status, audio_port_handle_t portId, const sp& callback, bool isSpatialized, bool isBitPerfect, audio_output_flags_t *afTrackFlags) { size_t frameCount = *pFrameCount; size_t notificationFrameCount = *pNotificationFrameCount; sp track; status_t lStatus; audio_output_flags_t outputFlags = mOutput->flags; audio_output_flags_t requestedFlags = *flags; uint32_t sampleRate; if (sharedBuffer != 0 && checkIMemory(sharedBuffer) != NO_ERROR) { lStatus = BAD_VALUE; goto Exit; } if (*pSampleRate == 0) { *pSampleRate = mSampleRate; } sampleRate = *pSampleRate; // special case for FAST flag considered OK if fast mixer is present if (hasFastMixer()) { outputFlags = (audio_output_flags_t)(outputFlags | AUDIO_OUTPUT_FLAG_FAST); } // Check if requested flags are compatible with output stream flags if ((*flags & outputFlags) != *flags) { ALOGW("createTrack_l(): mismatch between requested flags (%08x) and output flags (%08x)", *flags, outputFlags); *flags = (audio_output_flags_t)(*flags & outputFlags); } if (isBitPerfect) { audio_utils::lock_guard _l(mutex()); sp chain = getEffectChain_l(sessionId); if (chain.get() != nullptr) { // Bit-perfect is required according to the configuration and preferred mixer // attributes, but it is not in the output flag from the client's request. Explicitly // adding bit-perfect flag to check the compatibility audio_output_flags_t flagsToCheck = (audio_output_flags_t)(*flags & AUDIO_OUTPUT_FLAG_BIT_PERFECT); chain->checkOutputFlagCompatibility(&flagsToCheck); if ((flagsToCheck & AUDIO_OUTPUT_FLAG_BIT_PERFECT) == AUDIO_OUTPUT_FLAG_NONE) { ALOGE("%s cannot create track as there is data-processing effect attached to " "given session id(%d)", __func__, sessionId); lStatus = BAD_VALUE; goto Exit; } *flags = flagsToCheck; } } // client expresses a preference for FAST, but we get the final say if (*flags & AUDIO_OUTPUT_FLAG_FAST) { if ( // PCM data audio_is_linear_pcm(format) && // TODO: extract as a data library function that checks that a computationally // expensive downmixer is not required: isFastOutputChannelConversion() (channelMask == (mChannelMask | mHapticChannelMask) || mChannelMask != AUDIO_CHANNEL_OUT_STEREO || (channelMask == AUDIO_CHANNEL_OUT_MONO /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) && // hardware sample rate (sampleRate == mSampleRate) && // normal mixer has an associated fast mixer hasFastMixer() && // there are sufficient fast track slots available (mFastTrackAvailMask != 0) // FIXME test that MixerThread for this fast track has a capable output HAL // FIXME add a permission test also? ) { // static tracks can have any nonzero framecount, streaming tracks check against minimum. if (sharedBuffer == 0) { // read the fast track multiplier property the first time it is needed int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit); if (ok != 0) { ALOGE("%s pthread_once failed: %d", __func__, ok); } frameCount = max(frameCount, mFrameCount * sFastTrackMultiplier); // incl framecount 0 } // check compatibility with audio effects. { // scope for mutex() audio_utils::lock_guard _l(mutex()); for (audio_session_t session : { AUDIO_SESSION_DEVICE, AUDIO_SESSION_OUTPUT_STAGE, AUDIO_SESSION_OUTPUT_MIX, sessionId, }) { sp chain = getEffectChain_l(session); if (chain.get() != nullptr) { audio_output_flags_t old = *flags; chain->checkOutputFlagCompatibility(flags); if (old != *flags) { ALOGV("AUDIO_OUTPUT_FLAGS denied by effect, session=%d old=%#x new=%#x", (int)session, (int)old, (int)*flags); } } } } ALOGV_IF((*flags & AUDIO_OUTPUT_FLAG_FAST) != 0, "AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu", frameCount, mFrameCount); } else { ALOGD("AUDIO_OUTPUT_FLAG_FAST denied: sharedBuffer=%p frameCount=%zu " "mFrameCount=%zu format=%#x mFormat=%#x isLinear=%d channelMask=%#x " "sampleRate=%u mSampleRate=%u " "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x", sharedBuffer.get(), frameCount, mFrameCount, format, mFormat, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask); *flags = (audio_output_flags_t)(*flags & ~AUDIO_OUTPUT_FLAG_FAST); } } if (!audio_has_proportional_frames(format)) { if (sharedBuffer != 0) { // Same comment as below about ignoring frameCount parameter for set() frameCount = sharedBuffer->size(); } else if (frameCount == 0) { frameCount = mNormalFrameCount; } if (notificationFrameCount != frameCount) { notificationFrameCount = frameCount; } } else if (sharedBuffer != 0) { // FIXME: Ensure client side memory buffers need // not have additional alignment beyond sample // (e.g. 16 bit stereo accessed as 32 bit frame). size_t alignment = audio_bytes_per_sample(format); if (alignment & 1) { // for AUDIO_FORMAT_PCM_24_BIT_PACKED (not exposed through Java). alignment = 1; } uint32_t channelCount = audio_channel_count_from_out_mask(channelMask); size_t frameSize = channelCount * audio_bytes_per_sample(format); if (channelCount > 1) { // More than 2 channels does not require stronger alignment than stereo alignment <<= 1; } if (((uintptr_t)sharedBuffer->unsecurePointer() & (alignment - 1)) != 0) { ALOGE("Invalid buffer alignment: address %p, channel count %u", sharedBuffer->unsecurePointer(), channelCount); lStatus = BAD_VALUE; goto Exit; } // When initializing a shared buffer AudioTrack via constructors, // there's no frameCount parameter. // But when initializing a shared buffer AudioTrack via set(), // there _is_ a frameCount parameter. We silently ignore it. frameCount = sharedBuffer->size() / frameSize; } else { size_t minFrameCount = 0; // For fast tracks we try to respect the application's request for notifications per buffer. if (*flags & AUDIO_OUTPUT_FLAG_FAST) { if (notificationsPerBuffer > 0) { // Avoid possible arithmetic overflow during multiplication. if (notificationsPerBuffer > SIZE_MAX / mFrameCount) { ALOGE("Requested notificationPerBuffer=%u ignored for HAL frameCount=%zu", notificationsPerBuffer, mFrameCount); } else { minFrameCount = mFrameCount * notificationsPerBuffer; } } } else { // For normal PCM streaming tracks, update minimum frame count. // Buffer depth is forced to be at least 2 x the normal mixer frame count and // cover audio hardware latency. // This is probably too conservative, but legacy application code may depend on it. // If you change this calculation, also review the start threshold which is related. uint32_t latencyMs = latency_l(); if (latencyMs == 0) { ALOGE("Error when retrieving output stream latency"); lStatus = UNKNOWN_ERROR; goto Exit; } minFrameCount = AudioSystem::calculateMinFrameCount(latencyMs, mNormalFrameCount, mSampleRate, sampleRate, speed /*, 0 mNotificationsPerBufferReq*/); } if (frameCount < minFrameCount) { frameCount = minFrameCount; } } // Make sure that application is notified with sufficient margin before underrun. // The client can divide the AudioTrack buffer into sub-buffers, // and expresses its desire to server as the notification frame count. if (sharedBuffer == 0 && audio_is_linear_pcm(format)) { size_t maxNotificationFrames; if (*flags & AUDIO_OUTPUT_FLAG_FAST) { // notify every HAL buffer, regardless of the size of the track buffer maxNotificationFrames = mFrameCount; } else { // Triple buffer the notification period for a triple buffered mixer period; // otherwise, double buffering for the notification period is fine. // // TODO: This should be moved to AudioTrack to modify the notification period // on AudioTrack::setBufferSizeInFrames() changes. const int nBuffering = (uint64_t{frameCount} * mSampleRate) / (uint64_t{mNormalFrameCount} * sampleRate) == 3 ? 3 : 2; maxNotificationFrames = frameCount / nBuffering; // If client requested a fast track but this was denied, then use the smaller maximum. if (requestedFlags & AUDIO_OUTPUT_FLAG_FAST) { size_t maxNotificationFramesFastDenied = FMS_20 * sampleRate / 1000; if (maxNotificationFrames > maxNotificationFramesFastDenied) { maxNotificationFrames = maxNotificationFramesFastDenied; } } } if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) { if (notificationFrameCount == 0) { ALOGD("Client defaulted notificationFrames to %zu for frameCount %zu", maxNotificationFrames, frameCount); } else { ALOGW("Client adjusted notificationFrames from %zu to %zu for frameCount %zu", notificationFrameCount, maxNotificationFrames, frameCount); } notificationFrameCount = maxNotificationFrames; } } *pFrameCount = frameCount; *pNotificationFrameCount = notificationFrameCount; switch (mType) { case BIT_PERFECT: if (isBitPerfect) { if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { ALOGE("%s, bad parameter when request streaming bit-perfect, sampleRate=%u, " "format=%#x, channelMask=%#x, mSampleRate=%u, mFormat=%#x, mChannelMask=%#x", __func__, sampleRate, format, channelMask, mSampleRate, mFormat, mChannelMask); lStatus = BAD_VALUE; goto Exit; } } break; case DIRECT: if (audio_is_linear_pcm(format)) { // TODO maybe use audio_has_proportional_frames()? if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x " "for output %p with format %#x", sampleRate, format, channelMask, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } } break; case OFFLOAD: if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \"" "for output %p with format %#x", sampleRate, format, channelMask, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } break; default: if (!audio_is_linear_pcm(format)) { ALOGE("createTrack_l() Bad parameter: format %#x \"" "for output %p with format %#x", format, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate); lStatus = BAD_VALUE; goto Exit; } break; } lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGE("createTrack_l() audio driver not initialized"); goto Exit; } { // scope for mutex() audio_utils::lock_guard _l(mutex()); // all tracks in same audio session must share the same routing strategy otherwise // conflicts will happen when tracks are moved from one output to another by audio policy // manager product_strategy_t strategy = getStrategyForStream(streamType); for (size_t i = 0; i < mTracks.size(); ++i) { sp t = mTracks[i]; if (t != 0 && t->isExternalTrack()) { product_strategy_t actual = getStrategyForStream(t->streamType()); if (sessionId == t->sessionId() && strategy != actual) { ALOGE("createTrack_l() mismatched strategy; expected %u but found %u", strategy, actual); lStatus = BAD_VALUE; goto Exit; } } } // Set DIRECT/OFFLOAD flag if current thread is DirectOutputThread/OffloadThread. // This can happen when the playback is rerouted to direct output/offload thread by // dynamic audio policy. // Do NOT report the flag changes back to client, since the client // doesn't explicitly request a direct/offload flag. audio_output_flags_t trackFlags = *flags; if (mType == DIRECT) { trackFlags = static_cast(trackFlags | AUDIO_OUTPUT_FLAG_DIRECT); } else if (mType == OFFLOAD) { trackFlags = static_cast(trackFlags | AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD | AUDIO_OUTPUT_FLAG_DIRECT); } *afTrackFlags = trackFlags; track = IAfTrack::create(this, client, streamType, attr, sampleRate, format, channelMask, frameCount, nullptr /* buffer */, (size_t)0 /* bufferSize */, sharedBuffer, sessionId, creatorPid, attributionSource, trackFlags, IAfTrackBase::TYPE_DEFAULT, portId, SIZE_MAX /*frameCountToBeReady*/, speed, isSpatialized, isBitPerfect); lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY; if (lStatus != NO_ERROR) { ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus); // track must be cleared from the caller as the caller has the AF lock goto Exit; } mTracks.add(track); { audio_utils::lock_guard _atCbL(audioTrackCbMutex()); if (callback.get() != nullptr) { mAudioTrackCallbacks.emplace(track, callback); } } sp chain = getEffectChain_l(sessionId); if (chain != 0) { ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer()); track->setMainBuffer(chain->inBuffer()); chain->setStrategy(getStrategyForStream(track->streamType())); chain->incTrackCnt(); } if ((*flags & AUDIO_OUTPUT_FLAG_FAST) && (tid != -1)) { pid_t callingPid = IPCThreadState::self()->getCallingPid(); // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, // so ask activity manager to do this on our behalf sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/); } } lStatus = NO_ERROR; Exit: *status = lStatus; return track; } template ssize_t PlaybackThread::Tracks::remove(const sp& track) { const int trackId = track->id(); const ssize_t index = mTracks.remove(track); if (index >= 0) { if (mSaveDeletedTrackIds) { // We can't directly access mAudioMixer since the caller may be outside of threadLoop. // Instead, we add to mDeletedTrackIds which is solely used for mAudioMixer update, // to be handled when MixerThread::prepareTracks_l() next changes mAudioMixer. mDeletedTrackIds.emplace(trackId); } } return index; } uint32_t PlaybackThread::correctLatency_l(uint32_t latency) const { return latency; } uint32_t PlaybackThread::latency() const { audio_utils::lock_guard _l(mutex()); return latency_l(); } uint32_t PlaybackThread::latency_l() const NO_THREAD_SAFETY_ANALYSIS // Fix later. { uint32_t latency; if (initCheck() == NO_ERROR && mOutput->stream->getLatency(&latency) == OK) { return correctLatency_l(latency); } return 0; } void PlaybackThread::setMasterVolume(float value) { audio_utils::lock_guard _l(mutex()); // Don't apply master volume in SW if our HAL can do it for us. if (mOutput && mOutput->audioHwDev && mOutput->audioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } else { mMasterVolume = value; } } void PlaybackThread::setMasterBalance(float balance) { mMasterBalance.store(balance); } void PlaybackThread::setMasterMute(bool muted) { if (isDuplicating()) { return; } audio_utils::lock_guard _l(mutex()); // Don't apply master mute in SW if our HAL can do it for us. if (mOutput && mOutput->audioHwDev && mOutput->audioHwDev->canSetMasterMute()) { mMasterMute = false; } else { mMasterMute = muted; } } void PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value) { audio_utils::lock_guard _l(mutex()); mStreamTypes[stream].volume = value; broadcast_l(); } void PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted) { audio_utils::lock_guard _l(mutex()); mStreamTypes[stream].mute = muted; broadcast_l(); } float PlaybackThread::streamVolume(audio_stream_type_t stream) const { audio_utils::lock_guard _l(mutex()); return mStreamTypes[stream].volume; } void PlaybackThread::setVolumeForOutput_l(float left, float right) const { mOutput->stream->setVolume(left, right); } // addTrack_l() must be called with ThreadBase::mutex() held status_t PlaybackThread::addTrack_l(const sp& track) { status_t status = ALREADY_EXISTS; if (mActiveTracks.indexOf(track) < 0) { // the track is newly added, make sure it fills up all its // buffers before playing. This is to ensure the client will // effectively get the latency it requested. if (track->isExternalTrack()) { IAfTrackBase::track_state state = track->state(); // Because the track is not on the ActiveTracks, // at this point, only the TrackHandle will be adding the track. mutex().unlock(); status = AudioSystem::startOutput(track->portId()); mutex().lock(); // abort track was stopped/paused while we released the lock if (state != track->state()) { if (status == NO_ERROR) { mutex().unlock(); AudioSystem::stopOutput(track->portId()); mutex().lock(); } return INVALID_OPERATION; } // abort if start is rejected by audio policy manager if (status != NO_ERROR) { // Do not replace the error if it is DEAD_OBJECT. When this happens, it indicates // current playback thread is reopened, which may happen when clients set preferred // mixer configuration. Returning DEAD_OBJECT will make the client restore track // immediately. return status == DEAD_OBJECT ? status : PERMISSION_DENIED; } #ifdef ADD_BATTERY_DATA // to track the speaker usage addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart); #endif sendIoConfigEvent_l(AUDIO_CLIENT_STARTED, track->creatorPid(), track->portId()); } // set retry count for buffer fill if (track->isOffloaded()) { if (track->isStopping_1()) { track->retryCount() = kMaxTrackStopRetriesOffload; } else { track->retryCount() = kMaxTrackStartupRetriesOffload; } track->fillingStatus() = mStandby ? IAfTrack::FS_FILLING : IAfTrack::FS_FILLED; } else { track->retryCount() = kMaxTrackStartupRetries; track->fillingStatus() = track->sharedBuffer() != 0 ? IAfTrack::FS_FILLED : IAfTrack::FS_FILLING; } sp chain = getEffectChain_l(track->sessionId()); if (mHapticChannelMask != AUDIO_CHANNEL_NONE && ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE || (chain != nullptr && chain->containsHapticGeneratingEffect()))) { // Unlock due to VibratorService will lock for this call and will // call Tracks.mute/unmute which also require thread's lock. mutex().unlock(); const os::HapticScale hapticScale = afutils::onExternalVibrationStart( track->getExternalVibration()); std::optional vibratorInfo; { // TODO(b/184194780): Use the vibrator information from the vibrator that will be // used to play this track. audio_utils::lock_guard _l(mAfThreadCallback->mutex()); vibratorInfo = std::move(mAfThreadCallback->getDefaultVibratorInfo_l()); } mutex().lock(); track->setHapticScale(hapticScale); if (vibratorInfo) { track->setHapticMaxAmplitude(vibratorInfo->maxAmplitude); } // Haptic playback should be enabled by vibrator service. if (track->getHapticPlaybackEnabled()) { // Disable haptic playback of all active track to ensure only // one track playing haptic if current track should play haptic. for (const auto &t : mActiveTracks) { t->setHapticPlaybackEnabled(false); } } // Set haptic intensity for effect if (chain != nullptr) { chain->setHapticScale_l(track->id(), hapticScale); } } track->setResetDone(false); track->resetPresentationComplete(); // Do not release the ThreadBase mutex after the track is added to mActiveTracks unless // all key changes are complete. It is possible that the threadLoop will begin // processing the added track immediately after the ThreadBase mutex is released. mActiveTracks.add(track); if (chain != 0) { ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(), track->sessionId()); chain->incActiveTrackCnt(); } track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics status = NO_ERROR; } onAddNewTrack_l(); return status; } bool PlaybackThread::destroyTrack_l(const sp& track) { track->terminate(); // active tracks are removed by threadLoop() bool trackActive = (mActiveTracks.indexOf(track) >= 0); track->setState(IAfTrackBase::STOPPED); if (!trackActive) { removeTrack_l(track); } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) { if (track->isPausePending()) { track->pauseAck(); } track->setState(IAfTrackBase::STOPPING_1); } return trackActive; } void PlaybackThread::removeTrack_l(const sp& track) { track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); String8 result; track->appendDump(result, false /* active */); mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.c_str()); mTracks.remove(track); { audio_utils::lock_guard _atCbL(audioTrackCbMutex()); mAudioTrackCallbacks.erase(track); } if (track->isFastTrack()) { int index = track->fastIndex(); ALOG_ASSERT(0 < index && index < (int)FastMixerState::sMaxFastTracks); ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index))); mFastTrackAvailMask |= 1 << index; // redundant as track is about to be destroyed, for dumpsys only track->fastIndex() = -1; } sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { chain->decTrackCnt(); } } std::set PlaybackThread::getTrackPortIds_l() { std::set result; for (const auto& t : mTracks) { if (t->isExternalTrack()) { result.insert(t->portId()); } } return result; } std::set PlaybackThread::getTrackPortIds() { audio_utils::lock_guard _l(mutex()); return getTrackPortIds_l(); } String8 PlaybackThread::getParameters(const String8& keys) { audio_utils::lock_guard _l(mutex()); String8 out_s8; if (initCheck() == NO_ERROR && mOutput->stream->getParameters(keys, &out_s8) == OK) { return out_s8; } return {}; } status_t DirectOutputThread::selectPresentation(int presentationId, int programId) { audio_utils::lock_guard _l(mutex()); if (!isStreamInitialized()) { return NO_INIT; } return mOutput->stream->selectPresentation(presentationId, programId); } void PlaybackThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid, audio_port_handle_t portId) { ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event); sp desc; const struct audio_patch patch = isMsdDevice() ? mDownStreamPatch : mPatch; switch (event) { case AUDIO_OUTPUT_OPENED: case AUDIO_OUTPUT_REGISTERED: case AUDIO_OUTPUT_CONFIG_CHANGED: desc = sp::make(mId, patch, false /*isInput*/, mSampleRate, mFormat, mChannelMask, // FIXME AudioFlinger::frameCount(audio_io_handle_t) instead of mNormalFrameCount? mNormalFrameCount, mFrameCount, latency_l()); break; case AUDIO_CLIENT_STARTED: desc = sp::make(mId, patch, portId); break; case AUDIO_OUTPUT_CLOSED: default: desc = sp::make(mId); break; } mAfThreadCallback->ioConfigChanged_l(event, desc, pid); } void PlaybackThread::onWriteReady() { mCallbackThread->resetWriteBlocked(); } void PlaybackThread::onDrainReady() { mCallbackThread->resetDraining(); } void PlaybackThread::onError(bool isHardError) { mCallbackThread->setAsyncError(isHardError); } void PlaybackThread::onCodecFormatChanged( const std::vector& metadataBs) { const auto weakPointerThis = wp::fromExisting(this); std::thread([this, metadataBs, weakPointerThis]() { const sp playbackThread = weakPointerThis.promote(); if (playbackThread == nullptr) { ALOGW("PlaybackThread was destroyed, skip codec format change event"); return; } audio_utils::metadata::Data metadata = audio_utils::metadata::dataFromByteString(metadataBs); if (metadata.empty()) { ALOGW("Can not transform the buffer to audio metadata, %s, %d", reinterpret_cast(const_cast(metadataBs.data())), (int)metadataBs.size()); return; } audio_utils::metadata::ByteString metaDataStr = audio_utils::metadata::byteStringFromData(metadata); std::vector metadataVec(metaDataStr.begin(), metaDataStr.end()); audio_utils::lock_guard _l(audioTrackCbMutex()); for (const auto& callbackPair : mAudioTrackCallbacks) { callbackPair.second->onCodecFormatChanged(metadataVec); } }).detach(); } void PlaybackThread::resetWriteBlocked(uint32_t sequence) { audio_utils::lock_guard _l(mutex()); // reject out of sequence requests if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) { mWriteAckSequence &= ~1; mWaitWorkCV.notify_one(); } } void PlaybackThread::resetDraining(uint32_t sequence) { audio_utils::lock_guard _l(mutex()); // reject out of sequence requests if ((mDrainSequence & 1) && (sequence == mDrainSequence)) { // Register discontinuity when HW drain is completed because that can cause // the timestamp frame position to reset to 0 for direct and offload threads. // (Out of sequence requests are ignored, since the discontinuity would be handled // elsewhere, e.g. in flush). mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_ZERO); mDrainSequence &= ~1; mWaitWorkCV.notify_one(); } } void PlaybackThread::readOutputParameters_l() NO_THREAD_SAFETY_ANALYSIS // 'moveEffectChain_ll' requires holding mutex 'AudioFlinger_Mutex' exclusively { // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL const audio_config_base_t audioConfig = mOutput->getAudioProperties(); mSampleRate = audioConfig.sample_rate; mChannelMask = audioConfig.channel_mask; if (!audio_is_output_channel(mChannelMask)) { LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask); } if (hasMixer() && !isValidPcmSinkChannelMask(mChannelMask)) { LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output", mChannelMask); } if (mMixerChannelMask == AUDIO_CHANNEL_NONE) { mMixerChannelMask = mChannelMask; } mChannelCount = audio_channel_count_from_out_mask(mChannelMask); mBalance.setChannelMask(mChannelMask); uint32_t mixerChannelCount = audio_channel_count_from_out_mask(mMixerChannelMask); // Get actual HAL format. status_t result = mOutput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat); LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream format: %d", result); // Get format from the shim, which will be different than the HAL format // if playing compressed audio over HDMI passthrough. mFormat = audioConfig.format; if (!audio_is_valid_format(mFormat)) { LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat); } if (hasMixer() && !isValidPcmSinkFormat(mFormat)) { LOG_FATAL("HAL format %#x not supported for mixed output", mFormat); } mFrameSize = mOutput->getFrameSize(); result = mOutput->stream->getBufferSize(&mBufferSize); LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving output stream buffer size: %d", result); mFrameCount = mBufferSize / mFrameSize; if (hasMixer() && (mFrameCount & 15)) { ALOGW("HAL output buffer size is %zu frames but AudioMixer requires multiples of 16 frames", mFrameCount); } mHwSupportsPause = false; if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) { bool supportsPause = false, supportsResume = false; if (mOutput->stream->supportsPauseAndResume(&supportsPause, &supportsResume) == OK) { if (supportsPause && supportsResume) { mHwSupportsPause = true; } else if (supportsPause) { ALOGW("direct output implements pause but not resume"); } else if (supportsResume) { ALOGW("direct output implements resume but not pause"); } } } if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) { LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume"); } if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) { // For best precision, we use float instead of the associated output // device format (typically PCM 16 bit). mFormat = AUDIO_FORMAT_PCM_FLOAT; mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); mBufferSize = mFrameSize * mFrameCount; // TODO: We currently use the associated output device channel mask and sample rate. // (1) Perhaps use the ORed channel mask of all downstream MixerThreads // (if a valid mask) to avoid premature downmix. // (2) Perhaps use the maximum sample rate of all downstream MixerThreads // instead of the output device sample rate to avoid loss of high frequency information. // This may need to be updated as MixerThread/OutputTracks are added and not here. } // Calculate size of normal sink buffer relative to the HAL output buffer size double multiplier = 1.0; // Note: mType == SPATIALIZER does not support FastMixer. if (mType == MIXER && (kUseFastMixer == FastMixer_Static || kUseFastMixer == FastMixer_Dynamic)) { size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000; size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000; // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer minNormalFrameCount = (minNormalFrameCount + 15) & ~15; maxNormalFrameCount = maxNormalFrameCount & ~15; if (maxNormalFrameCount < minNormalFrameCount) { maxNormalFrameCount = minNormalFrameCount; } multiplier = (double) minNormalFrameCount / (double) mFrameCount; if (multiplier <= 1.0) { multiplier = 1.0; } else if (multiplier <= 2.0) { if (2 * mFrameCount <= maxNormalFrameCount) { multiplier = 2.0; } else { multiplier = (double) maxNormalFrameCount / (double) mFrameCount; } } else { multiplier = floor(multiplier); } } mNormalFrameCount = multiplier * mFrameCount; // round up to nearest 16 frames to satisfy AudioMixer if (hasMixer()) { mNormalFrameCount = (mNormalFrameCount + 15) & ~15; } ALOGI("HAL output buffer size %zu frames, normal sink buffer size %zu frames", (size_t)mFrameCount, mNormalFrameCount); // Check if we want to throttle the processing to no more than 2x normal rate mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */); mThreadThrottleTimeMs = 0; mThreadThrottleEndMs = 0; mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate); // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames. // Originally this was int16_t[] array, need to remove legacy implications. free(mSinkBuffer); mSinkBuffer = NULL; // For sink buffer size, we use the frame size from the downstream sink to avoid problems // with non PCM formats for compressed music, e.g. AAC, and Offload threads. const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); // We resize the mMixerBuffer according to the requirements of the sink buffer which // drives the output. free(mMixerBuffer); mMixerBuffer = NULL; if (mMixerBufferEnabled) { mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // no longer valid: AUDIO_FORMAT_PCM_16_BIT. mMixerBufferSize = mNormalFrameCount * mixerChannelCount * audio_bytes_per_sample(mMixerBufferFormat); (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize); } free(mEffectBuffer); mEffectBuffer = NULL; if (mEffectBufferEnabled) { mEffectBufferFormat = AUDIO_FORMAT_PCM_FLOAT; mEffectBufferSize = mNormalFrameCount * mixerChannelCount * audio_bytes_per_sample(mEffectBufferFormat); (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize); } if (mType == SPATIALIZER) { free(mPostSpatializerBuffer); mPostSpatializerBuffer = nullptr; mPostSpatializerBufferSize = mNormalFrameCount * mChannelCount * audio_bytes_per_sample(mEffectBufferFormat); (void)posix_memalign(&mPostSpatializerBuffer, 32, mPostSpatializerBufferSize); } mHapticChannelMask = static_cast(mChannelMask & AUDIO_CHANNEL_HAPTIC_ALL); mChannelMask = static_cast(mChannelMask & ~mHapticChannelMask); mHapticChannelCount = audio_channel_count_from_out_mask(mHapticChannelMask); mChannelCount -= mHapticChannelCount; mMixerChannelMask = static_cast(mMixerChannelMask & ~mHapticChannelMask); // force reconfiguration of effect chains and engines to take new buffer size and audio // parameters into account // Note that mutex() is not held when readOutputParameters_l() is called from the constructor // but in this case nothing is done below as no audio sessions have effect yet so it doesn't // matter. // create a copy of mEffectChains as calling moveEffectChain_ll() // can reorder some effect chains Vector> effectChains = mEffectChains; for (size_t i = 0; i < effectChains.size(); i ++) { mAfThreadCallback->moveEffectChain_ll(effectChains[i]->sessionId(), this/* srcThread */, this/* dstThread */); } audio_output_flags_t flags = mOutput->flags; mediametrics::LogItem item(mThreadMetrics.getMetricsId()); // TODO: method in ThreadMetrics? item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS) .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str()) .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate) .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask) .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount) .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mNormalFrameCount) .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str()) .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mHapticChannelMask) .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mHapticChannelCount) .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mHALFormat).c_str()) .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount) // sic - added HAL ; uint32_t latencyMs; if (mOutput->stream->getLatency(&latencyMs) == NO_ERROR) { item.set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_LATENCYMS, (double)latencyMs); } item.record(); } ThreadBase::MetadataUpdate PlaybackThread::updateMetadata_l() { if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) { return {}; // nothing to do } StreamOutHalInterface::SourceMetadata metadata; static const bool stereo_spatialization_property = property_get_bool("ro.audio.stereo_spatialization_enabled", false); const bool stereo_spatialization_enabled = stereo_spatialization_property && com_android_media_audio_stereo_spatialization(); if (stereo_spatialization_enabled) { std::map >allSessionsMetadata; for (const sp& track : mActiveTracks) { std::vector& sessionMetadata = allSessionsMetadata[track->sessionId()]; auto backInserter = std::back_inserter(sessionMetadata); // No track is invalid as this is called after prepareTrack_l in the same // critical section track->copyMetadataTo(backInserter); } std::vector spatializedTracksMetaData; for (const auto& [session, sessionTrackMetadata] : allSessionsMetadata) { metadata.tracks.insert(metadata.tracks.end(), sessionTrackMetadata.begin(), sessionTrackMetadata.end()); if (auto chain = getEffectChain_l(session) ; chain != nullptr) { chain->sendMetadata_l(sessionTrackMetadata, {}); } if ((hasAudioSession_l(session) & IAfThreadBase::SPATIALIZED_SESSION) != 0) { spatializedTracksMetaData.insert(spatializedTracksMetaData.end(), sessionTrackMetadata.begin(), sessionTrackMetadata.end()); } } if (auto chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); chain != nullptr) { chain->sendMetadata_l(metadata.tracks, {}); } if (auto chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE); chain != nullptr) { chain->sendMetadata_l(metadata.tracks, spatializedTracksMetaData); } if (auto chain = getEffectChain_l(AUDIO_SESSION_DEVICE); chain != nullptr) { chain->sendMetadata_l(metadata.tracks, {}); } } else { auto backInserter = std::back_inserter(metadata.tracks); for (const sp& track : mActiveTracks) { // No track is invalid as this is called after prepareTrack_l in the same // critical section track->copyMetadataTo(backInserter); } } sendMetadataToBackend_l(metadata); MetadataUpdate change; change.playbackMetadataUpdate = metadata.tracks; return change; } void PlaybackThread::sendMetadataToBackend_l( const StreamOutHalInterface::SourceMetadata& metadata) { mOutput->stream->updateSourceMetadata(metadata); }; status_t PlaybackThread::getRenderPosition( uint32_t* halFrames, uint32_t* dspFrames) const { if (halFrames == NULL || dspFrames == NULL) { return BAD_VALUE; } audio_utils::lock_guard _l(mutex()); if (initCheck() != NO_ERROR) { return INVALID_OPERATION; } int64_t framesWritten = mBytesWritten / mFrameSize; *halFrames = framesWritten; if (isSuspended()) { // return an estimation of rendered frames when the output is suspended size_t latencyFrames = (latency_l() * mSampleRate) / 1000; *dspFrames = (uint32_t) (framesWritten >= (int64_t)latencyFrames ? framesWritten - latencyFrames : 0); return NO_ERROR; } else { status_t status; uint64_t frames = 0; status = mOutput->getRenderPosition(&frames); *dspFrames = (uint32_t)frames; return status; } } product_strategy_t PlaybackThread::getStrategyForSession_l(audio_session_t sessionId) const { // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that // it is moved to correct output by audio policy manager when A2DP is connected or disconnected if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { return getStrategyForStream(AUDIO_STREAM_MUSIC); } for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; if (sessionId == track->sessionId() && !track->isInvalid()) { return getStrategyForStream(track->streamType()); } } return getStrategyForStream(AUDIO_STREAM_MUSIC); } AudioStreamOut* PlaybackThread::getOutput() const { audio_utils::lock_guard _l(mutex()); return mOutput; } AudioStreamOut* PlaybackThread::clearOutput() { audio_utils::lock_guard _l(mutex()); AudioStreamOut *output = mOutput; mOutput = NULL; // FIXME FastMixer might also have a raw ptr to mOutputSink; // must push a NULL and wait for ack mOutputSink.clear(); mPipeSink.clear(); mNormalSink.clear(); return output; } // this method must always be called either with ThreadBase mutex() held or inside the thread loop sp PlaybackThread::stream() const { if (mOutput == NULL) { return NULL; } return mOutput->stream; } uint32_t PlaybackThread::activeSleepTimeUs() const { return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000); } status_t PlaybackThread::setSyncEvent(const sp& event) { if (!isValidSyncEvent(event)) { return BAD_VALUE; } audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (event->triggerSession() == track->sessionId()) { (void) track->setSyncEvent(event); return NO_ERROR; } } return NAME_NOT_FOUND; } bool PlaybackThread::isValidSyncEvent(const sp& event) const { return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE; } void PlaybackThread::threadLoop_removeTracks( [[maybe_unused]] const Vector>& tracksToRemove) { // Miscellaneous track cleanup when removed from the active list, // called without Thread lock but synchronized with threadLoop processing. #ifdef ADD_BATTERY_DATA for (const auto& track : tracksToRemove) { if (track->isExternalTrack()) { // to track the speaker usage addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop); } } #endif } void PlaybackThread::checkSilentMode_l() { if (!mMasterMute) { char value[PROPERTY_VALUE_MAX]; if (mOutDeviceTypeAddrs.empty()) { ALOGD("ro.audio.silent is ignored since no output device is set"); return; } if (isSingleDeviceType(outDeviceTypes_l(), AUDIO_DEVICE_OUT_REMOTE_SUBMIX)) { ALOGD("ro.audio.silent will be ignored for threads on AUDIO_DEVICE_OUT_REMOTE_SUBMIX"); return; } if (property_get("ro.audio.silent", value, "0") > 0) { char *endptr; unsigned long ul = strtoul(value, &endptr, 0); if (*endptr == '\0' && ul != 0) { ALOGW("%s: mute from ro.audio.silent. Silence is golden", __func__); // The setprop command will not allow a property to be changed after // the first time it is set, so we don't have to worry about un-muting. setMasterMute_l(true); } } } } // shared by MIXER and DIRECT, overridden by DUPLICATING ssize_t PlaybackThread::threadLoop_write() { LOG_HIST_TS(); mInWrite = true; ssize_t bytesWritten; const size_t offset = mCurrentWriteLength - mBytesRemaining; // If an NBAIO sink is present, use it to write the normal mixer's submix if (mNormalSink != 0) { const size_t count = mBytesRemaining / mFrameSize; ATRACE_BEGIN("write"); // update the setpoint when AudioFlinger::mScreenState changes const uint32_t screenState = mAfThreadCallback->getScreenState(); if (screenState != mScreenState) { mScreenState = screenState; MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); if (pipe != NULL) { pipe->setAvgFrames((mScreenState & 1) ? (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); } } ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count); ATRACE_END(); if (framesWritten > 0) { bytesWritten = framesWritten * mFrameSize; #ifdef TEE_SINK mTee.write((char *)mSinkBuffer + offset, framesWritten); #endif } else { bytesWritten = framesWritten; } // otherwise use the HAL / AudioStreamOut directly } else { // Direct output and offload threads if (mUseAsyncWrite) { ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request"); mWriteAckSequence += 2; mWriteAckSequence |= 1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); } ATRACE_BEGIN("write"); // FIXME We should have an implementation of timestamps for direct output threads. // They are used e.g for multichannel PCM playback over HDMI. bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining); ATRACE_END(); if (mUseAsyncWrite && ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) { // do not wait for async callback in case of error of full write mWriteAckSequence &= ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); } } mNumWrites++; mInWrite = false; if (mStandby) { mThreadMetrics.logBeginInterval(); mThreadSnapshot.onBegin(); mStandby = false; } return bytesWritten; } // startMelComputation_l() must be called with AudioFlinger::mutex() held void PlaybackThread::startMelComputation_l( const sp& processor) { auto outputSink = static_cast(mOutputSink.get()); if (outputSink != nullptr) { outputSink->startMelComputation(processor); } } // stopMelComputation_l() must be called with AudioFlinger::mutex() held void PlaybackThread::stopMelComputation_l() { auto outputSink = static_cast(mOutputSink.get()); if (outputSink != nullptr) { outputSink->stopMelComputation(); } } void PlaybackThread::threadLoop_drain() { bool supportsDrain = false; if (mOutput->stream->supportsDrain(&supportsDrain) == OK && supportsDrain) { ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full"); if (mUseAsyncWrite) { ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request"); mDrainSequence |= 1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setDraining(mDrainSequence); } status_t result = mOutput->stream->drain(mMixerStatus == MIXER_DRAIN_TRACK); ALOGE_IF(result != OK, "Error when draining stream: %d", result); } } void PlaybackThread::threadLoop_exit() { { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; track->invalidate(); } // Clear ActiveTracks to update BatteryNotifier in case active tracks remain. // After we exit there are no more track changes sent to BatteryNotifier // because that requires an active threadLoop. // TODO: should we decActiveTrackCnt() of the cleared track effect chain? mActiveTracks.clear(); } } /* The derived values that are cached: - mSinkBufferSize from frame count * frame size - mActiveSleepTimeUs from activeSleepTimeUs() - mIdleSleepTimeUs from idleSleepTimeUs() - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least kDefaultStandbyTimeInNsecs when connected to an A2DP device. - maxPeriod from frame count and sample rate (MIXER only) The parameters that affect these derived values are: - frame count - frame size - sample rate - device type: A2DP or not - device latency - format: PCM or not - active sleep time - idle sleep time */ void PlaybackThread::cacheParameters_l() { mSinkBufferSize = mNormalFrameCount * mFrameSize; mActiveSleepTimeUs = activeSleepTimeUs(); mIdleSleepTimeUs = idleSleepTimeUs(); mStandbyDelayNs = getStandbyTimeInNanos(); // make sure standby delay is not too short when connected to an A2DP sink to avoid // truncating audio when going to standby. if (!Intersection(outDeviceTypes_l(), getAudioDeviceOutAllA2dpSet()).empty()) { if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) { mStandbyDelayNs = kDefaultStandbyTimeInNsecs; } } } bool PlaybackThread::invalidateTracks_l(audio_stream_type_t streamType) { ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %zu", this, streamType, mTracks.size()); bool trackMatch = false; size_t size = mTracks.size(); for (size_t i = 0; i < size; i++) { sp t = mTracks[i]; if (t->streamType() == streamType && t->isExternalTrack()) { t->invalidate(); trackMatch = true; } } return trackMatch; } void PlaybackThread::invalidateTracks(audio_stream_type_t streamType) { audio_utils::lock_guard _l(mutex()); invalidateTracks_l(streamType); } void PlaybackThread::invalidateTracks(std::set& portIds) { audio_utils::lock_guard _l(mutex()); invalidateTracks_l(portIds); } bool PlaybackThread::invalidateTracks_l(std::set& portIds) { bool trackMatch = false; const size_t size = mTracks.size(); for (size_t i = 0; i < size; i++) { sp t = mTracks[i]; if (t->isExternalTrack() && portIds.find(t->portId()) != portIds.end()) { t->invalidate(); portIds.erase(t->portId()); trackMatch = true; } if (portIds.empty()) { break; } } return trackMatch; } // getTrackById_l must be called with holding thread lock IAfTrack* PlaybackThread::getTrackById_l( audio_port_handle_t trackPortId) { for (size_t i = 0; i < mTracks.size(); i++) { if (mTracks[i]->portId() == trackPortId) { return mTracks[i].get(); } } return nullptr; } status_t PlaybackThread::addEffectChain_l(const sp& chain) { audio_session_t session = chain->sessionId(); sp halInBuffer, halOutBuffer; float *buffer = nullptr; // only used for non global sessions if (mType == SPATIALIZER) { if (!audio_is_global_session(session)) { // player sessions on a spatializer output will use a dedicated input buffer and // will either output multi channel to mEffectBuffer if the track is spatilaized // or stereo to mPostSpatializerBuffer if not spatialized. uint32_t channelMask; bool isSessionSpatialized = (hasAudioSession_l(session) & ThreadBase::SPATIALIZED_SESSION) != 0; if (isSessionSpatialized) { channelMask = mMixerChannelMask; } else { channelMask = mChannelMask; } size_t numSamples = mNormalFrameCount * (audio_channel_count_from_out_mask(channelMask) + mHapticChannelCount); status_t result = mAfThreadCallback->getEffectsFactoryHal()->allocateBuffer( numSamples * sizeof(float), &halInBuffer); if (result != OK) return result; result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer( isSessionSpatialized ? mEffectBuffer : mPostSpatializerBuffer, isSessionSpatialized ? mEffectBufferSize : mPostSpatializerBufferSize, &halOutBuffer); if (result != OK) return result; buffer = halInBuffer ? halInBuffer->audioBuffer()->f32 : buffer; ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session); } else { // A global session on a SPATIALIZER thread is either OUTPUT_STAGE or DEVICE // - OUTPUT_STAGE session uses the mEffectBuffer as input buffer and // mPostSpatializerBuffer as output buffer // - DEVICE session uses the mPostSpatializerBuffer as input and output buffer. status_t result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer( mEffectBuffer, mEffectBufferSize, &halInBuffer); if (result != OK) return result; result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer( mPostSpatializerBuffer, mPostSpatializerBufferSize, &halOutBuffer); if (result != OK) return result; if (session == AUDIO_SESSION_DEVICE) { halInBuffer = halOutBuffer; } } } else { status_t result = mAfThreadCallback->getEffectsFactoryHal()->mirrorBuffer( mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer, mEffectBufferEnabled ? mEffectBufferSize : mSinkBufferSize, &halInBuffer); if (result != OK) return result; halOutBuffer = halInBuffer; ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session); if (!audio_is_global_session(session)) { buffer = halInBuffer ? reinterpret_cast(halInBuffer->externalData()) : buffer; // Only one effect chain can be present in direct output thread and it uses // the sink buffer as input if (mType != DIRECT) { size_t numSamples = mNormalFrameCount * (audio_channel_count_from_out_mask(mMixerChannelMask) + mHapticChannelCount); const status_t allocateStatus = mAfThreadCallback->getEffectsFactoryHal()->allocateBuffer( numSamples * sizeof(float), &halInBuffer); if (allocateStatus != OK) return allocateStatus; buffer = halInBuffer ? halInBuffer->audioBuffer()->f32 : buffer; ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session); } } } if (!audio_is_global_session(session)) { // Attach all tracks with same session ID to this chain. for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (session == track->sessionId()) { ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(), buffer); track->setMainBuffer(buffer); chain->incTrackCnt(); } } // indicate all active tracks in the chain for (const sp& track : mActiveTracks) { if (session == track->sessionId()) { ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session); chain->incActiveTrackCnt(); } } } chain->setThread(this); chain->setInBuffer(halInBuffer); chain->setOutBuffer(halOutBuffer); // Effect chain for session AUDIO_SESSION_DEVICE is inserted at end of effect // chains list in order to be processed last as it contains output device effects. // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted just before to apply post // processing effects specific to an output stream before effects applied to all streams // routed to a given device. // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before // session AUDIO_SESSION_OUTPUT_STAGE to be processed // after track specific effects and before output stage. // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX. // Effect chain for other sessions are inserted at beginning of effect // chains list to be processed before output mix effects. Relative order between other // sessions is not important. static_assert(AUDIO_SESSION_OUTPUT_MIX == 0 && AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX && AUDIO_SESSION_DEVICE < AUDIO_SESSION_OUTPUT_STAGE, "audio_session_t constants misdefined"); size_t size = mEffectChains.size(); size_t i = 0; for (i = 0; i < size; i++) { if (mEffectChains[i]->sessionId() < session) { break; } } mEffectChains.insertAt(chain, i); checkSuspendOnAddEffectChain_l(chain); return NO_ERROR; } size_t PlaybackThread::removeEffectChain_l(const sp& chain) { audio_session_t session = chain->sessionId(); ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session); for (size_t i = 0; i < mEffectChains.size(); i++) { if (chain == mEffectChains[i]) { mEffectChains.removeAt(i); // detach all active tracks from the chain for (const sp& track : mActiveTracks) { if (session == track->sessionId()) { ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d", chain.get(), session); chain->decActiveTrackCnt(); } } // detach all tracks with same session ID from this chain for (size_t j = 0; j < mTracks.size(); ++j) { sp track = mTracks[j]; if (session == track->sessionId()) { track->setMainBuffer(reinterpret_cast(mSinkBuffer)); chain->decTrackCnt(); } } break; } } return mEffectChains.size(); } status_t PlaybackThread::attachAuxEffect( const sp& track, int EffectId) { audio_utils::lock_guard _l(mutex()); return attachAuxEffect_l(track, EffectId); } status_t PlaybackThread::attachAuxEffect_l( const sp& track, int EffectId) { status_t status = NO_ERROR; if (EffectId == 0) { track->setAuxBuffer(0, NULL); } else { // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX sp effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId); if (effect != 0) { if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer()); } else { status = INVALID_OPERATION; } } else { status = BAD_VALUE; } } return status; } void PlaybackThread::detachAuxEffect_l(int effectId) { for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (track->auxEffectId() == effectId) { attachAuxEffect_l(track, 0); } } } bool PlaybackThread::threadLoop() NO_THREAD_SAFETY_ANALYSIS // manual locking of AudioFlinger { aflog::setThreadWriter(mNBLogWriter.get()); if (mType == SPATIALIZER) { const pid_t tid = getTid(); if (tid == -1) { // odd: we are here, we must be a running thread. ALOGW("%s: Cannot update Spatializer mixer thread priority, no tid", __func__); } else { const int priorityBoost = requestSpatializerPriority(getpid(), tid); if (priorityBoost > 0) { stream()->setHalThreadPriority(priorityBoost); } } } else if (property_get_bool("ro.boot.container", false /* default_value */)) { // In ARC experiments (b/73091832), the latency under using CFS scheduler with any priority // is not enough for PlaybackThread to process audio data in time. We request the lowest // real-time priority, SCHED_FIFO=1, for PlaybackThread in ARC. ro.boot.container is true // only on ARC. const pid_t tid = getTid(); if (tid == -1) { ALOGW("%s: Cannot update PlaybackThread priority for ARC, no tid", __func__); } else { const status_t status = requestPriority(getpid(), tid, kPriorityPlaybackThreadArc, false /* isForApp */, true /* asynchronous */); if (status != OK) { ALOGW("%s: Cannot update PlaybackThread priority for ARC, status %d", __func__, status); } else { stream()->setHalThreadPriority(kPriorityPlaybackThreadArc); } } } Vector> tracksToRemove; mStandbyTimeNs = systemTime(); int64_t lastLoopCountWritten = -2; // never matches "previous" loop, when loopCount = 0. // MIXER nsecs_t lastWarning = 0; // DUPLICATING // FIXME could this be made local to while loop? writeFrames = 0; cacheParameters_l(); mSleepTimeUs = mIdleSleepTimeUs; if (mType == MIXER || mType == SPATIALIZER) { sleepTimeShift = 0; } CpuStats cpuStats; const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid())); acquireWakeLock(); // mNBLogWriter logging APIs can only be called by a single thread, typically the // thread associated with this PlaybackThread. // If you want to share the mNBLogWriter with other threads (for example, binder threads) // then all such threads must agree to hold a common mutex before logging. // So if you need to log when mutex is unlocked, set logString to a non-NULL string, // and then that string will be logged at the next convenient opportunity. // See reference to logString below. const char *logString = NULL; // Estimated time for next buffer to be written to hal. This is used only on // suspended mode (for now) to help schedule the wait time until next iteration. nsecs_t timeLoopNextNs = 0; checkSilentMode_l(); audio_patch_handle_t lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE; sendCheckOutputStageEffectsEvent(); // loopCount is used for statistics and diagnostics. for (int64_t loopCount = 0; !exitPending(); ++loopCount) { // Log merge requests are performed during AudioFlinger binder transactions, but // that does not cover audio playback. It's requested here for that reason. mAfThreadCallback->requestLogMerge(); cpuStats.sample(myName); Vector> effectChains; audio_session_t activeHapticSessionId = AUDIO_SESSION_NONE; bool isHapticSessionSpatialized = false; std::vector> activeTracks; // If the device is AUDIO_DEVICE_OUT_BUS, check for downstream latency. // // Note: we access outDeviceTypes() outside of mutex(). if (isMsdDevice() && outDeviceTypes_l().count(AUDIO_DEVICE_OUT_BUS) != 0) { // Here, we try for the AF lock, but do not block on it as the latency // is more informational. if (mAfThreadCallback->mutex().try_lock()) { std::vector swPatches; double latencyMs = 0.; // not required; initialized for clang-tidy status_t status = INVALID_OPERATION; audio_patch_handle_t downstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE; if (mAfThreadCallback->getPatchPanel()->getDownstreamSoftwarePatches( id(), &swPatches) == OK && swPatches.size() > 0) { status = swPatches[0].getLatencyMs_l(&latencyMs); downstreamPatchHandle = swPatches[0].getPatchHandle(); } if (downstreamPatchHandle != lastDownstreamPatchHandle) { mDownstreamLatencyStatMs.reset(); lastDownstreamPatchHandle = downstreamPatchHandle; } if (status == OK) { // verify downstream latency (we assume a max reasonable // latency of 5 seconds). const double minLatency = 0., maxLatency = 5000.; if (latencyMs >= minLatency && latencyMs <= maxLatency) { ALOGVV("new downstream latency %lf ms", latencyMs); } else { ALOGD("out of range downstream latency %lf ms", latencyMs); latencyMs = std::clamp(latencyMs, minLatency, maxLatency); } mDownstreamLatencyStatMs.add(latencyMs); } mAfThreadCallback->mutex().unlock(); } } else { if (lastDownstreamPatchHandle != AUDIO_PATCH_HANDLE_NONE) { // our device is no longer AUDIO_DEVICE_OUT_BUS, reset patch handle and stats. mDownstreamLatencyStatMs.reset(); lastDownstreamPatchHandle = AUDIO_PATCH_HANDLE_NONE; } } if (mCheckOutputStageEffects.exchange(false)) { checkOutputStageEffects(); } MetadataUpdate metadataUpdate; { // scope for mutex() audio_utils::unique_lock _l(mutex()); processConfigEvents_l(); if (mCheckOutputStageEffects.load()) { continue; } // See comment at declaration of logString for why this is done under mutex() if (logString != NULL) { mNBLogWriter->logTimestamp(); mNBLogWriter->log(logString); logString = NULL; } collectTimestamps_l(); saveOutputTracks(); if (mSignalPending) { // A signal was raised while we were unlocked mSignalPending = false; } else if (waitingAsyncCallback_l()) { if (exitPending()) { break; } bool released = false; if (!keepWakeLock()) { releaseWakeLock_l(); released = true; } const int64_t waitNs = computeWaitTimeNs_l(); ALOGV("wait async completion (wait time: %lld)", (long long)waitNs); std::cv_status cvstatus = mWaitWorkCV.wait_for(_l, std::chrono::nanoseconds(waitNs)); if (cvstatus == std::cv_status::timeout) { mSignalPending = true; // if timeout recheck everything } ALOGV("async completion/wake"); if (released) { acquireWakeLock_l(); } mStandbyTimeNs = systemTime() + mStandbyDelayNs; mSleepTimeUs = 0; continue; } if ((mActiveTracks.isEmpty() && systemTime() > mStandbyTimeNs) || isSuspended()) { // put audio hardware into standby after short delay if (shouldStandby_l()) { threadLoop_standby(); // This is where we go into standby if (!mStandby) { LOG_AUDIO_STATE(); mThreadMetrics.logEndInterval(); mThreadSnapshot.onEnd(); setStandby_l(); } sendStatistics(false /* force */); } if (mActiveTracks.isEmpty() && mConfigEvents.isEmpty()) { // we're about to wait, flush the binder command buffer IPCThreadState::self()->flushCommands(); clearOutputTracks(); if (exitPending()) { break; } releaseWakeLock_l(); // wait until we have something to do... ALOGV("%s going to sleep", myName.c_str()); mWaitWorkCV.wait(_l); ALOGV("%s waking up", myName.c_str()); acquireWakeLock_l(); mMixerStatus = MIXER_IDLE; mMixerStatusIgnoringFastTracks = MIXER_IDLE; mBytesWritten = 0; mBytesRemaining = 0; checkSilentMode_l(); mStandbyTimeNs = systemTime() + mStandbyDelayNs; mSleepTimeUs = mIdleSleepTimeUs; if (mType == MIXER || mType == SPATIALIZER) { sleepTimeShift = 0; } continue; } } // mMixerStatusIgnoringFastTracks is also updated internally mMixerStatus = prepareTracks_l(&tracksToRemove); mActiveTracks.updatePowerState_l(this); metadataUpdate = updateMetadata_l(); // Acquire a local copy of active tracks with lock (release w/o lock). // // Control methods on the track acquire the ThreadBase lock (e.g. start() // stop(), pause(), etc.), but the threadLoop is entitled to call audio // data / buffer methods on tracks from activeTracks without the ThreadBase lock. activeTracks.insert(activeTracks.end(), mActiveTracks.begin(), mActiveTracks.end()); setHalLatencyMode_l(); // updateTeePatches_l will acquire the ThreadBase_Mutex of other threads, // so this is done before we lock our effect chains. for (const auto& track : mActiveTracks) { track->updateTeePatches_l(); } // signal actual start of output stream when the render position reported by // the kernel starts moving. if (!mHalStarted && ((isSuspended() && (mBytesWritten != 0)) || (!mStandby && (mKernelPositionOnStandby != mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL])))) { mHalStarted = true; mWaitHalStartCV.notify_all(); } // prevent any changes in effect chain list and in each effect chain // during mixing and effect process as the audio buffers could be deleted // or modified if an effect is created or deleted lockEffectChains_l(effectChains); // Determine which session to pick up haptic data. // This must be done under the same lock as prepareTracks_l(). // The haptic data from the effect is at a higher priority than the one from track. // TODO: Write haptic data directly to sink buffer when mixing. if (mHapticChannelCount > 0) { for (const auto& track : mActiveTracks) { sp effectChain = getEffectChain_l(track->sessionId()); if (effectChain != nullptr && effectChain->containsHapticGeneratingEffect_l()) { activeHapticSessionId = track->sessionId(); isHapticSessionSpatialized = mType == SPATIALIZER && track->isSpatialized(); break; } if (activeHapticSessionId == AUDIO_SESSION_NONE && track->getHapticPlaybackEnabled()) { activeHapticSessionId = track->sessionId(); isHapticSessionSpatialized = mType == SPATIALIZER && track->isSpatialized(); } } } } // mutex() scope ends if (mBytesRemaining == 0) { mCurrentWriteLength = 0; if (mMixerStatus == MIXER_TRACKS_READY) { // threadLoop_mix() sets mCurrentWriteLength threadLoop_mix(); } else if ((mMixerStatus != MIXER_DRAIN_TRACK) && (mMixerStatus != MIXER_DRAIN_ALL)) { // threadLoop_sleepTime sets mSleepTimeUs to 0 if data // must be written to HAL threadLoop_sleepTime(); if (mSleepTimeUs == 0) { mCurrentWriteLength = mSinkBufferSize; // Tally underrun frames as we are inserting 0s here. for (const auto& track : activeTracks) { if (track->fillingStatus() == IAfTrack::FS_ACTIVE && !track->isStopped() && !track->isPaused() && !track->isTerminated()) { ALOGV("%s: track(%d) %s underrun due to thread sleep of %zu frames", __func__, track->id(), track->getTrackStateAsString(), mNormalFrameCount); track->audioTrackServerProxy()->tallyUnderrunFrames( mNormalFrameCount); } } } } // Either threadLoop_mix() or threadLoop_sleepTime() should have set // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0. // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid) // or mSinkBuffer (if there are no effects and there is no data already copied to // mSinkBuffer). // // This is done pre-effects computation; if effects change to // support higher precision, this needs to move. // // mMixerBufferValid is only set true by MixerThread::prepareTracks_l(). // TODO use mSleepTimeUs == 0 as an additional condition. uint32_t mixerChannelCount = mEffectBufferValid ? audio_channel_count_from_out_mask(mMixerChannelMask) : mChannelCount; if (mMixerBufferValid && (mEffectBufferValid || !mHasDataCopiedToSinkBuffer)) { void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer; audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat; // Apply mono blending and balancing if the effect buffer is not valid. Otherwise, // do these processes after effects are applied. if (!mEffectBufferValid) { // mono blend occurs for mixer threads only (not direct or offloaded) // and is handled here if we're going directly to the sink. if (requireMonoBlend()) { mono_blend(mMixerBuffer, mMixerBufferFormat, mChannelCount, mNormalFrameCount, true /*limit*/); } if (!hasFastMixer()) { // Balance must take effect after mono conversion. // We do it here if there is no FastMixer. // mBalance detects zero balance within the class for speed // (not needed here). mBalance.setBalance(mMasterBalance.load()); mBalance.process((float *)mMixerBuffer, mNormalFrameCount); } } memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat, mNormalFrameCount * (mixerChannelCount + mHapticChannelCount)); // If we're going directly to the sink and there are haptic channels, // we should adjust channels as the sample data is partially interleaved // in this case. if (!mEffectBufferValid && mHapticChannelCount > 0) { adjust_channels_non_destructive(buffer, mChannelCount, buffer, mChannelCount + mHapticChannelCount, audio_bytes_per_sample(format), audio_bytes_per_frame(mChannelCount, format) * mNormalFrameCount); } } mBytesRemaining = mCurrentWriteLength; if (isSuspended()) { // Simulate write to HAL when suspended (e.g. BT SCO phone call). mSleepTimeUs = suspendSleepTimeUs(); // assumes full buffer. const size_t framesRemaining = mBytesRemaining / mFrameSize; mBytesWritten += mBytesRemaining; mFramesWritten += framesRemaining; mSuspendedFrames += framesRemaining; // to adjust kernel HAL position mBytesRemaining = 0; } // only process effects if we're going to write if (mSleepTimeUs == 0 && mType != OFFLOAD) { for (size_t i = 0; i < effectChains.size(); i ++) { effectChains[i]->process_l(); // TODO: Write haptic data directly to sink buffer when mixing. if (activeHapticSessionId != AUDIO_SESSION_NONE && activeHapticSessionId == effectChains[i]->sessionId()) { // Haptic data is active in this case, copy it directly from // in buffer to out buffer. uint32_t hapticSessionChannelCount = mEffectBufferValid ? audio_channel_count_from_out_mask(mMixerChannelMask) : mChannelCount; if (mType == SPATIALIZER && !isHapticSessionSpatialized) { hapticSessionChannelCount = mChannelCount; } const size_t audioBufferSize = mNormalFrameCount * audio_bytes_per_frame(hapticSessionChannelCount, AUDIO_FORMAT_PCM_FLOAT); memcpy_by_audio_format( (uint8_t*)effectChains[i]->outBuffer() + audioBufferSize, AUDIO_FORMAT_PCM_FLOAT, (const uint8_t*)effectChains[i]->inBuffer() + audioBufferSize, AUDIO_FORMAT_PCM_FLOAT, mNormalFrameCount * mHapticChannelCount); } } } } // Process effect chains for offloaded thread even if no audio // was read from audio track: process only updates effect state // and thus does have to be synchronized with audio writes but may have // to be called while waiting for async write callback if (mType == OFFLOAD) { for (size_t i = 0; i < effectChains.size(); i ++) { effectChains[i]->process_l(); } } // Only if the Effects buffer is enabled and there is data in the // Effects buffer (buffer valid), we need to // copy into the sink buffer. // TODO use mSleepTimeUs == 0 as an additional condition. if (mEffectBufferValid && !mHasDataCopiedToSinkBuffer) { //ALOGV("writing effect buffer to sink buffer format %#x", mFormat); void *effectBuffer = (mType == SPATIALIZER) ? mPostSpatializerBuffer : mEffectBuffer; if (requireMonoBlend()) { mono_blend(effectBuffer, mEffectBufferFormat, mChannelCount, mNormalFrameCount, true /*limit*/); } if (!hasFastMixer()) { // Balance must take effect after mono conversion. // We do it here if there is no FastMixer. // mBalance detects zero balance within the class for speed (not needed here). mBalance.setBalance(mMasterBalance.load()); mBalance.process((float *)effectBuffer, mNormalFrameCount); } // for SPATIALIZER thread, Move haptics channels from mEffectBuffer to // mPostSpatializerBuffer if the haptics track is spatialized. // Otherwise, the haptics channels are already in mPostSpatializerBuffer. // For other thread types, the haptics channels are already in mEffectBuffer. if (mType == SPATIALIZER && isHapticSessionSpatialized) { const size_t srcBufferSize = mNormalFrameCount * audio_bytes_per_frame(audio_channel_count_from_out_mask(mMixerChannelMask), mEffectBufferFormat); const size_t dstBufferSize = mNormalFrameCount * audio_bytes_per_frame(mChannelCount, mEffectBufferFormat); memcpy_by_audio_format((uint8_t*)mPostSpatializerBuffer + dstBufferSize, mEffectBufferFormat, (uint8_t*)mEffectBuffer + srcBufferSize, mEffectBufferFormat, mNormalFrameCount * mHapticChannelCount); } const size_t framesToCopy = mNormalFrameCount * (mChannelCount + mHapticChannelCount); if (mFormat == AUDIO_FORMAT_PCM_FLOAT && mEffectBufferFormat == AUDIO_FORMAT_PCM_FLOAT) { // Clamp PCM float values more than this distance from 0 to insulate // a HAL which doesn't handle NaN correctly. static constexpr float HAL_FLOAT_SAMPLE_LIMIT = 2.0f; memcpy_to_float_from_float_with_clamping(static_cast(mSinkBuffer), static_cast(effectBuffer), framesToCopy, HAL_FLOAT_SAMPLE_LIMIT /* absMax */); } else { memcpy_by_audio_format(mSinkBuffer, mFormat, effectBuffer, mEffectBufferFormat, framesToCopy); } // The sample data is partially interleaved when haptic channels exist, // we need to adjust channels here. if (mHapticChannelCount > 0) { adjust_channels_non_destructive(mSinkBuffer, mChannelCount, mSinkBuffer, mChannelCount + mHapticChannelCount, audio_bytes_per_sample(mFormat), audio_bytes_per_frame(mChannelCount, mFormat) * mNormalFrameCount); } } // enable changes in effect chain unlockEffectChains(effectChains); if (!metadataUpdate.playbackMetadataUpdate.empty()) { mAfThreadCallback->getMelReporter()->updateMetadataForCsd(id(), metadataUpdate.playbackMetadataUpdate); } if (!waitingAsyncCallback()) { // mSleepTimeUs == 0 means we must write to audio hardware if (mSleepTimeUs == 0) { ssize_t ret = 0; // writePeriodNs is updated >= 0 when ret > 0. int64_t writePeriodNs = -1; if (mBytesRemaining) { // FIXME rewrite to reduce number of system calls const int64_t lastIoBeginNs = systemTime(); ret = threadLoop_write(); const int64_t lastIoEndNs = systemTime(); if (ret < 0) { mBytesRemaining = 0; } else if (ret > 0) { mBytesWritten += ret; mBytesRemaining -= ret; const int64_t frames = ret / mFrameSize; mFramesWritten += frames; writePeriodNs = lastIoEndNs - mLastIoEndNs; // process information relating to write time. if (audio_has_proportional_frames(mFormat)) { // we are in a continuous mixing cycle if (mMixerStatus == MIXER_TRACKS_READY && loopCount == lastLoopCountWritten + 1) { const double jitterMs = TimestampVerifier::computeJitterMs( {frames, writePeriodNs}, {0, 0} /* lastTimestamp */, mSampleRate); const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6; audio_utils::lock_guard _l(mutex()); mIoJitterMs.add(jitterMs); mProcessTimeMs.add(processMs); if (mPipeSink.get() != nullptr) { // Using the Monopipe availableToWrite, we estimate the current // buffer size. MonoPipe* monoPipe = static_cast(mPipeSink.get()); const ssize_t availableToWrite = mPipeSink->availableToWrite(); const size_t pipeFrames = monoPipe->maxFrames(); const size_t remainingFrames = pipeFrames - max(availableToWrite, 0); mMonopipePipeDepthStats.add(remainingFrames); } } // write blocked detection const int64_t deltaWriteNs = lastIoEndNs - lastIoBeginNs; if ((mType == MIXER || mType == SPATIALIZER) && deltaWriteNs > maxPeriod) { mNumDelayedWrites++; if ((lastIoEndNs - lastWarning) > kWarningThrottleNs) { ATRACE_NAME("underrun"); ALOGW("write blocked for %lld msecs, " "%d delayed writes, thread %d", (long long)deltaWriteNs / NANOS_PER_MILLISECOND, mNumDelayedWrites, mId); lastWarning = lastIoEndNs; } } } // update timing info. mLastIoBeginNs = lastIoBeginNs; mLastIoEndNs = lastIoEndNs; lastLoopCountWritten = loopCount; } } else if ((mMixerStatus == MIXER_DRAIN_TRACK) || (mMixerStatus == MIXER_DRAIN_ALL)) { threadLoop_drain(); } if ((mType == MIXER || mType == SPATIALIZER) && !mStandby) { if (mThreadThrottle && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks) && writePeriodNs > 0) { // we have write period info // Limit MixerThread data processing to no more than twice the // expected processing rate. // // This helps prevent underruns with NuPlayer and other applications // which may set up buffers that are close to the minimum size, or use // deep buffers, and rely on a double-buffering sleep strategy to fill. // // The throttle smooths out sudden large data drains from the device, // e.g. when it comes out of standby, which often causes problems with // (1) mixer threads without a fast mixer (which has its own warm-up) // (2) minimum buffer sized tracks (even if the track is full, // the app won't fill fast enough to handle the sudden draw). // // Total time spent in last processing cycle equals time spent in // 1. threadLoop_write, as well as time spent in // 2. threadLoop_mix (significant for heavy mixing, especially // on low tier processors) // it's OK if deltaMs is an overestimate. const int32_t deltaMs = writePeriodNs / NANOS_PER_MILLISECOND; const int32_t throttleMs = (int32_t)mHalfBufferMs - deltaMs; if ((signed)mHalfBufferMs >= throttleMs && throttleMs > 0) { mThreadMetrics.logThrottleMs((double)throttleMs); usleep(throttleMs * 1000); // notify of throttle start on verbose log ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs, "mixer(%p) throttle begin:" " ret(%zd) deltaMs(%d) requires sleep %d ms", this, ret, deltaMs, throttleMs); mThreadThrottleTimeMs += throttleMs; // Throttle must be attributed to the previous mixer loop's write time // to allow back-to-back throttling. // This also ensures proper timing statistics. mLastIoEndNs = systemTime(); // we fetch the write end time again. } else { uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs; if (diff > 0) { // notify of throttle end on debug log // but prevent spamming for bluetooth ALOGD_IF(!isSingleDeviceType( outDeviceTypes_l(), audio_is_a2dp_out_device) && !isSingleDeviceType( outDeviceTypes_l(), audio_is_hearing_aid_out_device), "mixer(%p) throttle end: throttle time(%u)", this, diff); mThreadThrottleEndMs = mThreadThrottleTimeMs; } } } } } else { ATRACE_BEGIN("sleep"); audio_utils::unique_lock _l(mutex()); // suspended requires accurate metering of sleep time. if (isSuspended()) { // advance by expected sleepTime timeLoopNextNs += microseconds((nsecs_t)mSleepTimeUs); const nsecs_t nowNs = systemTime(); // compute expected next time vs current time. // (negative deltas are treated as delays). nsecs_t deltaNs = timeLoopNextNs - nowNs; if (deltaNs < -kMaxNextBufferDelayNs) { // Delays longer than the max allowed trigger a reset. ALOGV("DelayNs: %lld, resetting timeLoopNextNs", (long long) deltaNs); deltaNs = microseconds((nsecs_t)mSleepTimeUs); timeLoopNextNs = nowNs + deltaNs; } else if (deltaNs < 0) { // Delays within the max delay allowed: zero the delta/sleepTime // to help the system catch up in the next iteration(s) ALOGV("DelayNs: %lld, catching-up", (long long) deltaNs); deltaNs = 0; } // update sleep time (which is >= 0) mSleepTimeUs = deltaNs / 1000; } if (!mSignalPending && mConfigEvents.isEmpty() && !exitPending()) { mWaitWorkCV.wait_for(_l, std::chrono::microseconds(mSleepTimeUs)); } ATRACE_END(); } } // Finally let go of removed track(s), without the lock held // since we can't guarantee the destructors won't acquire that // same lock. This will also mutate and push a new fast mixer state. threadLoop_removeTracks(tracksToRemove); tracksToRemove.clear(); // FIXME I don't understand the need for this here; // it was in the original code but maybe the // assignment in saveOutputTracks() makes this unnecessary? clearOutputTracks(); // Effect chains will be actually deleted here if they were removed from // mEffectChains list during mixing or effects processing effectChains.clear(); // FIXME Note that the above .clear() is no longer necessary since effectChains // is now local to this block, but will keep it for now (at least until merge done). } threadLoop_exit(); if (!mStandby) { threadLoop_standby(); setStandby(); } releaseWakeLock(); ALOGV("Thread %p type %d exiting", this, mType); return false; } void PlaybackThread::collectTimestamps_l() { if (mStandby) { mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush()); return; } else if (mHwPaused) { mTimestampVerifier.discontinuity(mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS); return; } // Gather the framesReleased counters for all active tracks, // and associate with the sink frames written out. We need // this to convert the sink timestamp to the track timestamp. bool kernelLocationUpdate = false; ExtendedTimestamp timestamp; // use private copy to fetch // Always query HAL timestamp and update timestamp verifier. In standby or pause, // HAL may be draining some small duration buffered data for fade out. if (threadloop_getHalTimestamp_l(×tamp) == OK) { mTimestampVerifier.add(timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL], timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL], mSampleRate); if (isTimestampCorrectionEnabled_l()) { ALOGVV("TS_BEFORE: %d %lld %lld", id(), (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL], (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]); auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp(); timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = correctedTimestamp.mFrames; timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = correctedTimestamp.mTimeNs; ALOGVV("TS_AFTER: %d %lld %lld", id(), (long long)timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL], (long long)timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]); // Note: Downstream latency only added if timestamp correction enabled. if (mDownstreamLatencyStatMs.getN() > 0) { // we have latency info. const int64_t newPosition = timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] - int64_t(mDownstreamLatencyStatMs.getMean() * mSampleRate * 1e-3); // prevent retrograde timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = max( newPosition, (mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] - mSuspendedFrames)); } } // We always fetch the timestamp here because often the downstream // sink will block while writing. // We keep track of the last valid kernel position in case we are in underrun // and the normal mixer period is the same as the fast mixer period, or there // is some error from the HAL. if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL_LASTKERNELOK] = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER]; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER_LASTKERNELOK] = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER]; } if (timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] >= 0) { kernelLocationUpdate = true; } else { ALOGVV("getTimestamp error - no valid kernel position"); } // copy over kernel info mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = timestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] + mSuspendedFrames; // add frames discarded when suspended mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = timestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; } else { mTimestampVerifier.error(); } // mFramesWritten for non-offloaded tracks are contiguous // even after standby() is called. This is useful for the track frame // to sink frame mapping. bool serverLocationUpdate = false; if (mFramesWritten != mLastFramesWritten) { serverLocationUpdate = true; mLastFramesWritten = mFramesWritten; } // Only update timestamps if there is a meaningful change. // Either the kernel timestamp must be valid or we have written something. if (kernelLocationUpdate || serverLocationUpdate) { if (serverLocationUpdate) { // use the time before we called the HAL write - it is a bit more accurate // to when the server last read data than the current time here. // // If we haven't written anything, mLastIoBeginNs will be -1 // and we use systemTime(). mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] = mFramesWritten; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = mLastIoBeginNs == -1 ? systemTime() : (int64_t)mLastIoBeginNs; } for (const sp& t : mActiveTracks) { if (!t->isFastTrack()) { t->updateTrackFrameInfo( t->audioTrackServerProxy()->framesReleased(), mFramesWritten, mSampleRate, mTimestamp); } } } if (audio_has_proportional_frames(mFormat)) { const double latencyMs = mTimestamp.getOutputServerLatencyMs(mSampleRate); if (latencyMs != 0.) { // note 0. means timestamp is empty. mLatencyMs.add(latencyMs); } } #if 0 // logFormat example if (z % 100 == 0) { timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); LOGT("This is an integer %d, this is a float %f, this is my " "pid %p %% %s %t", 42, 3.14, "and this is a timestamp", ts); LOGT("A deceptive null-terminated string %\0"); } ++z; #endif } // removeTracks_l() must be called with ThreadBase::mutex() held void PlaybackThread::removeTracks_l(const Vector>& tracksToRemove) NO_THREAD_SAFETY_ANALYSIS // release and re-acquire mutex() { if (tracksToRemove.empty()) return; // Block all incoming TrackHandle requests until we are finished with the release. setThreadBusy_l(true); for (const auto& track : tracksToRemove) { ALOGV("%s(%d): removing track on session %d", __func__, track->id(), track->sessionId()); sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { ALOGV("%s(%d): stopping track on chain %p for session Id: %d", __func__, track->id(), chain.get(), track->sessionId()); chain->decActiveTrackCnt(); } // If an external client track, inform APM we're no longer active, and remove if needed. // Since the track is active, we do it here instead of TrackBase::destroy(). if (track->isExternalTrack()) { mutex().unlock(); AudioSystem::stopOutput(track->portId()); if (track->isTerminated()) { AudioSystem::releaseOutput(track->portId()); } mutex().lock(); } if (mHapticChannelCount > 0 && ((track->channelMask() & AUDIO_CHANNEL_HAPTIC_ALL) != AUDIO_CHANNEL_NONE || (chain != nullptr && chain->containsHapticGeneratingEffect()))) { mutex().unlock(); // Unlock due to VibratorService will lock for this call and will // call Tracks.mute/unmute which also require thread's lock. afutils::onExternalVibrationStop(track->getExternalVibration()); mutex().lock(); // When the track is stop, set the haptic intensity as MUTE // for the HapticGenerator effect. if (chain != nullptr) { chain->setHapticScale_l(track->id(), os::HapticScale::mute()); } } // Under lock, the track is removed from the active tracks list. // // Once the track is no longer active, the TrackHandle may directly // modify it as the threadLoop() is no longer responsible for its maintenance. // Do not modify the track from threadLoop after the mutex is unlocked // if it is not active. mActiveTracks.remove(track); if (track->isTerminated()) { // remove from our tracks vector removeTrack_l(track); } } // Allow incoming TrackHandle requests. We still hold the mutex, // so pending TrackHandle requests will occur after we unlock it. setThreadBusy_l(false); } status_t PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp) { if (mNormalSink != 0) { ExtendedTimestamp ets; status_t status = mNormalSink->getTimestamp(ets); if (status == NO_ERROR) { status = ets.getBestTimestamp(×tamp); } return status; } if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL) { collectTimestamps_l(); if (mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] <= 0) { return INVALID_OPERATION; } timestamp.mPosition = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; const int64_t timeNs = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; timestamp.mTime.tv_sec = timeNs / NANOS_PER_SECOND; timestamp.mTime.tv_nsec = timeNs - (timestamp.mTime.tv_sec * NANOS_PER_SECOND); return NO_ERROR; } return INVALID_OPERATION; } // For dedicated VoIP outputs, let the HAL apply the stream volume. Track volume is // still applied by the mixer. // All tracks attached to a mixer with flag VOIP_RX are tied to the same // stream type STREAM_VOICE_CALL so this will only change the HAL volume once even // if more than one track are active status_t PlaybackThread::handleVoipVolume_l(float* volume) { status_t result = NO_ERROR; if ((mOutput->flags & AUDIO_OUTPUT_FLAG_VOIP_RX) != 0) { if (*volume != mLeftVolFloat) { result = mOutput->stream->setVolume(*volume, *volume); // HAL can return INVALID_OPERATION if operation is not supported. ALOGE_IF(result != OK && result != INVALID_OPERATION, "Error when setting output stream volume: %d", result); if (result == NO_ERROR) { mLeftVolFloat = *volume; } } // if stream volume was successfully sent to the HAL, mLeftVolFloat == v here and we // remove stream volume contribution from software volume. if (mLeftVolFloat == *volume) { *volume = 1.0f; } } return result; } status_t MixerThread::createAudioPatch_l(const struct audio_patch* patch, audio_patch_handle_t *handle) { status_t status; if (property_get_bool("af.patch_park", false /* default_value */)) { // Park FastMixer to avoid potential DOS issues with writing to the HAL // or if HAL does not properly lock against access. AutoPark park(mFastMixer); status = PlaybackThread::createAudioPatch_l(patch, handle); } else { status = PlaybackThread::createAudioPatch_l(patch, handle); } updateHalSupportedLatencyModes_l(); return status; } status_t PlaybackThread::createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle) { status_t status = NO_ERROR; // store new device and send to effects audio_devices_t type = AUDIO_DEVICE_NONE; AudioDeviceTypeAddrVector deviceTypeAddrs; for (unsigned int i = 0; i < patch->num_sinks; i++) { LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1 && !mOutput->audioHwDev->supportsAudioPatches(), "Enumerated device type(%#x) must not be used " "as it does not support audio patches", patch->sinks[i].ext.device.type); type = static_cast(type | patch->sinks[i].ext.device.type); deviceTypeAddrs.emplace_back(patch->sinks[i].ext.device.type, patch->sinks[i].ext.device.address); } audio_port_handle_t sinkPortId = patch->sinks[0].id; #ifdef ADD_BATTERY_DATA // when changing the audio output device, call addBatteryData to notify // the change if (outDeviceTypes() != deviceTypes) { uint32_t params = 0; // check whether speaker is on if (deviceTypes.count(AUDIO_DEVICE_OUT_SPEAKER) > 0) { params |= IMediaPlayerService::kBatteryDataSpeakerOn; } // check if any other device (except speaker) is on if (!isSingleDeviceType(deviceTypes, AUDIO_DEVICE_OUT_SPEAKER)) { params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; } if (params != 0) { addBatteryData(params); } } #endif for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevices_l(deviceTypeAddrs); } // mPatch.num_sinks is not set when the thread is created so that // the first patch creation triggers an ioConfigChanged callback bool configChanged = (mPatch.num_sinks == 0) || (mPatch.sinks[0].id != sinkPortId); mPatch = *patch; mOutDeviceTypeAddrs = deviceTypeAddrs; checkSilentMode_l(); if (mOutput->audioHwDev->supportsAudioPatches()) { sp hwDevice = mOutput->audioHwDev->hwDevice(); status = hwDevice->createAudioPatch(patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, handle); } else { status = mOutput->stream->legacyCreateAudioPatch(patch->sinks[0], std::nullopt, type); *handle = AUDIO_PATCH_HANDLE_NONE; } const std::string patchSinksAsString = patchSinksToString(patch); mThreadMetrics.logEndInterval(); mThreadMetrics.logCreatePatch(/* inDevices */ {}, patchSinksAsString); mThreadMetrics.logBeginInterval(); // also dispatch to active AudioTracks for MediaMetrics for (const auto &track : mActiveTracks) { track->logEndInterval(); track->logBeginInterval(patchSinksAsString); } if (configChanged) { sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } // Force metadata update after a route change mActiveTracks.setHasChanged(); return status; } status_t MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status; if (property_get_bool("af.patch_park", false /* default_value */)) { // Park FastMixer to avoid potential DOS issues with writing to the HAL // or if HAL does not properly lock against access. AutoPark park(mFastMixer); status = PlaybackThread::releaseAudioPatch_l(handle); } else { status = PlaybackThread::releaseAudioPatch_l(handle); } return status; } status_t PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status = NO_ERROR; mPatch = audio_patch{}; mOutDeviceTypeAddrs.clear(); if (mOutput->audioHwDev->supportsAudioPatches()) { sp hwDevice = mOutput->audioHwDev->hwDevice(); status = hwDevice->releaseAudioPatch(handle); } else { status = mOutput->stream->legacyReleaseAudioPatch(); } // Force meteadata update after a route change mActiveTracks.setHasChanged(); return status; } void PlaybackThread::addPatchTrack(const sp& track) { audio_utils::lock_guard _l(mutex()); mTracks.add(track); } void PlaybackThread::deletePatchTrack(const sp& track) { audio_utils::lock_guard _l(mutex()); destroyTrack_l(track); } void PlaybackThread::toAudioPortConfig(struct audio_port_config* config) { ThreadBase::toAudioPortConfig(config); config->role = AUDIO_PORT_ROLE_SOURCE; config->ext.mix.hw_module = mOutput->audioHwDev->handle(); config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT; if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) { config->config_mask |= AUDIO_PORT_CONFIG_FLAGS; config->flags.output = mOutput->flags; } } // ---------------------------------------------------------------------------- /* static */ sp IAfPlaybackThread::createMixerThread( const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, type_t type, audio_config_base_t* mixerConfig) { return sp::make(afThreadCallback, output, id, systemReady, type, mixerConfig); } MixerThread::MixerThread(const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, type_t type, audio_config_base_t *mixerConfig) : PlaybackThread(afThreadCallback, output, id, type, systemReady, mixerConfig), // mAudioMixer below // mFastMixer below mBluetoothLatencyModesEnabled(false), mFastMixerFutex(0), mMasterMono(false) // mOutputSink below // mPipeSink below // mNormalSink below { setMasterBalance(afThreadCallback->getMasterBalance_l()); ALOGV("MixerThread() id=%d type=%d", id, type); ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, " "mFrameCount=%zu, mNormalFrameCount=%zu", mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount, mNormalFrameCount); mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); if (type == DUPLICATING) { // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks // (downstream MixerThreads) in DuplicatingThread::threadLoop_write(). // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink. return; } // create an NBAIO sink for the HAL output stream, and negotiate mOutputSink = new AudioStreamOutSink(output->stream); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {Format_from_SR_C( mSampleRate, mChannelCount + mHapticChannelCount, mFormat)}; #if !LOG_NDEBUG ssize_t index = #else (void) #endif mOutputSink->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); // initialize fast mixer depending on configuration bool initFastMixer; if (mType == SPATIALIZER || mType == BIT_PERFECT) { initFastMixer = false; } else { switch (kUseFastMixer) { case FastMixer_Never: initFastMixer = false; break; case FastMixer_Always: initFastMixer = true; break; case FastMixer_Static: case FastMixer_Dynamic: initFastMixer = mFrameCount < mNormalFrameCount; break; } ALOGW_IF(initFastMixer == false && mFrameCount < mNormalFrameCount, "FastMixer is preferred for this sink as frameCount %zu is less than threshold %zu", mFrameCount, mNormalFrameCount); } if (initFastMixer) { audio_format_t fastMixerFormat; if (mMixerBufferEnabled && mEffectBufferEnabled) { fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT; } else { fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT; } if (mFormat != fastMixerFormat) { // change our Sink format to accept our intermediate precision mFormat = fastMixerFormat; free(mSinkBuffer); mFrameSize = audio_bytes_per_frame(mChannelCount + mHapticChannelCount, mFormat); const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); } // create a MonoPipe to connect our submix to FastMixer NBAIO_Format format = mOutputSink->format(); // adjust format to match that of the Fast Mixer ALOGV("format changed from %#x to %#x", format.mFormat, fastMixerFormat); format.mFormat = fastMixerFormat; format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount; // This pipe depth compensates for scheduling latency of the normal mixer thread. // When it wakes up after a maximum latency, it runs a few cycles quickly before // finally blocking. Note the pipe implementation rounds up the request to a power of 2. MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/); const NBAIO_Format offersFast[1] = {format}; size_t numCounterOffersFast = 0; #if !LOG_NDEBUG index = #else (void) #endif monoPipe->negotiate(offersFast, std::size(offersFast), nullptr /* counterOffers */, numCounterOffersFast); ALOG_ASSERT(index == 0); monoPipe->setAvgFrames((mScreenState & 1) ? (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); mPipeSink = monoPipe; // create fast mixer and configure it initially with just one fast track for our submix mFastMixer = new FastMixer(mId); FastMixerStateQueue *sq = mFastMixer->sq(); #ifdef STATE_QUEUE_DUMP sq->setObserverDump(&mStateQueueObserverDump); sq->setMutatorDump(&mStateQueueMutatorDump); #endif FastMixerState *state = sq->begin(); FastTrack *fastTrack = &state->mFastTracks[0]; // wrap the source side of the MonoPipe to make it an AudioBufferProvider fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe)); fastTrack->mVolumeProvider = NULL; fastTrack->mChannelMask = static_cast( mChannelMask | mHapticChannelMask); // mPipeSink channel mask for // audio to FastMixer fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer fastTrack->mHapticPlaybackEnabled = mHapticChannelMask != AUDIO_CHANNEL_NONE; fastTrack->mHapticScale = {/*level=*/os::HapticLevel::NONE }; fastTrack->mHapticMaxAmplitude = NAN; fastTrack->mGeneration++; state->mFastTracksGen++; state->mTrackMask = 1; // fast mixer will use the HAL output sink state->mOutputSink = mOutputSink.get(); state->mOutputSinkGen++; state->mFrameCount = mFrameCount; // specify sink channel mask when haptic channel mask present as it can not // be calculated directly from channel count state->mSinkChannelMask = mHapticChannelMask == AUDIO_CHANNEL_NONE ? AUDIO_CHANNEL_NONE : static_cast(mChannelMask | mHapticChannelMask); state->mCommand = FastMixerState::COLD_IDLE; // already done in constructor initialization list //mFastMixerFutex = 0; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; state->mDumpState = &mFastMixerDumpState; mFastMixerNBLogWriter = afThreadCallback->newWriter_l(kFastMixerLogSize, "FastMixer"); state->mNBLogWriter = mFastMixerNBLogWriter.get(); sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); NBLog::thread_info_t info; info.id = mId; info.type = NBLog::FASTMIXER; mFastMixerNBLogWriter->log(info); // start the fast mixer mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO); pid_t tid = mFastMixer->getTid(); sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/); stream()->setHalThreadPriority(kPriorityFastMixer); #ifdef AUDIO_WATCHDOG // create and start the watchdog mAudioWatchdog = new AudioWatchdog(); mAudioWatchdog->setDump(&mAudioWatchdogDump); mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO); tid = mAudioWatchdog->getTid(); sendPrioConfigEvent(getpid(), tid, kPriorityFastMixer, false /*forApp*/); #endif } else { #ifdef TEE_SINK // Only use the MixerThread tee if there is no FastMixer. mTee.set(mOutputSink->format(), NBAIO_Tee::TEE_FLAG_OUTPUT_THREAD); mTee.setId(std::string("_") + std::to_string(mId) + "_M"); #endif } switch (kUseFastMixer) { case FastMixer_Never: case FastMixer_Dynamic: mNormalSink = mOutputSink; break; case FastMixer_Always: mNormalSink = mPipeSink; break; case FastMixer_Static: mNormalSink = initFastMixer ? mPipeSink : mOutputSink; break; } } MixerThread::~MixerThread() { if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (state->mCommand == FastMixerState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastMixerFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastMixerState::EXIT; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); mFastMixer->join(); // Though the fast mixer thread has exited, it's state queue is still valid. // We'll use that extract the final state which contains one remaining fast track // corresponding to our sub-mix. state = sq->begin(); ALOG_ASSERT(state->mTrackMask == 1); FastTrack *fastTrack = &state->mFastTracks[0]; ALOG_ASSERT(fastTrack->mBufferProvider != NULL); delete fastTrack->mBufferProvider; sq->end(false /*didModify*/); mFastMixer.clear(); #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->requestExit(); mAudioWatchdog->requestExitAndWait(); mAudioWatchdog.clear(); } #endif } mAfThreadCallback->unregisterWriter(mFastMixerNBLogWriter); delete mAudioMixer; } void MixerThread::onFirstRef() { PlaybackThread::onFirstRef(); audio_utils::lock_guard _l(mutex()); if (mOutput != nullptr && mOutput->stream != nullptr) { status_t status = mOutput->stream->setLatencyModeCallback(this); if (status != INVALID_OPERATION) { updateHalSupportedLatencyModes_l(); } // Default to enabled if the HAL supports it. This can be changed by Audioflinger after // the thread construction according to AudioFlinger::mBluetoothLatencyModesEnabled mBluetoothLatencyModesEnabled.store( mOutput->audioHwDev->supportsBluetoothVariableLatency()); } } uint32_t MixerThread::correctLatency_l(uint32_t latency) const { if (mFastMixer != 0) { MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); latency += (pipe->getAvgFrames() * 1000) / mSampleRate; } return latency; } ssize_t MixerThread::threadLoop_write() { // FIXME we should only do one push per cycle; confirm this is true // Start the fast mixer if it's not already running if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (state->mCommand != FastMixerState::MIX_WRITE && (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) { if (state->mCommand == FastMixerState::COLD_IDLE) { // FIXME workaround for first HAL write being CPU bound on some devices ATRACE_BEGIN("write"); mOutput->write((char *)mSinkBuffer, 0); ATRACE_END(); int32_t old = android_atomic_inc(&mFastMixerFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); } #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->resume(); } #endif } state->mCommand = FastMixerState::MIX_WRITE; #ifdef FAST_THREAD_STATISTICS mFastMixerDumpState.increaseSamplingN(mAfThreadCallback->isLowRamDevice() ? FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); #endif sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mPipeSink; } } else { sq->end(false /*didModify*/); } } return PlaybackThread::threadLoop_write(); } void MixerThread::threadLoop_standby() { // Idle the fast mixer if it's currently running if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (!(state->mCommand & FastMixerState::IDLE)) { // Report any frames trapped in the Monopipe MonoPipe *monoPipe = (MonoPipe *)mPipeSink.get(); const long long pipeFrames = monoPipe->maxFrames() - monoPipe->availableToWrite(); mLocalLog.log("threadLoop_standby: framesWritten:%lld suspendedFrames:%lld " "monoPipeWritten:%lld monoPipeLeft:%lld", (long long)mFramesWritten, (long long)mSuspendedFrames, (long long)mPipeSink->framesWritten(), pipeFrames); mLocalLog.log("threadLoop_standby: %s", mTimestamp.toString().c_str()); state->mCommand = FastMixerState::COLD_IDLE; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; mFastMixerFutex = 0; sq->end(); // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mOutputSink; } #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->pause(); } #endif } else { sq->end(false /*didModify*/); } } PlaybackThread::threadLoop_standby(); } bool PlaybackThread::waitingAsyncCallback_l() { return false; } bool PlaybackThread::shouldStandby_l() { return !mStandby; } bool PlaybackThread::waitingAsyncCallback() { audio_utils::lock_guard _l(mutex()); return waitingAsyncCallback_l(); } // shared by MIXER and DIRECT, overridden by DUPLICATING void PlaybackThread::threadLoop_standby() { ALOGV("%s: audio hardware entering standby, mixer %p, suspend count %d", __func__, this, (int32_t)mSuspended); mOutput->standby(); if (mUseAsyncWrite != 0) { // discard any pending drain or write ack by incrementing sequence mWriteAckSequence = (mWriteAckSequence + 2) & ~1; mDrainSequence = (mDrainSequence + 2) & ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); mCallbackThread->setDraining(mDrainSequence); } mHwPaused = false; setHalLatencyMode_l(); } void PlaybackThread::onAddNewTrack_l() { ALOGV("signal playback thread"); broadcast_l(); } void PlaybackThread::onAsyncError(bool isHardError) { auto allTrackPortIds = getTrackPortIds(); for (int i = AUDIO_STREAM_SYSTEM; i < (int)AUDIO_STREAM_CNT; i++) { invalidateTracks((audio_stream_type_t)i); } if (isHardError) { mAfThreadCallback->onHardError(allTrackPortIds); } } void MixerThread::threadLoop_mix() { // mix buffers... mAudioMixer->process(); mCurrentWriteLength = mSinkBufferSize; // increase sleep time progressively when application underrun condition clears. // Only increase sleep time if the mixer is ready for two consecutive times to avoid // that a steady state of alternating ready/not ready conditions keeps the sleep time // such that we would underrun the audio HAL. if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) { sleepTimeShift--; } mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; //TODO: delay standby when effects have a tail } void MixerThread::threadLoop_sleepTime() { // If no tracks are ready, sleep once for the duration of an output // buffer size, then write 0s to the output if (mSleepTimeUs == 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { if (mPipeSink.get() != nullptr && mPipeSink == mNormalSink) { // Using the Monopipe availableToWrite, we estimate the // sleep time to retry for more data (before we underrun). MonoPipe *monoPipe = static_cast(mPipeSink.get()); const ssize_t availableToWrite = mPipeSink->availableToWrite(); const size_t pipeFrames = monoPipe->maxFrames(); const size_t framesLeft = pipeFrames - max(availableToWrite, 0); // HAL_framecount <= framesDelay ~ framesLeft / 2 <= Normal_Mixer_framecount const size_t framesDelay = std::min( mNormalFrameCount, max(framesLeft / 2, mFrameCount)); ALOGV("pipeFrames:%zu framesLeft:%zu framesDelay:%zu", pipeFrames, framesLeft, framesDelay); mSleepTimeUs = framesDelay * MICROS_PER_SECOND / mSampleRate; } else { mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift; if (mSleepTimeUs < kMinThreadSleepTimeUs) { mSleepTimeUs = kMinThreadSleepTimeUs; } // reduce sleep time in case of consecutive application underruns to avoid // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer // duration we would end up writing less data than needed by the audio HAL if // the condition persists. if (sleepTimeShift < kMaxThreadSleepTimeShift) { sleepTimeShift++; } } } else { mSleepTimeUs = mIdleSleepTimeUs; } } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) { // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared // before effects processing or output. if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); if (mType == SPATIALIZER) { memset(mSinkBuffer, 0, mSinkBufferSize); } } else { memset(mSinkBuffer, 0, mSinkBufferSize); } mSleepTimeUs = 0; ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED), "anticipated start"); } // TODO add standby time extension fct of effect tail } // prepareTracks_l() must be called with ThreadBase::mutex() held PlaybackThread::mixer_state MixerThread::prepareTracks_l( Vector>* tracksToRemove) { // clean up deleted track ids in AudioMixer before allocating new tracks (void)mTracks.processDeletedTrackIds([this](int trackId) { // for each trackId, destroy it in the AudioMixer if (mAudioMixer->exists(trackId)) { mAudioMixer->destroy(trackId); } }); mTracks.clearDeletedTrackIds(); mixer_state mixerStatus = MIXER_IDLE; // find out which tracks need to be processed size_t count = mActiveTracks.size(); size_t mixedTracks = 0; size_t tracksWithEffect = 0; // counts only _active_ fast tracks size_t fastTracks = 0; uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset float masterVolume = mMasterVolume; bool masterMute = mMasterMute; if (masterMute) { masterVolume = 0; } // Delegate master volume control to effect in output mix effect chain if needed sp chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); if (chain != 0) { uint32_t v = (uint32_t)(masterVolume * (1 << 24)); chain->setVolume(&v, &v); masterVolume = (float)((v + (1 << 23)) >> 24); chain.clear(); } // prepare a new state to push FastMixerStateQueue *sq = NULL; FastMixerState *state = NULL; bool didModify = false; FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED; bool coldIdle = false; if (mFastMixer != 0) { sq = mFastMixer->sq(); state = sq->begin(); coldIdle = state->mCommand == FastMixerState::COLD_IDLE; } mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found. mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found. // DeferredOperations handles statistics after setting mixerStatus. class DeferredOperations { public: DeferredOperations(mixer_state *mixerStatus, ThreadMetrics *threadMetrics) : mMixerStatus(mixerStatus) , mThreadMetrics(threadMetrics) {} // when leaving scope, tally frames properly. ~DeferredOperations() { // Tally underrun frames only if we are actually mixing (MIXER_TRACKS_READY) // because that is when the underrun occurs. // We do not distinguish between FastTracks and NormalTracks here. size_t maxUnderrunFrames = 0; if (*mMixerStatus == MIXER_TRACKS_READY && mUnderrunFrames.size() > 0) { for (const auto &underrun : mUnderrunFrames) { underrun.first->tallyUnderrunFrames(underrun.second); maxUnderrunFrames = max(underrun.second, maxUnderrunFrames); } } // send the max underrun frames for this mixer period mThreadMetrics->logUnderrunFrames(maxUnderrunFrames); } // tallyUnderrunFrames() is called to update the track counters // with the number of underrun frames for a particular mixer period. // We defer tallying until we know the final mixer status. void tallyUnderrunFrames(const sp& track, size_t underrunFrames) { mUnderrunFrames.emplace_back(track, underrunFrames); } private: const mixer_state * const mMixerStatus; ThreadMetrics * const mThreadMetrics; std::vector, size_t>> mUnderrunFrames; } deferredOperations(&mixerStatus, &mThreadMetrics); // implicit nested scope for variable capture bool noFastHapticTrack = true; for (size_t i=0 ; i t = mActiveTracks[i]; // this const just means the local variable doesn't change IAfTrack* const track = t.get(); // process fast tracks if (track->isFastTrack()) { LOG_ALWAYS_FATAL_IF(mFastMixer.get() == nullptr, "%s(%d): FastTrack(%d) present without FastMixer", __func__, id(), track->id()); if (track->getHapticPlaybackEnabled()) { noFastHapticTrack = false; } // It's theoretically possible (though unlikely) for a fast track to be created // and then removed within the same normal mix cycle. This is not a problem, as // the track never becomes active so it's fast mixer slot is never touched. // The converse, of removing an (active) track and then creating a new track // at the identical fast mixer slot within the same normal mix cycle, // is impossible because the slot isn't marked available until the end of each cycle. int j = track->fastIndex(); ALOG_ASSERT(0 < j && j < (int)FastMixerState::sMaxFastTracks); ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j))); FastTrack *fastTrack = &state->mFastTracks[j]; // Determine whether the track is currently in underrun condition, // and whether it had a recent underrun. FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j]; FastTrackUnderruns underruns = ftDump->mUnderruns; uint32_t recentFull = (underruns.mBitFields.mFull - track->fastTrackUnderruns().mBitFields.mFull) & UNDERRUN_MASK; uint32_t recentPartial = (underruns.mBitFields.mPartial - track->fastTrackUnderruns().mBitFields.mPartial) & UNDERRUN_MASK; uint32_t recentEmpty = (underruns.mBitFields.mEmpty - track->fastTrackUnderruns().mBitFields.mEmpty) & UNDERRUN_MASK; uint32_t recentUnderruns = recentPartial + recentEmpty; track->fastTrackUnderruns() = underruns; // don't count underruns that occur while stopping or pausing // or stopped which can occur when flush() is called while active size_t underrunFrames = 0; if (!(track->isStopping() || track->isPausing() || track->isStopped()) && recentUnderruns > 0) { // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun underrunFrames = recentUnderruns * mFrameCount; } // Immediately account for FastTrack underruns. track->audioTrackServerProxy()->tallyUnderrunFrames(underrunFrames); // This is similar to the state machine for normal tracks, // with a few modifications for fast tracks. bool isActive = true; switch (track->state()) { case IAfTrackBase::STOPPING_1: // track stays active in STOPPING_1 state until first underrun if (recentUnderruns > 0 || track->isTerminated()) { track->setState(IAfTrackBase::STOPPING_2); } break; case IAfTrackBase::PAUSING: // ramp down is not yet implemented track->setPaused(); break; case IAfTrackBase::RESUMING: // ramp up is not yet implemented track->setState(IAfTrackBase::ACTIVE); break; case IAfTrackBase::ACTIVE: if (recentFull > 0 || recentPartial > 0) { // track has provided at least some frames recently: reset retry count track->retryCount() = kMaxTrackRetries; } if (recentUnderruns == 0) { // no recent underruns: stay active break; } // there has recently been an underrun of some kind if (track->sharedBuffer() == 0) { // were any of the recent underruns "empty" (no frames available)? if (recentEmpty == 0) { // no, then ignore the partial underruns as they are allowed indefinitely break; } // there has recently been an "empty" underrun: decrement the retry counter if (--(track->retryCount()) > 0) { break; } // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available track->disable(); // remove from active list, but state remains ACTIVE [confusing but true] isActive = false; break; } FALLTHROUGH_INTENDED; case IAfTrackBase::STOPPING_2: case IAfTrackBase::PAUSED: case IAfTrackBase::STOPPED: case IAfTrackBase::FLUSHED: // flush() while active // Check for presentation complete if track is inactive // We have consumed all the buffers of this track. // This would be incomplete if we auto-paused on underrun { uint32_t latency = 0; status_t result = mOutput->stream->getLatency(&latency); ALOGE_IF(result != OK, "Error when retrieving output stream latency: %d", result); size_t audioHALFrames = (latency * mSampleRate) / 1000; int64_t framesWritten = mBytesWritten / mFrameSize; if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) { // track stays in active list until presentation is complete break; } } if (track->isStopping_2()) { track->setState(IAfTrackBase::STOPPED); } if (track->isStopped()) { // Can't reset directly, as fast mixer is still polling this track // track->reset(); // So instead mark this track as needing to be reset after push with ack resetMask |= 1 << i; } isActive = false; break; case IAfTrackBase::IDLE: default: LOG_ALWAYS_FATAL("unexpected track state %d", (int)track->state()); } if (isActive) { // was it previously inactive? if (!(state->mTrackMask & (1 << j))) { ExtendedAudioBufferProvider *eabp = track->asExtendedAudioBufferProvider(); VolumeProvider *vp = track->asVolumeProvider(); fastTrack->mBufferProvider = eabp; fastTrack->mVolumeProvider = vp; fastTrack->mChannelMask = track->channelMask(); fastTrack->mFormat = track->format(); fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled(); fastTrack->mHapticScale = track->getHapticScale(); fastTrack->mHapticMaxAmplitude = track->getHapticMaxAmplitude(); fastTrack->mGeneration++; state->mTrackMask |= 1 << j; didModify = true; // no acknowledgement required for newly active tracks } sp proxy = track->audioTrackServerProxy(); float volume; if (track->isPlaybackRestricted() || mStreamTypes[track->streamType()].mute) { volume = 0.f; } else { volume = masterVolume * mStreamTypes[track->streamType()].volume; } handleVoipVolume_l(&volume); // cache the combined master volume and stream type volume for fast mixer; this // lacks any synchronization or barrier so VolumeProvider may read a stale value const float vh = track->getVolumeHandler()->getVolume( proxy->framesReleased()).first; volume *= vh; track->setCachedVolume(volume); gain_minifloat_packed_t vlr = proxy->getVolumeLR(); float vlf = float_from_gain(gain_minifloat_unpack_left(vlr)); float vrf = float_from_gain(gain_minifloat_unpack_right(vlr)); track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(), /*muteState=*/{masterVolume == 0.f, mStreamTypes[track->streamType()].volume == 0.f, mStreamTypes[track->streamType()].mute, track->isPlaybackRestricted(), vlf == 0.f && vrf == 0.f, vh == 0.f}); vlf *= volume; vrf *= volume; if (track->getInternalMute()) { vlf = 0.f; vrf = 0.f; } track->setFinalVolume(vlf, vrf); ++fastTracks; } else { // was it previously active? if (state->mTrackMask & (1 << j)) { fastTrack->mBufferProvider = NULL; fastTrack->mGeneration++; state->mTrackMask &= ~(1 << j); didModify = true; // If any fast tracks were removed, we must wait for acknowledgement // because we're about to decrement the last sp<> on those tracks. block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; } else { // ALOGW rather than LOG_ALWAYS_FATAL because it seems there are cases where an // AudioTrack may start (which may not be with a start() but with a write() // after underrun) and immediately paused or released. In that case the // FastTrack state hasn't had time to update. // TODO Remove the ALOGW when this theory is confirmed. ALOGW("fast track %d should have been active; " "mState=%d, mTrackMask=%#x, recentUnderruns=%u, isShared=%d", j, (int)track->state(), state->mTrackMask, recentUnderruns, track->sharedBuffer() != 0); // Since the FastMixer state already has the track inactive, do nothing here. } tracksToRemove->add(track); // Avoids a misleading display in dumpsys track->fastTrackUnderruns().mBitFields.mMostRecent = UNDERRUN_FULL; } if (fastTrack->mHapticPlaybackEnabled != track->getHapticPlaybackEnabled()) { fastTrack->mHapticPlaybackEnabled = track->getHapticPlaybackEnabled(); didModify = true; } continue; } { // local variable scope to avoid goto warning audio_track_cblk_t* cblk = track->cblk(); // The first time a track is added we wait // for all its buffers to be filled before processing it const int trackId = track->id(); // if an active track doesn't exist in the AudioMixer, create it. // use the trackId as the AudioMixer name. if (!mAudioMixer->exists(trackId)) { status_t status = mAudioMixer->create( trackId, track->channelMask(), track->format(), track->sessionId()); if (status != OK) { ALOGW("%s(): AudioMixer cannot create track(%d)" " mask %#x, format %#x, sessionId %d", __func__, trackId, track->channelMask(), track->format(), track->sessionId()); tracksToRemove->add(track); track->invalidate(); // consider it dead. continue; } } // make sure that we have enough frames to mix one full buffer. // enforce this condition only once to enable draining the buffer in case the client // app does not call stop() and relies on underrun to stop: // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed // during last round size_t desiredFrames; const uint32_t sampleRate = track->audioTrackServerProxy()->getSampleRate(); const AudioPlaybackRate playbackRate = track->audioTrackServerProxy()->getPlaybackRate(); desiredFrames = sourceFramesNeededWithTimestretch( sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed); // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed. // add frames already consumed but not yet released by the resampler // because mAudioTrackServerProxy->framesReady() will include these frames desiredFrames += mAudioMixer->getUnreleasedFrames(trackId); uint32_t minFrames = 1; if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() && (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) { minFrames = desiredFrames; } size_t framesReady = track->framesReady(); if (ATRACE_ENABLED()) { // I wish we had formatted trace names std::string traceName("nRdy"); traceName += std::to_string(trackId); ATRACE_INT(traceName.c_str(), framesReady); } if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() && !track->isTerminated()) { ALOGVV("track(%d) s=%08x [OK] on thread %p", trackId, cblk->mServer, this); mixedTracks++; // track->mainBuffer() != mSinkBuffer and mMixerBuffer means // there is an effect chain connected to the track chain.clear(); if (track->mainBuffer() != mSinkBuffer && track->mainBuffer() != mMixerBuffer) { if (mEffectBufferEnabled) { mEffectBufferValid = true; // Later can set directly. } chain = getEffectChain_l(track->sessionId()); // Delegate volume control to effect in track effect chain if needed if (chain != 0) { tracksWithEffect++; } else { ALOGW("prepareTracks_l(): track(%d) attached to effect but no chain found on " "session %d", trackId, track->sessionId()); } } int param = AudioMixer::VOLUME; if (track->fillingStatus() == IAfTrack::FS_FILLED) { // no ramp for the first volume setting track->fillingStatus() = IAfTrack::FS_ACTIVE; if (track->state() == IAfTrackBase::RESUMING) { track->setState(IAfTrackBase::ACTIVE); // If a new track is paused immediately after start, do not ramp on resume. if (cblk->mServer != 0) { param = AudioMixer::RAMP_VOLUME; } } mAudioMixer->setParameter(trackId, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL); mLeftVolFloat = -1.0; // FIXME should not make a decision based on mServer } else if (cblk->mServer != 0) { // If the track is stopped before the first frame was mixed, // do not apply ramp param = AudioMixer::RAMP_VOLUME; } // compute volume for this track uint32_t vl, vr; // in U8.24 integer format float vlf, vrf, vaf; // in [0.0, 1.0] float format // read original volumes with volume control float v = masterVolume * mStreamTypes[track->streamType()].volume; // Always fetch volumeshaper volume to ensure state is updated. const sp proxy = track->audioTrackServerProxy(); const float vh = track->getVolumeHandler()->getVolume( track->audioTrackServerProxy()->framesReleased()).first; if (mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) { v = 0; } handleVoipVolume_l(&v); if (track->isPausing()) { vl = vr = 0; vlf = vrf = vaf = 0.; track->setPaused(); } else { gain_minifloat_packed_t vlr = proxy->getVolumeLR(); vlf = float_from_gain(gain_minifloat_unpack_left(vlr)); vrf = float_from_gain(gain_minifloat_unpack_right(vlr)); // track volumes come from shared memory, so can't be trusted and must be clamped if (vlf > GAIN_FLOAT_UNITY) { ALOGV("Track left volume out of range: %.3g", vlf); vlf = GAIN_FLOAT_UNITY; } if (vrf > GAIN_FLOAT_UNITY) { ALOGV("Track right volume out of range: %.3g", vrf); vrf = GAIN_FLOAT_UNITY; } track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(), /*muteState=*/{masterVolume == 0.f, mStreamTypes[track->streamType()].volume == 0.f, mStreamTypes[track->streamType()].mute, track->isPlaybackRestricted(), vlf == 0.f && vrf == 0.f, vh == 0.f}); // now apply the master volume and stream type volume and shaper volume vlf *= v * vh; vrf *= v * vh; // assuming master volume and stream type volume each go up to 1.0, // then derive vl and vr as U8.24 versions for the effect chain const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT; vl = (uint32_t) (scaleto8_24 * vlf); vr = (uint32_t) (scaleto8_24 * vrf); // vl and vr are now in U8.24 format uint16_t sendLevel = proxy->getSendLevel_U4_12(); // send level comes from shared memory and so may be corrupt if (sendLevel > MAX_GAIN_INT) { ALOGV("Track send level out of range: %04X", sendLevel); sendLevel = MAX_GAIN_INT; } // vaf is represented as [0.0, 1.0] float by rescaling sendLevel vaf = v * sendLevel * (1. / MAX_GAIN_INT); } if (track->getInternalMute()) { vrf = 0.f; vlf = 0.f; } track->setFinalVolume(vlf, vrf); // Delegate volume control to effect in track effect chain if needed if (chain != 0 && chain->setVolume(&vl, &vr)) { // Do not ramp volume if volume is controlled by effect param = AudioMixer::VOLUME; // Update remaining floating point volume levels vlf = (float)vl / (1 << 24); vrf = (float)vr / (1 << 24); track->setHasVolumeController(true); } else { // force no volume ramp when volume controller was just disabled or removed // from effect chain to avoid volume spike if (track->hasVolumeController()) { param = AudioMixer::VOLUME; } track->setHasVolumeController(false); } // XXX: these things DON'T need to be done each time mAudioMixer->setBufferProvider(trackId, track->asExtendedAudioBufferProvider()); mAudioMixer->enable(trackId); mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME0, &vlf); mAudioMixer->setParameter(trackId, param, AudioMixer::VOLUME1, &vrf); mAudioMixer->setParameter(trackId, param, AudioMixer::AUXLEVEL, &vaf); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::FORMAT, (void *)track->format()); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask()); if (mType == SPATIALIZER && !track->isSpatialized()) { mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)(mChannelMask | mHapticChannelMask)); } else { mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)(mMixerChannelMask | mHapticChannelMask)); } // limit track sample rate to 2 x output sample rate, which changes at re-configuration uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX; uint32_t reqSampleRate = proxy->getSampleRate(); if (reqSampleRate == 0) { reqSampleRate = mSampleRate; } else if (reqSampleRate > maxSampleRate) { reqSampleRate = maxSampleRate; } mAudioMixer->setParameter( trackId, AudioMixer::RESAMPLE, AudioMixer::SAMPLE_RATE, (void *)(uintptr_t)reqSampleRate); mAudioMixer->setParameter( trackId, AudioMixer::TIMESTRETCH, AudioMixer::PLAYBACK_RATE, // cast away constness for this generic API. const_cast(reinterpret_cast(&playbackRate))); /* * Select the appropriate output buffer for the track. * * Tracks with effects go into their own effects chain buffer * and from there into either mEffectBuffer or mSinkBuffer. * * Other tracks can use mMixerBuffer for higher precision * channel accumulation. If this buffer is enabled * (mMixerBufferEnabled true), then selected tracks will accumulate * into it. * */ if (mMixerBufferEnabled && (track->mainBuffer() == mSinkBuffer || track->mainBuffer() == mMixerBuffer)) { if (mType == SPATIALIZER && !track->isSpatialized()) { mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MIXER_FORMAT, (void *)mEffectBufferFormat); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *)mPostSpatializerBuffer); } else { mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer); // TODO: override track->mainBuffer()? mMixerBufferValid = true; } } else { mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_FLOAT); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer()); } mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::AUX_BUFFER, (void *)track->auxBuffer()); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::HAPTIC_ENABLED, (void *)(uintptr_t)track->getHapticPlaybackEnabled()); const os::HapticScale hapticScale = track->getHapticScale(); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::HAPTIC_SCALE, (void *)&hapticScale); const float hapticMaxAmplitude = track->getHapticMaxAmplitude(); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::HAPTIC_MAX_AMPLITUDE, (void *)&hapticMaxAmplitude); // reset retry count track->retryCount() = kMaxTrackRetries; // If one track is ready, set the mixer ready if: // - the mixer was not ready during previous round OR // - no other track is not ready if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY || mixerStatus != MIXER_TRACKS_ENABLED) { mixerStatus = MIXER_TRACKS_READY; } // Enable the next few lines to instrument a test for underrun log handling. // TODO: Remove when we have a better way of testing the underrun log. #if 0 static int i; if ((++i & 0xf) == 0) { deferredOperations.tallyUnderrunFrames(track, 10 /* underrunFrames */); } #endif } else { size_t underrunFrames = 0; if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) { ALOGV("track(%d) underrun, track state %s framesReady(%zu) < framesDesired(%zd)", trackId, track->getTrackStateAsString(), framesReady, desiredFrames); underrunFrames = desiredFrames; } deferredOperations.tallyUnderrunFrames(track, underrunFrames); // clear effect chain input buffer if an active track underruns to avoid sending // previous audio buffer again to effects chain = getEffectChain_l(track->sessionId()); if (chain != 0) { chain->clearInputBuffer(); } ALOGVV("track(%d) s=%08x [NOT READY] on thread %p", trackId, cblk->mServer, this); if ((track->sharedBuffer() != 0) || track->isTerminated() || track->isStopped() || track->isPaused()) { // We have consumed all the buffers of this track. // Remove it from the list of active tracks. // TODO: use actual buffer filling status instead of latency when available from // audio HAL size_t audioHALFrames = (latency_l() * mSampleRate) / 1000; int64_t framesWritten = mBytesWritten / mFrameSize; if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) { if (track->isStopped()) { track->reset(); } tracksToRemove->add(track); } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. if (--(track->retryCount()) <= 0) { ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to underrun" " on thread %d", __func__, trackId, mId); tracksToRemove->add(track); // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available track->disable(); // If one track is not ready, mark the mixer also not ready if: // - the mixer was ready during previous round OR // - no other track is ready } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY || mixerStatus != MIXER_TRACKS_READY) { mixerStatus = MIXER_TRACKS_ENABLED; } } mAudioMixer->disable(trackId); } } // local variable scope to avoid goto warning } if (mHapticChannelMask != AUDIO_CHANNEL_NONE && sq != NULL) { // When there is no fast track playing haptic and FastMixer exists, // enabling the first FastTrack, which provides mixed data from normal // tracks, to play haptic data. FastTrack *fastTrack = &state->mFastTracks[0]; if (fastTrack->mHapticPlaybackEnabled != noFastHapticTrack) { fastTrack->mHapticPlaybackEnabled = noFastHapticTrack; didModify = true; } } // Push the new FastMixer state if necessary [[maybe_unused]] bool pauseAudioWatchdog = false; if (didModify) { state->mFastTracksGen++; // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle if (kUseFastMixer == FastMixer_Dynamic && state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) { state->mCommand = FastMixerState::COLD_IDLE; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; mFastMixerFutex = 0; if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mOutputSink; } // If we go into cold idle, need to wait for acknowledgement // so that fast mixer stops doing I/O. block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; pauseAudioWatchdog = true; } } if (sq != NULL) { sq->end(didModify); // No need to block if the FastMixer is in COLD_IDLE as the FastThread // is not active. (We BLOCK_UNTIL_ACKED when entering COLD_IDLE // when bringing the output sink into standby.) // // We will get the latest FastMixer state when we come out of COLD_IDLE. // // This occurs with BT suspend when we idle the FastMixer with // active tracks, which may be added or removed. sq->push(coldIdle ? FastMixerStateQueue::BLOCK_NEVER : block); } #ifdef AUDIO_WATCHDOG if (pauseAudioWatchdog && mAudioWatchdog != 0) { mAudioWatchdog->pause(); } #endif // Now perform the deferred reset on fast tracks that have stopped while (resetMask != 0) { size_t i = __builtin_ctz(resetMask); ALOG_ASSERT(i < count); resetMask &= ~(1 << i); sp track = mActiveTracks[i]; ALOG_ASSERT(track->isFastTrack() && track->isStopped()); track->reset(); } // Track destruction may occur outside of threadLoop once it is removed from active tracks. // Ensure the AudioMixer doesn't have a raw "buffer provider" pointer to the track if // it ceases to be active, to allow safe removal from the AudioMixer at the start // of prepareTracks_l(); this releases any outstanding buffer back to the track. // See also the implementation of destroyTrack_l(). for (const auto &track : *tracksToRemove) { const int trackId = track->id(); if (mAudioMixer->exists(trackId)) { // Normal tracks here, fast tracks in FastMixer. mAudioMixer->setBufferProvider(trackId, nullptr /* bufferProvider */); } } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0 || getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE) != 0) { mEffectBufferValid = true; } if (mEffectBufferValid) { // as long as there are effects we should clear the effects buffer, to avoid // passing a non-clean buffer to the effect chain memset(mEffectBuffer, 0, mEffectBufferSize); if (mType == SPATIALIZER) { memset(mPostSpatializerBuffer, 0, mPostSpatializerBufferSize); } } // sink or mix buffer must be cleared if all tracks are connected to an // effect chain as in this case the mixer will not write to the sink or mix buffer // and track effects will accumulate into it // always clear sink buffer for spatializer output as the output of the spatializer // effect will be accumulated into it if ((mBytesRemaining == 0) && (((mixedTracks != 0 && mixedTracks == tracksWithEffect) || (mixedTracks == 0 && fastTracks > 0)) || (mType == SPATIALIZER))) { // FIXME as a performance optimization, should remember previous zero status if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); // TODO: In testing, mSinkBuffer below need not be cleared because // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer // after mixing. // // To enforce this guarantee: // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || // (mixedTracks == 0 && fastTracks > 0)) // must imply MIXER_TRACKS_READY. // Later, we may clear buffers regardless, and skip much of this logic. } // FIXME as a performance optimization, should remember previous zero status memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize); } // if any fast tracks, then status is ready mMixerStatusIgnoringFastTracks = mixerStatus; if (fastTracks > 0) { mixerStatus = MIXER_TRACKS_READY; } return mixerStatus; } // trackCountForUid_l() must be called with ThreadBase::mutex() held uint32_t PlaybackThread::trackCountForUid_l(uid_t uid) const { uint32_t trackCount = 0; for (size_t i = 0; i < mTracks.size() ; i++) { if (mTracks[i]->uid() == uid) { trackCount++; } } return trackCount; } bool PlaybackThread::IsTimestampAdvancing::check(AudioStreamOut* output) { // Check the timestamp to see if it's advancing once every 150ms. If we check too frequently, we // could falsely detect that the frame position has stalled due to underrun because we haven't // given the Audio HAL enough time to update. const nsecs_t nowNs = systemTime(); if (nowNs - mPreviousNs < mMinimumTimeBetweenChecksNs) { return mLatchedValue; } mPreviousNs = nowNs; mLatchedValue = false; // Determine if the presentation position is still advancing. uint64_t position = 0; struct timespec unused; const status_t ret = output->getPresentationPosition(&position, &unused); if (ret == NO_ERROR) { if (position != mPreviousPosition) { mPreviousPosition = position; mLatchedValue = true; } } return mLatchedValue; } void PlaybackThread::IsTimestampAdvancing::clear() { mLatchedValue = true; mPreviousPosition = 0; mPreviousNs = 0; } // isTrackAllowed_l() must be called with ThreadBase::mutex() held bool MixerThread::isTrackAllowed_l( audio_channel_mask_t channelMask, audio_format_t format, audio_session_t sessionId, uid_t uid) const { if (!PlaybackThread::isTrackAllowed_l(channelMask, format, sessionId, uid)) { return false; } // Check validity as we don't call AudioMixer::create() here. if (!mAudioMixer->isValidFormat(format)) { ALOGW("%s: invalid format: %#x", __func__, format); return false; } if (!mAudioMixer->isValidChannelMask(channelMask)) { ALOGW("%s: invalid channelMask: %#x", __func__, channelMask); return false; } return true; } // checkForNewParameter_l() must be called with ThreadBase::mutex() held bool MixerThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; status = NO_ERROR; AutoPark park(mFastMixer); AudioParameter param = AudioParameter(keyValuePair); int value; if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { reconfig = true; } if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { if (!isValidPcmSinkFormat(static_cast(value))) { status = BAD_VALUE; } else { // no need to save value, since it's constant reconfig = true; } } if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { if (!isValidPcmSinkChannelMask(static_cast(value))) { status = BAD_VALUE; } else { // no need to save value, since it's constant reconfig = true; } } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be guaranteed // if frame count is changed after track creation if (!mTracks.isEmpty()) { status = INVALID_OPERATION; } else { reconfig = true; } } if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { LOG_FATAL("Should not set routing device in MixerThread"); } if (status == NO_ERROR) { status = mOutput->stream->setParameters(keyValuePair); if (!mStandby && status == INVALID_OPERATION) { ALOGW("%s: setParameters failed with keyValuePair %s, entering standby", __func__, keyValuePair.c_str()); mOutput->standby(); mThreadMetrics.logEndInterval(); mThreadSnapshot.onEnd(); setStandby_l(); mBytesWritten = 0; status = mOutput->stream->setParameters(keyValuePair); } if (status == NO_ERROR && reconfig) { readOutputParameters_l(); delete mAudioMixer; mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); for (const auto &track : mTracks) { const int trackId = track->id(); const status_t createStatus = mAudioMixer->create( trackId, track->channelMask(), track->format(), track->sessionId()); ALOGW_IF(createStatus != NO_ERROR, "%s(): AudioMixer cannot create track(%d)" " mask %#x, format %#x, sessionId %d", __func__, trackId, track->channelMask(), track->format(), track->sessionId()); } sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } } return reconfig; } void MixerThread::dumpInternals_l(int fd, const Vector& args) { PlaybackThread::dumpInternals_l(fd, args); dprintf(fd, " Thread throttle time (msecs): %u\n", (uint32_t)mThreadThrottleTimeMs); dprintf(fd, " AudioMixer tracks: %s\n", mAudioMixer->trackNames().c_str()); dprintf(fd, " Master mono: %s\n", mMasterMono ? "on" : "off"); dprintf(fd, " Master balance: %f (%s)\n", mMasterBalance.load(), (hasFastMixer() ? std::to_string(mFastMixer->getMasterBalance()) : mBalance.toString()).c_str()); if (hasFastMixer()) { dprintf(fd, " FastMixer thread %p tid=%d", mFastMixer.get(), mFastMixer->getTid()); // Make a non-atomic copy of fast mixer dump state so it won't change underneath us // while we are dumping it. It may be inconsistent, but it won't mutate! // This is a large object so we place it on the heap. // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages. const std::unique_ptr copy = std::make_unique(mFastMixerDumpState); copy->dump(fd); #ifdef STATE_QUEUE_DUMP // Similar for state queue StateQueueObserverDump observerCopy = mStateQueueObserverDump; observerCopy.dump(fd); StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump; mutatorCopy.dump(fd); #endif #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { // Make a non-atomic copy of audio watchdog dump so it won't change underneath us AudioWatchdogDump wdCopy = mAudioWatchdogDump; wdCopy.dump(fd); } #endif } else { dprintf(fd, " No FastMixer\n"); } dprintf(fd, "Bluetooth latency modes are %senabled\n", mBluetoothLatencyModesEnabled ? "" : "not "); dprintf(fd, "HAL does %ssupport Bluetooth latency modes\n", mOutput != nullptr && mOutput->audioHwDev->supportsBluetoothVariableLatency() ? "" : "not "); dprintf(fd, "Supported latency modes: %s\n", toString(mSupportedLatencyModes).c_str()); } uint32_t MixerThread::idleSleepTimeUs() const { return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2; } uint32_t MixerThread::suspendSleepTimeUs() const { return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000); } void MixerThread::cacheParameters_l() { PlaybackThread::cacheParameters_l(); // FIXME: Relaxed timing because of a certain device that can't meet latency // Should be reduced to 2x after the vendor fixes the driver issue // increase threshold again due to low power audio mode. The way this warning // threshold is calculated and its usefulness should be reconsidered anyway. maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15; } void MixerThread::onHalLatencyModesChanged_l() { mAfThreadCallback->onSupportedLatencyModesChanged(mId, mSupportedLatencyModes); } void MixerThread::setHalLatencyMode_l() { // Only handle latency mode if: // - mBluetoothLatencyModesEnabled is true // - the HAL supports latency modes // - the selected device is Bluetooth LE or A2DP if (!mBluetoothLatencyModesEnabled.load() || mSupportedLatencyModes.empty()) { return; } if (mOutDeviceTypeAddrs.size() != 1 || !(audio_is_a2dp_out_device(mOutDeviceTypeAddrs[0].mType) || audio_is_ble_out_device(mOutDeviceTypeAddrs[0].mType))) { return; } audio_latency_mode_t latencyMode = AUDIO_LATENCY_MODE_FREE; if (mSupportedLatencyModes.size() == 1) { // If the HAL only support one latency mode currently, confirm the choice latencyMode = mSupportedLatencyModes[0]; } else if (mSupportedLatencyModes.size() > 1) { // Request low latency if: // - At least one active track is either: // - a fast track with gaming usage or // - a track with acessibility usage for (const auto& track : mActiveTracks) { if ((track->isFastTrack() && track->attributes().usage == AUDIO_USAGE_GAME) || track->attributes().usage == AUDIO_USAGE_ASSISTANCE_ACCESSIBILITY) { latencyMode = AUDIO_LATENCY_MODE_LOW; break; } } } if (latencyMode != mSetLatencyMode) { status_t status = mOutput->stream->setLatencyMode(latencyMode); ALOGD("%s: thread(%d) setLatencyMode(%s) returned %d", __func__, mId, toString(latencyMode).c_str(), status); if (status == NO_ERROR) { mSetLatencyMode = latencyMode; } } } void MixerThread::updateHalSupportedLatencyModes_l() { if (mOutput == nullptr || mOutput->stream == nullptr) { return; } std::vector latencyModes; const status_t status = mOutput->stream->getRecommendedLatencyModes(&latencyModes); if (status != NO_ERROR) { latencyModes.clear(); } if (latencyModes != mSupportedLatencyModes) { ALOGD("%s: thread(%d) status %d supported latency modes: %s", __func__, mId, status, toString(latencyModes).c_str()); mSupportedLatencyModes.swap(latencyModes); sendHalLatencyModesChangedEvent_l(); } } status_t MixerThread::getSupportedLatencyModes( std::vector* modes) { if (modes == nullptr) { return BAD_VALUE; } audio_utils::lock_guard _l(mutex()); *modes = mSupportedLatencyModes; return NO_ERROR; } void MixerThread::onRecommendedLatencyModeChanged( std::vector modes) { audio_utils::lock_guard _l(mutex()); if (modes != mSupportedLatencyModes) { ALOGD("%s: thread(%d) supported latency modes: %s", __func__, mId, toString(modes).c_str()); mSupportedLatencyModes.swap(modes); sendHalLatencyModesChangedEvent_l(); } } status_t MixerThread::setBluetoothVariableLatencyEnabled(bool enabled) { if (mOutput == nullptr || mOutput->audioHwDev == nullptr || !mOutput->audioHwDev->supportsBluetoothVariableLatency()) { return INVALID_OPERATION; } mBluetoothLatencyModesEnabled.store(enabled); return NO_ERROR; } // ---------------------------------------------------------------------------- /* static */ sp IAfPlaybackThread::createDirectOutputThread( const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, const audio_offload_info_t& offloadInfo) { return sp::make( afThreadCallback, output, id, systemReady, offloadInfo); } DirectOutputThread::DirectOutputThread(const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, ThreadBase::type_t type, bool systemReady, const audio_offload_info_t& offloadInfo) : PlaybackThread(afThreadCallback, output, id, type, systemReady) , mOffloadInfo(offloadInfo) { setMasterBalance(afThreadCallback->getMasterBalance_l()); } DirectOutputThread::~DirectOutputThread() { } void DirectOutputThread::dumpInternals_l(int fd, const Vector& args) { PlaybackThread::dumpInternals_l(fd, args); dprintf(fd, " Master balance: %f Left: %f Right: %f\n", mMasterBalance.load(), mMasterBalanceLeft, mMasterBalanceRight); } void DirectOutputThread::setMasterBalance(float balance) { audio_utils::lock_guard _l(mutex()); if (mMasterBalance != balance) { mMasterBalance.store(balance); mBalance.computeStereoBalance(balance, &mMasterBalanceLeft, &mMasterBalanceRight); broadcast_l(); } } void DirectOutputThread::processVolume_l(IAfTrack* track, bool lastTrack) { float left, right; // Ensure volumeshaper state always advances even when muted. const sp proxy = track->audioTrackServerProxy(); const int64_t frames = mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL]; const int64_t time = mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]; ALOGVV("%s: Direct/Offload bufferConsumed:%zu timestamp frames:%lld time:%lld", __func__, proxy->framesReleased(), (long long)frames, (long long)time); const int64_t volumeShaperFrames = mMonotonicFrameCounter.updateAndGetMonotonicFrameCount(frames, time); const auto [shaperVolume, shaperActive] = track->getVolumeHandler()->getVolume(volumeShaperFrames); mVolumeShaperActive = shaperActive; gain_minifloat_packed_t vlr = proxy->getVolumeLR(); left = float_from_gain(gain_minifloat_unpack_left(vlr)); right = float_from_gain(gain_minifloat_unpack_right(vlr)); const bool clientVolumeMute = (left == 0.f && right == 0.f); if (mMasterMute || mStreamTypes[track->streamType()].mute || track->isPlaybackRestricted()) { left = right = 0; } else { float typeVolume = mStreamTypes[track->streamType()].volume; const float v = mMasterVolume * typeVolume * shaperVolume; if (left > GAIN_FLOAT_UNITY) { left = GAIN_FLOAT_UNITY; } if (right > GAIN_FLOAT_UNITY) { right = GAIN_FLOAT_UNITY; } left *= v; right *= v; if (mAfThreadCallback->getMode() != AUDIO_MODE_IN_COMMUNICATION || audio_channel_count_from_out_mask(mChannelMask) > 1) { left *= mMasterBalanceLeft; // DirectOutputThread balance applied as track volume right *= mMasterBalanceRight; } } track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(), /*muteState=*/{mMasterMute, mStreamTypes[track->streamType()].volume == 0.f, mStreamTypes[track->streamType()].mute, track->isPlaybackRestricted(), clientVolumeMute, shaperVolume == 0.f}); if (lastTrack) { track->setFinalVolume(left, right); if (left != mLeftVolFloat || right != mRightVolFloat) { mLeftVolFloat = left; mRightVolFloat = right; // Delegate volume control to effect in track effect chain if needed // only one effect chain can be present on DirectOutputThread, so if // there is one, the track is connected to it if (!mEffectChains.isEmpty()) { // if effect chain exists, volume is handled by it. // Convert volumes from float to 8.24 uint32_t vl = (uint32_t)(left * (1 << 24)); uint32_t vr = (uint32_t)(right * (1 << 24)); // Direct/Offload effect chains set output volume in setVolume(). (void)mEffectChains[0]->setVolume(&vl, &vr); } else { // otherwise we directly set the volume. setVolumeForOutput_l(left, right); } } } } void DirectOutputThread::onAddNewTrack_l() { sp previousTrack = mPreviousTrack.promote(); sp latestTrack = mActiveTracks.getLatest(); if (previousTrack != 0 && latestTrack != 0) { if (mType == DIRECT) { if (previousTrack.get() != latestTrack.get()) { mFlushPending = true; } } else /* mType == OFFLOAD */ { if (previousTrack->sessionId() != latestTrack->sessionId() || previousTrack->isFlushPending()) { mFlushPending = true; } } } else if (previousTrack == 0) { // there could be an old track added back during track transition for direct // output, so always issues flush to flush data of the previous track if it // was already destroyed with HAL paused, then flush can resume the playback mFlushPending = true; } PlaybackThread::onAddNewTrack_l(); } PlaybackThread::mixer_state DirectOutputThread::prepareTracks_l( Vector>* tracksToRemove ) { size_t count = mActiveTracks.size(); mixer_state mixerStatus = MIXER_IDLE; bool doHwPause = false; bool doHwResume = false; // find out which tracks need to be processed for (const sp& t : mActiveTracks) { if (t->isInvalid()) { ALOGW("An invalidated track shouldn't be in active list"); tracksToRemove->add(t); continue; } IAfTrack* const track = t.get(); #ifdef VERY_VERY_VERBOSE_LOGGING audio_track_cblk_t* cblk = track->cblk(); #endif // Only consider last track started for volume and mixer state control. // In theory an older track could underrun and restart after the new one starts // but as we only care about the transition phase between two tracks on a // direct output, it is not a problem to ignore the underrun case. sp l = mActiveTracks.getLatest(); bool last = l.get() == track; if (track->isPausePending()) { track->pauseAck(); // It is possible a track might have been flushed or stopped. // Other operations such as flush pending might occur on the next prepare. if (track->isPausing()) { track->setPaused(); } // Always perform pause, as an immediate flush will change // the pause state to be no longer isPausing(). if (mHwSupportsPause && last && !mHwPaused) { doHwPause = true; mHwPaused = true; } } else if (track->isFlushPending()) { track->flushAck(); if (last) { mFlushPending = true; } } else if (track->isResumePending()) { track->resumeAck(); if (last) { mLeftVolFloat = mRightVolFloat = -1.0; if (mHwPaused) { doHwResume = true; mHwPaused = false; } } } // The first time a track is added we wait // for all its buffers to be filled before processing it. // Allow draining the buffer in case the client // app does not call stop() and relies on underrun to stop: // hence the test on (track->retryCount() > 1). // If track->retryCount() <= 1 then track is about to be disabled, paused, removed, // so we accept any nonzero amount of data delivered by the AudioTrack (which will // reset the retry counter). // Do not use a high threshold for compressed audio. // target retry count that we will use is based on the time we wait for retries. const int32_t targetRetryCount = kMaxTrackRetriesDirectMs * 1000 / mActiveSleepTimeUs; // the retry threshold is when we accept any size for PCM data. This is slightly // smaller than the retry count so we can push small bits of data without a glitch. const int32_t retryThreshold = targetRetryCount > 2 ? targetRetryCount - 1 : 1; uint32_t minFrames; if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing() && (track->retryCount() > retryThreshold) && audio_has_proportional_frames(mFormat)) { minFrames = mNormalFrameCount; } else { minFrames = 1; } const size_t framesReady = track->framesReady(); const int trackId = track->id(); if (ATRACE_ENABLED()) { std::string traceName("nRdy"); traceName += std::to_string(trackId); ATRACE_INT(traceName.c_str(), framesReady); } if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() && !track->isStopping_2() && !track->isStopped()) { ALOGVV("track(%d) s=%08x [OK]", trackId, cblk->mServer); if (track->fillingStatus() == IAfTrack::FS_FILLED) { track->fillingStatus() = IAfTrack::FS_ACTIVE; if (last) { // make sure processVolume_l() will apply new volume even if 0 mLeftVolFloat = mRightVolFloat = -1.0; } if (!mHwSupportsPause) { track->resumeAck(); } } // compute volume for this track processVolume_l(track, last); if (last) { sp previousTrack = mPreviousTrack.promote(); if (previousTrack != 0) { if (track != previousTrack.get()) { // Flush any data still being written from last track mBytesRemaining = 0; // Invalidate previous track to force a seek when resuming. previousTrack->invalidate(); } } mPreviousTrack = track; // reset retry count track->retryCount() = targetRetryCount; mActiveTrack = t; mixerStatus = MIXER_TRACKS_READY; if (mHwPaused) { doHwResume = true; mHwPaused = false; } } } else { // clear effect chain input buffer if the last active track started underruns // to avoid sending previous audio buffer again to effects if (!mEffectChains.isEmpty() && last) { mEffectChains[0]->clearInputBuffer(); } if (track->isStopping_1()) { track->setState(IAfTrackBase::STOPPING_2); if (last && mHwPaused) { doHwResume = true; mHwPaused = false; } } if ((track->sharedBuffer() != 0) || track->isStopped() || track->isStopping_2() || track->isPaused()) { // We have consumed all the buffers of this track. // Remove it from the list of active tracks. bool presComplete = false; if (mStandby || !last || (presComplete = track->presentationComplete(latency_l())) || track->isPaused() || mHwPaused) { if (presComplete) { mOutput->presentationComplete(); } if (track->isStopping_2()) { track->setState(IAfTrackBase::STOPPED); } if (track->isStopped()) { track->reset(); } tracksToRemove->add(track); } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. // Only consider last track started for mixer state control bool isTimestampAdvancing = mIsTimestampAdvancing.check(mOutput); if (!isTunerStream() // tuner streams remain active in underrun && --(track->retryCount()) <= 0) { if (isTimestampAdvancing) { // HAL is still playing audio, give us more time. track->retryCount() = kMaxTrackRetriesOffload; } else { ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to" " underrun on thread %d", __func__, trackId, mId); tracksToRemove->add(track); // indicate to client process that the track was disabled because of // underrun; it will then automatically call start() when data is available track->disable(); // only do hw pause when track is going to be removed due to BUFFER TIMEOUT. // unlike mixerthread, HAL can be paused for direct output ALOGW("pause because of UNDERRUN, framesReady = %zu," "minFrames = %u, mFormat = %#x", framesReady, minFrames, mFormat); if (last && mHwSupportsPause && !mHwPaused && !mStandby) { doHwPause = true; mHwPaused = true; } } } else if (last) { mixerStatus = MIXER_TRACKS_ENABLED; } } } } // if an active track did not command a flush, check for pending flush on stopped tracks if (!mFlushPending) { for (size_t i = 0; i < mTracks.size(); i++) { if (mTracks[i]->isFlushPending()) { mTracks[i]->flushAck(); mFlushPending = true; } } } // make sure the pause/flush/resume sequence is executed in the right order. // If a flush is pending and a track is active but the HW is not paused, force a HW pause // before flush and then resume HW. This can happen in case of pause/flush/resume // if resume is received before pause is executed. if (mHwSupportsPause && !mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { status_t result = mOutput->stream->pause(); ALOGE_IF(result != OK, "Error when pausing output stream: %d", result); doHwResume = !doHwPause; // resume if pause is due to flush. } if (mFlushPending) { flushHw_l(); } if (mHwSupportsPause && !mStandby && doHwResume) { status_t result = mOutput->stream->resume(); ALOGE_IF(result != OK, "Error when resuming output stream: %d", result); } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); return mixerStatus; } void DirectOutputThread::threadLoop_mix() { size_t frameCount = mFrameCount; int8_t *curBuf = (int8_t *)mSinkBuffer; // output audio to hardware while (frameCount) { AudioBufferProvider::Buffer buffer; buffer.frameCount = frameCount; status_t status = mActiveTrack->getNextBuffer(&buffer); if (status != NO_ERROR || buffer.raw == NULL) { // no need to pad with 0 for compressed audio if (audio_has_proportional_frames(mFormat)) { memset(curBuf, 0, frameCount * mFrameSize); } break; } memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize); frameCount -= buffer.frameCount; curBuf += buffer.frameCount * mFrameSize; mActiveTrack->releaseBuffer(&buffer); } mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer; mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; mActiveTrack.clear(); } void DirectOutputThread::threadLoop_sleepTime() { // do not write to HAL when paused if (mHwPaused || (usesHwAvSync() && mStandby)) { mSleepTimeUs = mIdleSleepTimeUs; return; } if (mMixerStatus == MIXER_TRACKS_ENABLED) { mSleepTimeUs = mActiveSleepTimeUs; } else { mSleepTimeUs = mIdleSleepTimeUs; } // Note: In S or later, we do not write zeroes for // linear or proportional PCM direct tracks in underrun. } void DirectOutputThread::threadLoop_exit() { { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); i++) { if (mTracks[i]->isFlushPending()) { mTracks[i]->flushAck(); mFlushPending = true; } } if (mFlushPending) { flushHw_l(); } } PlaybackThread::threadLoop_exit(); } // must be called with thread mutex locked bool DirectOutputThread::shouldStandby_l() { bool trackPaused = false; bool trackStopped = false; bool trackDisabled = false; // do not put the HAL in standby when paused. NuPlayer clear the offloaded AudioTrack // after a timeout and we will enter standby then. // On offload threads, do not enter standby if the main track is still underrunning. if (mTracks.size() > 0) { const auto& mainTrack = mTracks[mTracks.size() - 1]; trackPaused = mainTrack->isPaused(); trackStopped = mainTrack->isStopped() || mainTrack->state() == IAfTrackBase::IDLE; trackDisabled = (mType == OFFLOAD) && mainTrack->isDisabled(); } return !mStandby && !(trackPaused || (mHwPaused && !trackStopped) || trackDisabled); } // checkForNewParameter_l() must be called with ThreadBase::mutex() held bool DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; status = NO_ERROR; AudioParameter param = AudioParameter(keyValuePair); int value; if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { LOG_FATAL("Should not set routing device in DirectOutputThread"); } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be garantied // if frame count is changed after track creation if (!mTracks.isEmpty()) { status = INVALID_OPERATION; } else { reconfig = true; } } if (status == NO_ERROR) { status = mOutput->stream->setParameters(keyValuePair); if (!mStandby && status == INVALID_OPERATION) { mOutput->standby(); if (!mStandby) { mThreadMetrics.logEndInterval(); mThreadSnapshot.onEnd(); setStandby_l(); } mBytesWritten = 0; status = mOutput->stream->setParameters(keyValuePair); } if (status == NO_ERROR && reconfig) { readOutputParameters_l(); sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } } return reconfig; } uint32_t DirectOutputThread::activeSleepTimeUs() const { uint32_t time; if (audio_has_proportional_frames(mFormat)) { time = PlaybackThread::activeSleepTimeUs(); } else { time = kDirectMinSleepTimeUs; } return time; } uint32_t DirectOutputThread::idleSleepTimeUs() const { uint32_t time; if (audio_has_proportional_frames(mFormat)) { time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2; } else { time = kDirectMinSleepTimeUs; } return time; } uint32_t DirectOutputThread::suspendSleepTimeUs() const { uint32_t time; if (audio_has_proportional_frames(mFormat)) { time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000); } else { time = kDirectMinSleepTimeUs; } return time; } void DirectOutputThread::cacheParameters_l() { PlaybackThread::cacheParameters_l(); // use shorter standby delay as on normal output to release // hardware resources as soon as possible // no delay on outputs with HW A/V sync if (usesHwAvSync()) { mStandbyDelayNs = 0; } else if ((mType == OFFLOAD) && !audio_has_proportional_frames(mFormat)) { mStandbyDelayNs = kOffloadStandbyDelayNs; } else { mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2); } } void DirectOutputThread::flushHw_l() { PlaybackThread::flushHw_l(); mOutput->flush(); mFlushPending = false; mTimestampVerifier.discontinuity(discontinuityForStandbyOrFlush()); mTimestamp.clear(); mMonotonicFrameCounter.onFlush(); // We do not reset mHwPaused which is hidden from the Track client. // Note: the client track in Tracks.cpp and AudioTrack.cpp // has a FLUSHED state but the DirectOutputThread does not; // those tracks will continue to show isStopped(). } int64_t DirectOutputThread::computeWaitTimeNs_l() const { // If a VolumeShaper is active, we must wake up periodically to update volume. const int64_t NS_PER_MS = 1000000; return mVolumeShaperActive ? kMinNormalSinkBufferSizeMs * NS_PER_MS : PlaybackThread::computeWaitTimeNs_l(); } // ---------------------------------------------------------------------------- AsyncCallbackThread::AsyncCallbackThread( const wp& playbackThread) : Thread(false /*canCallJava*/), mPlaybackThread(playbackThread), mWriteAckSequence(0), mDrainSequence(0), mAsyncError(ASYNC_ERROR_NONE) { } void AsyncCallbackThread::onFirstRef() { run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO); } bool AsyncCallbackThread::threadLoop() { while (!exitPending()) { uint32_t writeAckSequence; uint32_t drainSequence; AsyncError asyncError; { audio_utils::unique_lock _l(mutex()); while (!((mWriteAckSequence & 1) || (mDrainSequence & 1) || mAsyncError || exitPending())) { mWaitWorkCV.wait(_l); } if (exitPending()) { break; } ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d", mWriteAckSequence, mDrainSequence); writeAckSequence = mWriteAckSequence; mWriteAckSequence &= ~1; drainSequence = mDrainSequence; mDrainSequence &= ~1; asyncError = mAsyncError; mAsyncError = ASYNC_ERROR_NONE; } { const sp playbackThread = mPlaybackThread.promote(); if (playbackThread != 0) { if (writeAckSequence & 1) { playbackThread->resetWriteBlocked(writeAckSequence >> 1); } if (drainSequence & 1) { playbackThread->resetDraining(drainSequence >> 1); } if (asyncError != ASYNC_ERROR_NONE) { playbackThread->onAsyncError(asyncError == ASYNC_ERROR_HARD); } } } } return false; } void AsyncCallbackThread::exit() { ALOGV("AsyncCallbackThread::exit"); audio_utils::lock_guard _l(mutex()); requestExit(); mWaitWorkCV.notify_all(); } void AsyncCallbackThread::setWriteBlocked(uint32_t sequence) { audio_utils::lock_guard _l(mutex()); // bit 0 is cleared mWriteAckSequence = sequence << 1; } void AsyncCallbackThread::resetWriteBlocked() { audio_utils::lock_guard _l(mutex()); // ignore unexpected callbacks if (mWriteAckSequence & 2) { mWriteAckSequence |= 1; mWaitWorkCV.notify_one(); } } void AsyncCallbackThread::setDraining(uint32_t sequence) { audio_utils::lock_guard _l(mutex()); // bit 0 is cleared mDrainSequence = sequence << 1; } void AsyncCallbackThread::resetDraining() { audio_utils::lock_guard _l(mutex()); // ignore unexpected callbacks if (mDrainSequence & 2) { mDrainSequence |= 1; mWaitWorkCV.notify_one(); } } void AsyncCallbackThread::setAsyncError(bool isHardError) { audio_utils::lock_guard _l(mutex()); mAsyncError = isHardError ? ASYNC_ERROR_HARD : ASYNC_ERROR_SOFT; mWaitWorkCV.notify_one(); } // ---------------------------------------------------------------------------- /* static */ sp IAfPlaybackThread::createOffloadThread( const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, const audio_offload_info_t& offloadInfo) { return sp::make(afThreadCallback, output, id, systemReady, offloadInfo); } OffloadThread::OffloadThread(const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, const audio_offload_info_t& offloadInfo) : DirectOutputThread(afThreadCallback, output, id, OFFLOAD, systemReady, offloadInfo), mPausedWriteLength(0), mPausedBytesRemaining(0), mKeepWakeLock(true) { //FIXME: mStandby should be set to true by ThreadBase constructo mStandby = true; mKeepWakeLock = property_get_bool("ro.audio.offload_wakelock", true /* default_value */); } void OffloadThread::threadLoop_exit() { if (mFlushPending || mHwPaused) { // If a flush is pending or track was paused, just discard buffered data audio_utils::lock_guard l(mutex()); flushHw_l(); } else { mMixerStatus = MIXER_DRAIN_ALL; threadLoop_drain(); } if (mUseAsyncWrite) { ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->exit(); } PlaybackThread::threadLoop_exit(); } PlaybackThread::mixer_state OffloadThread::prepareTracks_l( Vector>* tracksToRemove ) { size_t count = mActiveTracks.size(); mixer_state mixerStatus = MIXER_IDLE; bool doHwPause = false; bool doHwResume = false; ALOGV("OffloadThread::prepareTracks_l active tracks %zu", count); // find out which tracks need to be processed for (const sp& t : mActiveTracks) { IAfTrack* const track = t.get(); #ifdef VERY_VERY_VERBOSE_LOGGING audio_track_cblk_t* cblk = track->cblk(); #endif // Only consider last track started for volume and mixer state control. // In theory an older track could underrun and restart after the new one starts // but as we only care about the transition phase between two tracks on a // direct output, it is not a problem to ignore the underrun case. sp l = mActiveTracks.getLatest(); bool last = l.get() == track; if (track->isInvalid()) { ALOGW("An invalidated track shouldn't be in active list"); tracksToRemove->add(track); continue; } if (track->state() == IAfTrackBase::IDLE) { ALOGW("An idle track shouldn't be in active list"); continue; } if (track->isPausePending()) { track->pauseAck(); // It is possible a track might have been flushed or stopped. // Other operations such as flush pending might occur on the next prepare. if (track->isPausing()) { track->setPaused(); } // Always perform pause if last, as an immediate flush will change // the pause state to be no longer isPausing(). if (last) { if (mHwSupportsPause && !mHwPaused) { doHwPause = true; mHwPaused = true; } // If we were part way through writing the mixbuffer to // the HAL we must save this until we resume // BUG - this will be wrong if a different track is made active, // in that case we want to discard the pending data in the // mixbuffer and tell the client to present it again when the // track is resumed mPausedWriteLength = mCurrentWriteLength; mPausedBytesRemaining = mBytesRemaining; mBytesRemaining = 0; // stop writing } tracksToRemove->add(track); } else if (track->isFlushPending()) { if (track->isStopping_1()) { track->retryCount() = kMaxTrackStopRetriesOffload; } else { track->retryCount() = kMaxTrackRetriesOffload; } track->flushAck(); if (last) { mFlushPending = true; } } else if (track->isResumePending()){ track->resumeAck(); if (last) { if (mPausedBytesRemaining) { // Need to continue write that was interrupted mCurrentWriteLength = mPausedWriteLength; mBytesRemaining = mPausedBytesRemaining; mPausedBytesRemaining = 0; } if (mHwPaused) { doHwResume = true; mHwPaused = false; // threadLoop_mix() will handle the case that we need to // resume an interrupted write } // enable write to audio HAL mSleepTimeUs = 0; mLeftVolFloat = mRightVolFloat = -1.0; // Do not handle new data in this iteration even if track->framesReady() mixerStatus = MIXER_TRACKS_ENABLED; } } else if (track->framesReady() && track->isReady() && !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) { ALOGVV("OffloadThread: track(%d) s=%08x [OK]", track->id(), cblk->mServer); if (track->fillingStatus() == IAfTrack::FS_FILLED) { track->fillingStatus() = IAfTrack::FS_ACTIVE; if (last) { // make sure processVolume_l() will apply new volume even if 0 mLeftVolFloat = mRightVolFloat = -1.0; } } if (last) { sp previousTrack = mPreviousTrack.promote(); if (previousTrack != 0) { if (track != previousTrack.get()) { // Flush any data still being written from last track mBytesRemaining = 0; if (mPausedBytesRemaining) { // Last track was paused so we also need to flush saved // mixbuffer state and invalidate track so that it will // re-submit that unwritten data when it is next resumed mPausedBytesRemaining = 0; // Invalidate is a bit drastic - would be more efficient // to have a flag to tell client that some of the // previously written data was lost previousTrack->invalidate(); } // flush data already sent to the DSP if changing audio session as audio // comes from a different source. Also invalidate previous track to force a // seek when resuming. if (previousTrack->sessionId() != track->sessionId()) { previousTrack->invalidate(); } } } mPreviousTrack = track; // reset retry count if (track->isStopping_1()) { track->retryCount() = kMaxTrackStopRetriesOffload; } else { track->retryCount() = kMaxTrackRetriesOffload; } mActiveTrack = t; mixerStatus = MIXER_TRACKS_READY; } } else { ALOGVV("OffloadThread: track(%d) s=%08x [NOT READY]", track->id(), cblk->mServer); if (track->isStopping_1()) { if (--(track->retryCount()) <= 0) { // Hardware buffer can hold a large amount of audio so we must // wait for all current track's data to drain before we say // that the track is stopped. if (mBytesRemaining == 0) { // Only start draining when all data in mixbuffer // has been written ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2"); track->setState(IAfTrackBase::STOPPING_2); // so presentation completes after // drain do not drain if no data was ever sent to HAL (mStandby == true) if (last && !mStandby) { // do not modify drain sequence if we are already draining. This happens // when resuming from pause after drain. if ((mDrainSequence & 1) == 0) { mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; mixerStatus = MIXER_DRAIN_TRACK; mDrainSequence += 2; } if (mHwPaused) { // It is possible to move from PAUSED to STOPPING_1 without // a resume so we must ensure hardware is running doHwResume = true; mHwPaused = false; } } } } else if (last) { ALOGV("stopping1 underrun retries left %d", track->retryCount()); mixerStatus = MIXER_TRACKS_ENABLED; } } else if (track->isStopping_2()) { // Drain has completed or we are in standby, signal presentation complete if (!(mDrainSequence & 1) || !last || mStandby) { track->setState(IAfTrackBase::STOPPED); mOutput->presentationComplete(); track->presentationComplete(latency_l()); // always returns true track->reset(); tracksToRemove->add(track); // OFFLOADED stop resets frame counts. if (!mUseAsyncWrite) { // If we don't get explicit drain notification we must // register discontinuity regardless of whether this is // the previous (!last) or the upcoming (last) track // to avoid skipping the discontinuity. mTimestampVerifier.discontinuity( mTimestampVerifier.DISCONTINUITY_MODE_ZERO); } } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. bool isTimestampAdvancing = mIsTimestampAdvancing.check(mOutput); if (!isTunerStream() // tuner streams remain active in underrun && --(track->retryCount()) <= 0) { if (isTimestampAdvancing) { // HAL is still playing audio, give us more time. track->retryCount() = kMaxTrackRetriesOffload; } else { ALOGI("%s BUFFER TIMEOUT: remove track(%d) from active list due to" " underrun on thread %d", __func__, track->id(), mId); tracksToRemove->add(track); // tell client process that the track was disabled because of underrun; // it will then automatically call start() when data is available track->disable(); } } else if (last){ mixerStatus = MIXER_TRACKS_ENABLED; } } } // compute volume for this track if (track->isReady()) { // check ready to prevent premature start. processVolume_l(track, last); } } // make sure the pause/flush/resume sequence is executed in the right order. // If a flush is pending and a track is active but the HW is not paused, force a HW pause // before flush and then resume HW. This can happen in case of pause/flush/resume // if resume is received before pause is executed. if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { status_t result = mOutput->stream->pause(); ALOGE_IF(result != OK, "Error when pausing output stream: %d", result); doHwResume = !doHwPause; // resume if pause is due to flush. } if (mFlushPending) { flushHw_l(); } if (!mStandby && doHwResume) { status_t result = mOutput->stream->resume(); ALOGE_IF(result != OK, "Error when resuming output stream: %d", result); } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); return mixerStatus; } // must be called with thread mutex locked bool OffloadThread::waitingAsyncCallback_l() { ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d", mWriteAckSequence, mDrainSequence); if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) { return true; } return false; } bool OffloadThread::waitingAsyncCallback() { audio_utils::lock_guard _l(mutex()); return waitingAsyncCallback_l(); } void OffloadThread::flushHw_l() { DirectOutputThread::flushHw_l(); // Flush anything still waiting in the mixbuffer mCurrentWriteLength = 0; mBytesRemaining = 0; mPausedWriteLength = 0; mPausedBytesRemaining = 0; // reset bytes written count to reflect that DSP buffers are empty after flush. mBytesWritten = 0; if (mUseAsyncWrite) { // discard any pending drain or write ack by incrementing sequence mWriteAckSequence = (mWriteAckSequence + 2) & ~1; mDrainSequence = (mDrainSequence + 2) & ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); mCallbackThread->setDraining(mDrainSequence); } } void OffloadThread::invalidateTracks(audio_stream_type_t streamType) { audio_utils::lock_guard _l(mutex()); if (PlaybackThread::invalidateTracks_l(streamType)) { mFlushPending = true; } } void OffloadThread::invalidateTracks(std::set& portIds) { audio_utils::lock_guard _l(mutex()); if (PlaybackThread::invalidateTracks_l(portIds)) { mFlushPending = true; } } // ---------------------------------------------------------------------------- /* static */ sp IAfDuplicatingThread::create( const sp& afThreadCallback, IAfPlaybackThread* mainThread, audio_io_handle_t id, bool systemReady) { return sp::make(afThreadCallback, mainThread, id, systemReady); } DuplicatingThread::DuplicatingThread(const sp& afThreadCallback, IAfPlaybackThread* mainThread, audio_io_handle_t id, bool systemReady) : MixerThread(afThreadCallback, mainThread->getOutput(), id, systemReady, DUPLICATING), mWaitTimeMs(UINT_MAX) { addOutputTrack(mainThread); } DuplicatingThread::~DuplicatingThread() { for (size_t i = 0; i < mOutputTracks.size(); i++) { mOutputTracks[i]->destroy(); } } void DuplicatingThread::threadLoop_mix() { // mix buffers... if (outputsReady()) { mAudioMixer->process(); } else { if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); } else { memset(mSinkBuffer, 0, mSinkBufferSize); } } mSleepTimeUs = 0; writeFrames = mNormalFrameCount; mCurrentWriteLength = mSinkBufferSize; mStandbyTimeNs = systemTime() + mStandbyDelayNs; } void DuplicatingThread::threadLoop_sleepTime() { if (mSleepTimeUs == 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { mSleepTimeUs = mActiveSleepTimeUs; } else { mSleepTimeUs = mIdleSleepTimeUs; } } else if (mBytesWritten != 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { writeFrames = mNormalFrameCount; memset(mSinkBuffer, 0, mSinkBufferSize); } else { // flush remaining overflow buffers in output tracks writeFrames = 0; } mSleepTimeUs = 0; } } ssize_t DuplicatingThread::threadLoop_write() { for (size_t i = 0; i < outputTracks.size(); i++) { const ssize_t actualWritten = outputTracks[i]->write(mSinkBuffer, writeFrames); // Consider the first OutputTrack for timestamp and frame counting. // The threadLoop() generally assumes writing a full sink buffer size at a time. // Here, we correct for writeFrames of 0 (a stop) or underruns because // we always claim success. if (i == 0) { const ssize_t correction = mSinkBufferSize / mFrameSize - actualWritten; ALOGD_IF(correction != 0 && writeFrames != 0, "%s: writeFrames:%u actualWritten:%zd correction:%zd mFramesWritten:%lld", __func__, writeFrames, actualWritten, correction, (long long)mFramesWritten); mFramesWritten -= correction; } // TODO: Report correction for the other output tracks and show in the dump. } if (mStandby) { mThreadMetrics.logBeginInterval(); mThreadSnapshot.onBegin(); mStandby = false; } return (ssize_t)mSinkBufferSize; } void DuplicatingThread::threadLoop_standby() { // DuplicatingThread implements standby by stopping all tracks for (size_t i = 0; i < outputTracks.size(); i++) { outputTracks[i]->stop(); } } void DuplicatingThread::threadLoop_exit() { // Prevent calling the OutputTrack dtor in the DuplicatingThread dtor // where other mutexes (i.e. AudioPolicyService_Mutex) may be held. // Do so here in the threadLoop_exit(). SortedVector > localTracks; { audio_utils::lock_guard l(mutex()); localTracks = std::move(mOutputTracks); mOutputTracks.clear(); } localTracks.clear(); outputTracks.clear(); PlaybackThread::threadLoop_exit(); } void DuplicatingThread::dumpInternals_l(int fd, const Vector& args) { MixerThread::dumpInternals_l(fd, args); std::stringstream ss; const size_t numTracks = mOutputTracks.size(); ss << " " << numTracks << " OutputTracks"; if (numTracks > 0) { ss << ":"; for (const auto &track : mOutputTracks) { const auto thread = track->thread().promote(); ss << " (" << track->id() << " : "; if (thread.get() != nullptr) { ss << thread.get() << ", " << thread->id(); } else { ss << "null"; } ss << ")"; } } ss << "\n"; std::string result = ss.str(); write(fd, result.c_str(), result.size()); } void DuplicatingThread::saveOutputTracks() { outputTracks = mOutputTracks; } void DuplicatingThread::clearOutputTracks() { outputTracks.clear(); } void DuplicatingThread::addOutputTrack(IAfPlaybackThread* thread) { audio_utils::lock_guard _l(mutex()); // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass. // Adjust for thread->sampleRate() to determine minimum buffer frame count. // Then triple buffer because Threads do not run synchronously and may not be clock locked. const size_t frameCount = 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate()); // TODO: Consider asynchronous sample rate conversion to handle clock disparity // from different OutputTracks and their associated MixerThreads (e.g. one may // nearly empty and the other may be dropping data). // TODO b/182392769: use attribution source util, move to server edge AttributionSourceState attributionSource = AttributionSourceState(); attributionSource.uid = VALUE_OR_FATAL(legacy2aidl_uid_t_int32_t( IPCThreadState::self()->getCallingUid())); attributionSource.pid = VALUE_OR_FATAL(legacy2aidl_pid_t_int32_t( IPCThreadState::self()->getCallingPid())); attributionSource.token = sp::make(); sp outputTrack = IAfOutputTrack::create(thread, this, mSampleRate, mFormat, mChannelMask, frameCount, attributionSource); status_t status = outputTrack != 0 ? outputTrack->initCheck() : (status_t) NO_MEMORY; if (status != NO_ERROR) { ALOGE("addOutputTrack() initCheck failed %d", status); return; } thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f); mOutputTracks.add(outputTrack); ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread); updateWaitTime_l(); } void DuplicatingThread::removeOutputTrack(IAfPlaybackThread* thread) { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mOutputTracks.size(); i++) { if (mOutputTracks[i]->thread() == thread) { mOutputTracks[i]->destroy(); mOutputTracks.removeAt(i); updateWaitTime_l(); // NO_THREAD_SAFETY_ANALYSIS // Lambda workaround: as thread != this // we can safely call the remote thread getOutput. const bool equalOutput = [&](){ return thread->getOutput() == mOutput; }(); if (equalOutput) { mOutput = nullptr; } return; } } ALOGV("removeOutputTrack(): unknown thread: %p", thread); } // caller must hold mutex() void DuplicatingThread::updateWaitTime_l() { mWaitTimeMs = UINT_MAX; for (size_t i = 0; i < mOutputTracks.size(); i++) { const auto strong = mOutputTracks[i]->thread().promote(); if (strong != 0) { uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate(); if (waitTimeMs < mWaitTimeMs) { mWaitTimeMs = waitTimeMs; } } } } bool DuplicatingThread::outputsReady() { for (size_t i = 0; i < outputTracks.size(); i++) { const auto thread = outputTracks[i]->thread().promote(); if (thread == 0) { ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p", outputTracks[i].get()); return false; } IAfPlaybackThread* const playbackThread = thread->asIAfPlaybackThread().get(); // see note at standby() declaration if (playbackThread->inStandby() && !playbackThread->isSuspended()) { ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(), thread.get()); return false; } } return true; } void DuplicatingThread::sendMetadataToBackend_l( const StreamOutHalInterface::SourceMetadata& metadata) { for (auto& outputTrack : outputTracks) { // not mOutputTracks outputTrack->setMetadatas(metadata.tracks); } } uint32_t DuplicatingThread::activeSleepTimeUs() const { // return half the wait time in microseconds. return std::min(mWaitTimeMs * 500ULL, (unsigned long long)UINT32_MAX); // prevent overflow. } void DuplicatingThread::cacheParameters_l() { // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first updateWaitTime_l(); MixerThread::cacheParameters_l(); } // ---------------------------------------------------------------------------- /* static */ sp IAfPlaybackThread::createSpatializerThread( const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, audio_config_base_t* mixerConfig) { return sp::make(afThreadCallback, output, id, systemReady, mixerConfig); } SpatializerThread::SpatializerThread(const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady, audio_config_base_t *mixerConfig) : MixerThread(afThreadCallback, output, id, systemReady, SPATIALIZER, mixerConfig) { } void SpatializerThread::setHalLatencyMode_l() { // if mSupportedLatencyModes is empty, the HAL stream does not support // latency mode control and we can exit. if (mSupportedLatencyModes.empty()) { return; } // Do not update the HAL latency mode if no track is active if (mActiveTracks.isEmpty()) { return; } audio_latency_mode_t latencyMode = AUDIO_LATENCY_MODE_FREE; if (mSupportedLatencyModes.size() == 1) { // If the HAL only support one latency mode currently, confirm the choice latencyMode = mSupportedLatencyModes[0]; } else if (mSupportedLatencyModes.size() > 1) { // Request low latency if: // - The low latency mode is requested by the spatializer controller // (mRequestedLatencyMode = AUDIO_LATENCY_MODE_LOW) // AND // - At least one active track is spatialized for (const auto& track : mActiveTracks) { if (track->isSpatialized()) { latencyMode = mRequestedLatencyMode; break; } } } if (latencyMode != mSetLatencyMode) { status_t status = mOutput->stream->setLatencyMode(latencyMode); ALOGD("%s: thread(%d) setLatencyMode(%s) returned %d", __func__, mId, toString(latencyMode).c_str(), status); if (status == NO_ERROR) { mSetLatencyMode = latencyMode; } } } status_t SpatializerThread::setRequestedLatencyMode(audio_latency_mode_t mode) { if (mode < 0 || mode >= AUDIO_LATENCY_MODE_CNT) { return BAD_VALUE; } audio_utils::lock_guard _l(mutex()); mRequestedLatencyMode = mode; return NO_ERROR; } void SpatializerThread::checkOutputStageEffects() NO_THREAD_SAFETY_ANALYSIS // 'createEffect_l' requires holding mutex 'AudioFlinger_Mutex' exclusively { bool hasVirtualizer = false; bool hasDownMixer = false; sp finalDownMixer; { audio_utils::lock_guard _l(mutex()); sp chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_STAGE); if (chain != 0) { hasVirtualizer = chain->getEffectFromType_l(FX_IID_SPATIALIZER) != nullptr; hasDownMixer = chain->getEffectFromType_l(EFFECT_UIID_DOWNMIX) != nullptr; } finalDownMixer = mFinalDownMixer; mFinalDownMixer.clear(); } if (hasVirtualizer) { if (finalDownMixer != nullptr) { int32_t ret; finalDownMixer->asIEffect()->disable(&ret); } finalDownMixer.clear(); } else if (!hasDownMixer) { std::vector descriptors; status_t status = mAfThreadCallback->getEffectsFactoryHal()->getDescriptors( EFFECT_UIID_DOWNMIX, &descriptors); if (status != NO_ERROR) { return; } ALOG_ASSERT(!descriptors.empty(), "%s getDescriptors() returned no error but empty list", __func__); finalDownMixer = createEffect_l(nullptr /*client*/, nullptr /*effectClient*/, 0 /*priority*/, AUDIO_SESSION_OUTPUT_STAGE, &descriptors[0], nullptr /*enabled*/, &status, false /*pinned*/, false /*probe*/, false /*notifyFramesProcessed*/); if (finalDownMixer == nullptr || (status != NO_ERROR && status != ALREADY_EXISTS)) { ALOGW("%s error creating downmixer %d", __func__, status); finalDownMixer.clear(); } else { int32_t ret; finalDownMixer->asIEffect()->enable(&ret); } } { audio_utils::lock_guard _l(mutex()); mFinalDownMixer = finalDownMixer; } } void SpatializerThread::threadLoop_exit() { // The Spatializer EffectHandle must be released on the PlaybackThread // threadLoop() to prevent lock inversion in the SpatializerThread dtor. mFinalDownMixer.clear(); PlaybackThread::threadLoop_exit(); } // ---------------------------------------------------------------------------- // Record // ---------------------------------------------------------------------------- sp IAfRecordThread::create(const sp& afThreadCallback, AudioStreamIn* input, audio_io_handle_t id, bool systemReady) { return sp::make(afThreadCallback, input, id, systemReady); } RecordThread::RecordThread(const sp& afThreadCallback, AudioStreamIn *input, audio_io_handle_t id, bool systemReady ) : ThreadBase(afThreadCallback, id, RECORD, systemReady, false /* isOut */), mInput(input), mSource(mInput), mActiveTracks(&this->mLocalLog), mRsmpInBuffer(NULL), // mRsmpInFrames, mRsmpInFramesP2, and mRsmpInFramesOA are set by readInputParameters_l() mRsmpInRear(0) , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize, "RecordThreadRO", MemoryHeapBase::READ_ONLY)) // mFastCapture below , mFastCaptureFutex(0) // mInputSource // mPipeSink // mPipeSource , mPipeFramesP2(0) // mPipeMemory // mFastCaptureNBLogWriter , mFastTrackAvail(false) , mBtNrecSuspended(false) { snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id); mNBLogWriter = afThreadCallback->newWriter_l(kLogSize, mThreadName); if (mInput->audioHwDev != nullptr) { mIsMsdDevice = strcmp( mInput->audioHwDev->moduleName(), AUDIO_HARDWARE_MODULE_ID_MSD) == 0; } readInputParameters_l(); // TODO: We may also match on address as well as device type for // AUDIO_DEVICE_IN_BUS, AUDIO_DEVICE_IN_BLUETOOTH_A2DP, AUDIO_DEVICE_IN_REMOTE_SUBMIX // TODO: This property should be ensure that only contains one single device type. mTimestampCorrectedDevice = (audio_devices_t)property_get_int64( "audio.timestamp.corrected_input_device", (int64_t)(mIsMsdDevice ? AUDIO_DEVICE_IN_BUS // turn on by default for MSD : AUDIO_DEVICE_NONE)); // create an NBAIO source for the HAL input stream, and negotiate mInputSource = new AudioStreamInSource(input->stream); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; #if !LOG_NDEBUG [[maybe_unused]] ssize_t index = #else (void) #endif mInputSource->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); // initialize fast capture depending on configuration bool initFastCapture; switch (kUseFastCapture) { case FastCapture_Never: initFastCapture = false; ALOGV("%p kUseFastCapture = Never, initFastCapture = false", this); break; case FastCapture_Always: initFastCapture = true; ALOGV("%p kUseFastCapture = Always, initFastCapture = true", this); break; case FastCapture_Static: initFastCapture = !mIsMsdDevice // Disable fast capture for MSD BUS devices. && audio_is_linear_pcm(mFormat) && (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs; ALOGV("%p kUseFastCapture = Static, format = 0x%x, (%lld * 1000) / %u vs %u, " "initFastCapture = %d, mIsMsdDevice = %d", this, mFormat, (long long)mFrameCount, mSampleRate, kMinNormalCaptureBufferSizeMs, initFastCapture, mIsMsdDevice); break; // case FastCapture_Dynamic: } if (initFastCapture) { // create a Pipe for FastCapture to write to, and for us and fast tracks to read from NBAIO_Format format = mInputSource->format(); // quadruple-buffering of 20 ms each; this ensures we can sleep for 20ms in RecordThread size_t pipeFramesP2 = roundup(4 * FMS_20 * mSampleRate / 1000); size_t pipeSize = pipeFramesP2 * Format_frameSize(format); void *pipeBuffer = nullptr; const sp roHeap(readOnlyHeap()); sp pipeMemory; if ((roHeap == 0) || (pipeMemory = roHeap->allocate(pipeSize)) == 0 || (pipeBuffer = pipeMemory->unsecurePointer()) == nullptr) { ALOGE("not enough memory for pipe buffer size=%zu; " "roHeap=%p, pipeMemory=%p, pipeBuffer=%p; roHeapSize: %lld", pipeSize, roHeap.get(), pipeMemory.get(), pipeBuffer, (long long)kRecordThreadReadOnlyHeapSize); goto failed; } // pipe will be shared directly with fast clients, so clear to avoid leaking old information memset(pipeBuffer, 0, pipeSize); Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer); const NBAIO_Format offersFast[1] = {format}; size_t numCounterOffersFast = 0; [[maybe_unused]] ssize_t index2 = pipe->negotiate(offersFast, std::size(offersFast), nullptr /* counterOffers */, numCounterOffersFast); ALOG_ASSERT(index2 == 0); mPipeSink = pipe; PipeReader *pipeReader = new PipeReader(*pipe); numCounterOffersFast = 0; index2 = pipeReader->negotiate(offersFast, std::size(offersFast), nullptr /* counterOffers */, numCounterOffersFast); ALOG_ASSERT(index2 == 0); mPipeSource = pipeReader; mPipeFramesP2 = pipeFramesP2; mPipeMemory = pipeMemory; // create fast capture mFastCapture = new FastCapture(); FastCaptureStateQueue *sq = mFastCapture->sq(); #ifdef STATE_QUEUE_DUMP // FIXME #endif FastCaptureState *state = sq->begin(); state->mCblk = NULL; state->mInputSource = mInputSource.get(); state->mInputSourceGen++; state->mPipeSink = pipe; state->mPipeSinkGen++; state->mFrameCount = mFrameCount; state->mCommand = FastCaptureState::COLD_IDLE; // already done in constructor initialization list //mFastCaptureFutex = 0; state->mColdFutexAddr = &mFastCaptureFutex; state->mColdGen++; state->mDumpState = &mFastCaptureDumpState; #ifdef TEE_SINK // FIXME #endif mFastCaptureNBLogWriter = afThreadCallback->newWriter_l(kFastCaptureLogSize, "FastCapture"); state->mNBLogWriter = mFastCaptureNBLogWriter.get(); sq->end(); sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); // start the fast capture mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO); pid_t tid = mFastCapture->getTid(); sendPrioConfigEvent(getpid(), tid, kPriorityFastCapture, false /*forApp*/); stream()->setHalThreadPriority(kPriorityFastCapture); #ifdef AUDIO_WATCHDOG // FIXME #endif mFastTrackAvail = true; } #ifdef TEE_SINK mTee.set(mInputSource->format(), NBAIO_Tee::TEE_FLAG_INPUT_THREAD); mTee.setId(std::string("_") + std::to_string(mId) + "_C"); #endif failed: ; // FIXME mNormalSource } RecordThread::~RecordThread() { if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); if (state->mCommand == FastCaptureState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastCaptureFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastCaptureState::EXIT; sq->end(); sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); mFastCapture->join(); mFastCapture.clear(); } mAfThreadCallback->unregisterWriter(mFastCaptureNBLogWriter); mAfThreadCallback->unregisterWriter(mNBLogWriter); free(mRsmpInBuffer); } void RecordThread::onFirstRef() { run(mThreadName, PRIORITY_URGENT_AUDIO); } void RecordThread::preExit() { ALOGV(" preExit()"); audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; track->invalidate(); } mActiveTracks.clear(); mStartStopCV.notify_all(); } bool RecordThread::threadLoop() { nsecs_t lastWarning = 0; inputStandBy(); reacquire_wakelock: { audio_utils::lock_guard _l(mutex()); acquireWakeLock_l(); } // used to request a deferred sleep, to be executed later while mutex is unlocked uint32_t sleepUs = 0; // timestamp correction enable is determined under lock, used in processing step. bool timestampCorrectionEnabled = false; int64_t lastLoopCountRead = -2; // never matches "previous" loop, when loopCount = 0. // loop while there is work to do for (int64_t loopCount = 0;; ++loopCount) { // loopCount used for statistics tracking // Note: these sp<> are released at the end of the for loop outside of the mutex() lock. sp activeTrack; std::vector> oldActiveTracks; Vector> effectChains; // activeTracks accumulates a copy of a subset of mActiveTracks Vector> activeTracks; // reference to the (first and only) active fast track sp fastTrack; // reference to a fast track which is about to be removed sp fastTrackToRemove; bool silenceFastCapture = false; { // scope for mutex() audio_utils::unique_lock _l(mutex()); processConfigEvents_l(); // check exitPending here because checkForNewParameters_l() and // checkForNewParameters_l() can temporarily release mutex() if (exitPending()) { break; } // sleep with mutex unlocked if (sleepUs > 0) { ATRACE_BEGIN("sleepC"); (void)mWaitWorkCV.wait_for(_l, std::chrono::microseconds(sleepUs)); ATRACE_END(); sleepUs = 0; continue; } // if no active track(s), then standby and release wakelock size_t size = mActiveTracks.size(); if (size == 0) { standbyIfNotAlreadyInStandby(); // exitPending() can't become true here releaseWakeLock_l(); ALOGV("RecordThread: loop stopping"); // go to sleep mWaitWorkCV.wait(_l); ALOGV("RecordThread: loop starting"); goto reacquire_wakelock; } bool doBroadcast = false; bool allStopped = true; for (size_t i = 0; i < size; ) { if (activeTrack) { // ensure track release is outside lock. oldActiveTracks.emplace_back(std::move(activeTrack)); } activeTrack = mActiveTracks[i]; if (activeTrack->isTerminated()) { if (activeTrack->isFastTrack()) { ALOG_ASSERT(fastTrackToRemove == 0); fastTrackToRemove = activeTrack; } removeTrack_l(activeTrack); mActiveTracks.remove(activeTrack); size--; continue; } IAfTrackBase::track_state activeTrackState = activeTrack->state(); switch (activeTrackState) { case IAfTrackBase::PAUSING: mActiveTracks.remove(activeTrack); activeTrack->setState(IAfTrackBase::PAUSED); if (activeTrack->isFastTrack()) { ALOGV("%s fast track is paused, thus removed from active list", __func__); // Keep a ref on fast track to wait for FastCapture thread to get updated // state before potential track removal fastTrackToRemove = activeTrack; } doBroadcast = true; size--; continue; case IAfTrackBase::STARTING_1: sleepUs = 10000; i++; allStopped = false; continue; case IAfTrackBase::STARTING_2: doBroadcast = true; if (mStandby) { mThreadMetrics.logBeginInterval(); mThreadSnapshot.onBegin(); mStandby = false; } activeTrack->setState(IAfTrackBase::ACTIVE); allStopped = false; break; case IAfTrackBase::ACTIVE: allStopped = false; break; case IAfTrackBase::IDLE: // cannot be on ActiveTracks if idle case IAfTrackBase::PAUSED: // cannot be on ActiveTracks if paused case IAfTrackBase::STOPPED: // cannot be on ActiveTracks if destroyed/terminated default: LOG_ALWAYS_FATAL("%s: Unexpected active track state:%d, id:%d, tracks:%zu", __func__, activeTrackState, activeTrack->id(), size); } if (activeTrack->isFastTrack()) { ALOG_ASSERT(!mFastTrackAvail); ALOG_ASSERT(fastTrack == 0); // if the active fast track is silenced either: // 1) silence the whole capture from fast capture buffer if this is // the only active track // 2) invalidate this track: this will cause the client to reconnect and possibly // be invalidated again until unsilenced bool invalidate = false; if (activeTrack->isSilenced()) { if (size > 1) { invalidate = true; } else { silenceFastCapture = true; } } // Invalidate fast tracks if access to audio history is required as this is not // possible with fast tracks. Once the fast track has been invalidated, no new // fast track will be created until mMaxSharedAudioHistoryMs is cleared. if (mMaxSharedAudioHistoryMs != 0) { invalidate = true; } if (invalidate) { activeTrack->invalidate(); ALOG_ASSERT(fastTrackToRemove == 0); fastTrackToRemove = activeTrack; removeTrack_l(activeTrack); mActiveTracks.remove(activeTrack); size--; continue; } fastTrack = activeTrack; } activeTracks.add(activeTrack); i++; } mActiveTracks.updatePowerState_l(this); updateMetadata_l(); if (allStopped) { standbyIfNotAlreadyInStandby(); } if (doBroadcast) { mStartStopCV.notify_all(); } // sleep if there are no active tracks to process if (activeTracks.isEmpty()) { if (sleepUs == 0) { sleepUs = kRecordThreadSleepUs; } continue; } sleepUs = 0; timestampCorrectionEnabled = isTimestampCorrectionEnabled_l(); lockEffectChains_l(effectChains); } // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0 size_t size = effectChains.size(); for (size_t i = 0; i < size; i++) { // thread mutex is not locked, but effect chain is locked effectChains[i]->process_l(); } // Push a new fast capture state if fast capture is not already running, or cblk change if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); bool didModify = false; FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED; if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME && (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) { if (state->mCommand == FastCaptureState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastCaptureFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastCaptureState::READ_WRITE; #if 0 // FIXME mFastCaptureDumpState.increaseSamplingN(mAfThreadCallback->isLowRamDevice() ? FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); #endif didModify = true; } audio_track_cblk_t *cblkOld = state->mCblk; audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL; if (cblkNew != cblkOld) { state->mCblk = cblkNew; // block until acked if removing a fast track if (cblkOld != NULL) { block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED; } didModify = true; } AudioBufferProvider* abp = (fastTrack != 0 && fastTrack->isPatchTrack()) ? reinterpret_cast(fastTrack.get()) : nullptr; if (state->mFastPatchRecordBufferProvider != abp) { state->mFastPatchRecordBufferProvider = abp; state->mFastPatchRecordFormat = fastTrack == 0 ? AUDIO_FORMAT_INVALID : fastTrack->format(); didModify = true; } if (state->mSilenceCapture != silenceFastCapture) { state->mSilenceCapture = silenceFastCapture; didModify = true; } sq->end(didModify); if (didModify) { sq->push(block); #if 0 if (kUseFastCapture == FastCapture_Dynamic) { mNormalSource = mPipeSource; } #endif } } // now run the fast track destructor with thread mutex unlocked fastTrackToRemove.clear(); // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one. // Only the client(s) that are too slow will overrun. But if even the fastest client is too // slow, then this RecordThread will overrun by not calling HAL read often enough. // If destination is non-contiguous, first read past the nominal end of buffer, then // copy to the right place. Permitted because mRsmpInBuffer was over-allocated. int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1); ssize_t framesRead = 0; // not needed, remove clang-tidy warning. const int64_t lastIoBeginNs = systemTime(); // start IO timing // If an NBAIO source is present, use it to read the normal capture's data if (mPipeSource != 0) { size_t framesToRead = min(mRsmpInFramesOA - rear, mRsmpInFramesP2 / 2); // The audio fifo read() returns OVERRUN on overflow, and advances the read pointer // to the full buffer point (clearing the overflow condition). Upon OVERRUN error, // we immediately retry the read() to get data and prevent another overflow. for (int retries = 0; retries <= 2; ++retries) { ALOGW_IF(retries > 0, "overrun on read from pipe, retry #%d", retries); framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesToRead); if (framesRead != OVERRUN) break; } const ssize_t availableToRead = mPipeSource->availableToRead(); if (availableToRead >= 0) { mMonopipePipeDepthStats.add(availableToRead); // PipeSource is the primary clock. It is up to the AudioRecord client to keep up. LOG_ALWAYS_FATAL_IF((size_t)availableToRead > mPipeFramesP2, "more frames to read than fifo size, %zd > %zu", availableToRead, mPipeFramesP2); const size_t pipeFramesFree = mPipeFramesP2 - availableToRead; const size_t sleepFrames = min(pipeFramesFree, mRsmpInFramesP2) / 2; ALOGVV("mPipeFramesP2:%zu mRsmpInFramesP2:%zu sleepFrames:%zu availableToRead:%zd", mPipeFramesP2, mRsmpInFramesP2, sleepFrames, availableToRead); sleepUs = (sleepFrames * 1000000LL) / mSampleRate; } if (framesRead < 0) { status_t status = (status_t) framesRead; switch (status) { case OVERRUN: ALOGW("overrun on read from pipe"); framesRead = 0; break; case NEGOTIATE: ALOGE("re-negotiation is needed"); framesRead = -1; // Will cause an attempt to recover. break; default: ALOGE("unknown error %d on read from pipe", status); break; } } // otherwise use the HAL / AudioStreamIn directly } else { ATRACE_BEGIN("read"); size_t bytesRead; status_t result = mSource->read( (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize, &bytesRead); ATRACE_END(); if (result < 0) { framesRead = result; } else { framesRead = bytesRead / mFrameSize; } } const int64_t lastIoEndNs = systemTime(); // end IO timing // Update server timestamp with server stats // systemTime() is optional if the hardware supports timestamps. if (framesRead >= 0) { mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += framesRead; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = lastIoEndNs; } // Update server timestamp with kernel stats if (mPipeSource.get() == nullptr /* don't obtain for FastCapture, could block */) { int64_t position, time; if (mStandby) { mTimestampVerifier.discontinuity(audio_is_linear_pcm(mFormat) ? mTimestampVerifier.DISCONTINUITY_MODE_CONTINUOUS : mTimestampVerifier.DISCONTINUITY_MODE_ZERO); } else if (mSource->getCapturePosition(&position, &time) == NO_ERROR && time > mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL]) { mTimestampVerifier.add(position, time, mSampleRate); if (timestampCorrectionEnabled) { ALOGVV("TS_BEFORE: %d %lld %lld", id(), (long long)time, (long long)position); auto correctedTimestamp = mTimestampVerifier.getLastCorrectedTimestamp(); position = correctedTimestamp.mFrames; time = correctedTimestamp.mTimeNs; ALOGVV("TS_AFTER: %d %lld %lld", id(), (long long)time, (long long)position); } mTimestamp.mPosition[ExtendedTimestamp::LOCATION_KERNEL] = position; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_KERNEL] = time; // Note: In general record buffers should tend to be empty in // a properly running pipeline. // // Also, it is not advantageous to call get_presentation_position during the read // as the read obtains a lock, preventing the timestamp call from executing. } else { mTimestampVerifier.error(); } } // From the timestamp, input read latency is negative output write latency. const audio_input_flags_t flags = mInput != NULL ? mInput->flags : AUDIO_INPUT_FLAG_NONE; const double latencyMs = IAfRecordTrack::checkServerLatencySupported(mFormat, flags) ? - mTimestamp.getOutputServerLatencyMs(mSampleRate) : 0.; if (latencyMs != 0.) { // note 0. means timestamp is empty. mLatencyMs.add(latencyMs); } // Use this to track timestamp information // ALOGD("%s", mTimestamp.toString().c_str()); if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) { ALOGE("read failed: framesRead=%zd", framesRead); // Force input into standby so that it tries to recover at next read attempt inputStandBy(); sleepUs = kRecordThreadSleepUs; } if (framesRead <= 0) { goto unlock; } ALOG_ASSERT(framesRead > 0); mFramesRead += framesRead; #ifdef TEE_SINK (void)mTee.write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead); #endif // If destination is non-contiguous, we now correct for reading past end of buffer. { size_t part1 = mRsmpInFramesP2 - rear; if ((size_t) framesRead > part1) { memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize, (framesRead - part1) * mFrameSize); } } mRsmpInRear = audio_utils::safe_add_overflow(mRsmpInRear, (int32_t)framesRead); size = activeTracks.size(); // loop over each active track for (size_t i = 0; i < size; i++) { activeTrack = activeTracks[i]; // skip fast tracks, as those are handled directly by FastCapture if (activeTrack->isFastTrack()) { continue; } // TODO: This code probably should be moved to RecordTrack. // TODO: Update the activeTrack buffer converter in case of reconfigure. enum { OVERRUN_UNKNOWN, OVERRUN_TRUE, OVERRUN_FALSE } overrun = OVERRUN_UNKNOWN; // loop over getNextBuffer to handle circular sink for (;;) { activeTrack->sinkBuffer().frameCount = ~0; status_t status = activeTrack->getNextBuffer(&activeTrack->sinkBuffer()); size_t framesOut = activeTrack->sinkBuffer().frameCount; LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0)); // check available frames and handle overrun conditions // if the record track isn't draining fast enough. bool hasOverrun; size_t framesIn; activeTrack->resamplerBufferProvider()->sync(&framesIn, &hasOverrun); if (hasOverrun) { overrun = OVERRUN_TRUE; } if (framesOut == 0 || framesIn == 0) { break; } // Don't allow framesOut to be larger than what is possible with resampling // from framesIn. // This isn't strictly necessary but helps limit buffer resizing in // RecordBufferConverter. TODO: remove when no longer needed. if (audio_is_linear_pcm(activeTrack->format())) { framesOut = min(framesOut, destinationFramesPossible( framesIn, mSampleRate, activeTrack->sampleRate())); } if (activeTrack->isDirect()) { // No RecordBufferConverter used for direct streams. Pass // straight from RecordThread buffer to RecordTrack buffer. AudioBufferProvider::Buffer buffer; buffer.frameCount = framesOut; const status_t getNextBufferStatus = activeTrack->resamplerBufferProvider()->getNextBuffer(&buffer); if (getNextBufferStatus == OK && buffer.frameCount != 0) { ALOGV_IF(buffer.frameCount != framesOut, "%s() read less than expected (%zu vs %zu)", __func__, buffer.frameCount, framesOut); framesOut = buffer.frameCount; memcpy(activeTrack->sinkBuffer().raw, buffer.raw, buffer.frameCount * mFrameSize); activeTrack->resamplerBufferProvider()->releaseBuffer(&buffer); } else { framesOut = 0; ALOGE("%s() cannot fill request, status: %d, frameCount: %zu", __func__, getNextBufferStatus, buffer.frameCount); } } else { // process frames from the RecordThread buffer provider to the RecordTrack // buffer framesOut = activeTrack->recordBufferConverter()->convert( activeTrack->sinkBuffer().raw, activeTrack->resamplerBufferProvider(), framesOut); } if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) { overrun = OVERRUN_FALSE; } // MediaSyncEvent handling: Synchronize AudioRecord to AudioTrack completion. const ssize_t framesToDrop = activeTrack->synchronizedRecordState().updateRecordFrames(framesOut); if (framesToDrop == 0) { // no sync event, process normally, otherwise ignore. if (framesOut > 0) { activeTrack->sinkBuffer().frameCount = framesOut; // Sanitize before releasing if the track has no access to the source data // An idle UID receives silence from non virtual devices until active if (activeTrack->isSilenced()) { memset(activeTrack->sinkBuffer().raw, 0, framesOut * activeTrack->frameSize()); } activeTrack->releaseBuffer(&activeTrack->sinkBuffer()); } } if (framesOut == 0) { break; } } switch (overrun) { case OVERRUN_TRUE: // client isn't retrieving buffers fast enough if (!activeTrack->setOverflow()) { nsecs_t now = systemTime(); // FIXME should lastWarning per track? if ((now - lastWarning) > kWarningThrottleNs) { ALOGW("RecordThread: buffer overflow"); lastWarning = now; } } break; case OVERRUN_FALSE: activeTrack->clearOverflow(); break; case OVERRUN_UNKNOWN: break; } // update frame information and push timestamp out activeTrack->updateTrackFrameInfo( activeTrack->serverProxy()->framesReleased(), mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER], mSampleRate, mTimestamp); } unlock: // enable changes in effect chain unlockEffectChains(effectChains); // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end if (audio_has_proportional_frames(mFormat) && loopCount == lastLoopCountRead + 1) { const int64_t readPeriodNs = lastIoEndNs - mLastIoEndNs; const double jitterMs = TimestampVerifier::computeJitterMs( {framesRead, readPeriodNs}, {0, 0} /* lastTimestamp */, mSampleRate); const double processMs = (lastIoBeginNs - mLastIoEndNs) * 1e-6; audio_utils::lock_guard _l(mutex()); mIoJitterMs.add(jitterMs); mProcessTimeMs.add(processMs); } // update timing info. mLastIoBeginNs = lastIoBeginNs; mLastIoEndNs = lastIoEndNs; lastLoopCountRead = loopCount; } standbyIfNotAlreadyInStandby(); { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; track->invalidate(); } mActiveTracks.clear(); mStartStopCV.notify_all(); } releaseWakeLock(); ALOGV("RecordThread %p exiting", this); return false; } void RecordThread::standbyIfNotAlreadyInStandby() { if (!mStandby) { inputStandBy(); mThreadMetrics.logEndInterval(); mThreadSnapshot.onEnd(); mStandby = true; } } void RecordThread::inputStandBy() { // Idle the fast capture if it's currently running if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); if (!(state->mCommand & FastCaptureState::IDLE)) { state->mCommand = FastCaptureState::COLD_IDLE; state->mColdFutexAddr = &mFastCaptureFutex; state->mColdGen++; mFastCaptureFutex = 0; sq->end(); // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED); #if 0 if (kUseFastCapture == FastCapture_Dynamic) { // FIXME } #endif #ifdef AUDIO_WATCHDOG // FIXME #endif } else { sq->end(false /*didModify*/); } } status_t result = mSource->standby(); ALOGE_IF(result != OK, "Error when putting input stream into standby: %d", result); // If going into standby, flush the pipe source. if (mPipeSource.get() != nullptr) { const ssize_t flushed = mPipeSource->flush(); if (flushed > 0) { ALOGV("Input standby flushed PipeSource %zd frames", flushed); mTimestamp.mPosition[ExtendedTimestamp::LOCATION_SERVER] += flushed; mTimestamp.mTimeNs[ExtendedTimestamp::LOCATION_SERVER] = systemTime(); } } } // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mutex() held sp RecordThread::createRecordTrack_l( const sp& client, const audio_attributes_t& attr, uint32_t *pSampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, audio_session_t sessionId, size_t *pNotificationFrameCount, pid_t creatorPid, const AttributionSourceState& attributionSource, audio_input_flags_t *flags, pid_t tid, status_t *status, audio_port_handle_t portId, int32_t maxSharedAudioHistoryMs) { size_t frameCount = *pFrameCount; size_t notificationFrameCount = *pNotificationFrameCount; sp track; status_t lStatus; audio_input_flags_t inputFlags = mInput->flags; audio_input_flags_t requestedFlags = *flags; uint32_t sampleRate; lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGE("createRecordTrack_l() audio driver not initialized"); goto Exit; } if (!audio_is_linear_pcm(mFormat) && (*flags & AUDIO_INPUT_FLAG_DIRECT) == 0) { ALOGE("createRecordTrack_l() on an encoded stream requires AUDIO_INPUT_FLAG_DIRECT"); lStatus = BAD_VALUE; goto Exit; } if (maxSharedAudioHistoryMs != 0) { if (!captureHotwordAllowed(attributionSource)) { lStatus = PERMISSION_DENIED; goto Exit; } if (maxSharedAudioHistoryMs < 0 || maxSharedAudioHistoryMs > kMaxSharedAudioHistoryMs) { lStatus = BAD_VALUE; goto Exit; } } if (*pSampleRate == 0) { *pSampleRate = mSampleRate; } sampleRate = *pSampleRate; // special case for FAST flag considered OK if fast capture is present and access to // audio history is not required if (hasFastCapture() && mMaxSharedAudioHistoryMs == 0) { inputFlags = (audio_input_flags_t)(inputFlags | AUDIO_INPUT_FLAG_FAST); } // Check if requested flags are compatible with input stream flags if ((*flags & inputFlags) != *flags) { ALOGW("createRecordTrack_l(): mismatch between requested flags (%08x) and" " input flags (%08x)", *flags, inputFlags); *flags = (audio_input_flags_t)(*flags & inputFlags); } // client expresses a preference for FAST and no access to audio history, // but we get the final say if (*flags & AUDIO_INPUT_FLAG_FAST && maxSharedAudioHistoryMs == 0) { if ( // we formerly checked for a callback handler (non-0 tid), // but that is no longer required for TRANSFER_OBTAIN mode // No need to match hardware format, format conversion will be done in client side. // // Frame count is not specified (0), or is less than or equal the pipe depth. // It is OK to provide a higher capacity than requested. // We will force it to mPipeFramesP2 below. (frameCount <= mPipeFramesP2) && // PCM data audio_is_linear_pcm(format) && // hardware channel mask (channelMask == mChannelMask) && // hardware sample rate (sampleRate == mSampleRate) && // record thread has an associated fast capture hasFastCapture() && // there are sufficient fast track slots available mFastTrackAvail ) { // check compatibility with audio effects. audio_utils::lock_guard _l(mutex()); // Do not accept FAST flag if the session has software effects sp chain = getEffectChain_l(sessionId); if (chain != 0) { audio_input_flags_t old = *flags; chain->checkInputFlagCompatibility(flags); if (old != *flags) { ALOGV("%p AUDIO_INPUT_FLAGS denied by effect old=%#x new=%#x", this, (int)old, (int)*flags); } } ALOGV_IF((*flags & AUDIO_INPUT_FLAG_FAST) != 0, "%p AUDIO_INPUT_FLAG_FAST accepted: frameCount=%zu mFrameCount=%zu", this, frameCount, mFrameCount); } else { ALOGV("%p AUDIO_INPUT_FLAG_FAST denied: frameCount=%zu mFrameCount=%zu mPipeFramesP2=%zu " "format=%#x isLinear=%d mFormat=%#x channelMask=%#x sampleRate=%u mSampleRate=%u " "hasFastCapture=%d tid=%d mFastTrackAvail=%d", this, frameCount, mFrameCount, mPipeFramesP2, format, audio_is_linear_pcm(format), mFormat, channelMask, sampleRate, mSampleRate, hasFastCapture(), tid, mFastTrackAvail); *flags = (audio_input_flags_t)(*flags & ~AUDIO_INPUT_FLAG_FAST); } } // If FAST or RAW flags were corrected, ask caller to request new input from audio policy if ((*flags & AUDIO_INPUT_FLAG_FAST) != (requestedFlags & AUDIO_INPUT_FLAG_FAST)) { *flags = (audio_input_flags_t) (*flags & ~(AUDIO_INPUT_FLAG_FAST | AUDIO_INPUT_FLAG_RAW)); lStatus = BAD_TYPE; goto Exit; } // compute track buffer size in frames, and suggest the notification frame count if (*flags & AUDIO_INPUT_FLAG_FAST) { // fast track: frame count is exactly the pipe depth frameCount = mPipeFramesP2; // ignore requested notificationFrames, and always notify exactly once every HAL buffer notificationFrameCount = mFrameCount; } else { // not fast track: max notification period is resampled equivalent of one HAL buffer time // or 20 ms if there is a fast capture // TODO This could be a roundupRatio inline, and const size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount) * sampleRate + mSampleRate - 1) / mSampleRate; // minimum number of notification periods is at least kMinNotifications, // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs) static const size_t kMinNotifications = 3; static const uint32_t kMinMs = 30; // TODO This could be a roundupRatio inline const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000; // TODO This could be a roundupRatio inline const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) / maxNotificationFrames; const size_t minFrameCount = maxNotificationFrames * max(kMinNotifications, minNotificationsByMs); frameCount = max(frameCount, minFrameCount); if (notificationFrameCount == 0 || notificationFrameCount > maxNotificationFrames) { notificationFrameCount = maxNotificationFrames; } } *pFrameCount = frameCount; *pNotificationFrameCount = notificationFrameCount; { // scope for mutex() audio_utils::lock_guard _l(mutex()); int32_t startFrames = -1; if (!mSharedAudioPackageName.empty() && mSharedAudioPackageName == attributionSource.packageName && mSharedAudioSessionId == sessionId && captureHotwordAllowed(attributionSource)) { startFrames = mSharedAudioStartFrames; } track = IAfRecordTrack::create(this, client, attr, sampleRate, format, channelMask, frameCount, nullptr /* buffer */, (size_t)0 /* bufferSize */, sessionId, creatorPid, attributionSource, *flags, IAfTrackBase::TYPE_DEFAULT, portId, startFrames); lStatus = track->initCheck(); if (lStatus != NO_ERROR) { ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus); // track must be cleared from the caller as the caller has the AF lock goto Exit; } mTracks.add(track); if ((*flags & AUDIO_INPUT_FLAG_FAST) && (tid != -1)) { pid_t callingPid = IPCThreadState::self()->getCallingPid(); // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, // so ask activity manager to do this on our behalf sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp, true /*forApp*/); } if (maxSharedAudioHistoryMs != 0) { sendResizeBufferConfigEvent_l(maxSharedAudioHistoryMs); } } lStatus = NO_ERROR; Exit: *status = lStatus; return track; } status_t RecordThread::start(IAfRecordTrack* recordTrack, AudioSystem::sync_event_t event, audio_session_t triggerSession) { ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession); sp strongMe = this; status_t status = NO_ERROR; if (event == AudioSystem::SYNC_EVENT_NONE) { recordTrack->clearSyncStartEvent(); } else if (event != AudioSystem::SYNC_EVENT_SAME) { recordTrack->synchronizedRecordState().startRecording( mAfThreadCallback->createSyncEvent( event, triggerSession, recordTrack->sessionId(), syncStartEventCallback, recordTrack)); } { // This section is a rendezvous between binder thread executing start() and RecordThread audio_utils::lock_guard lock(mutex()); if (recordTrack->isInvalid()) { recordTrack->clearSyncStartEvent(); ALOGW("%s track %d: invalidated before startInput", __func__, recordTrack->portId()); return DEAD_OBJECT; } if (mActiveTracks.indexOf(recordTrack) >= 0) { if (recordTrack->state() == IAfTrackBase::PAUSING) { // We haven't stopped yet (moved to PAUSED and not in mActiveTracks) // so no need to startInput(). ALOGV("active record track PAUSING -> ACTIVE"); recordTrack->setState(IAfTrackBase::ACTIVE); } else { ALOGV("active record track state %d", (int)recordTrack->state()); } return status; } // TODO consider other ways of handling this, such as changing the state to :STARTING and // adding the track to mActiveTracks after returning from AudioSystem::startInput(), // or using a separate command thread recordTrack->setState(IAfTrackBase::STARTING_1); mActiveTracks.add(recordTrack); if (recordTrack->isExternalTrack()) { mutex().unlock(); status = AudioSystem::startInput(recordTrack->portId()); mutex().lock(); if (recordTrack->isInvalid()) { recordTrack->clearSyncStartEvent(); if (status == NO_ERROR && recordTrack->state() == IAfTrackBase::STARTING_1) { recordTrack->setState(IAfTrackBase::STARTING_2); // STARTING_2 forces destroy to call stopInput. } ALOGW("%s track %d: invalidated after startInput", __func__, recordTrack->portId()); return DEAD_OBJECT; } if (recordTrack->state() != IAfTrackBase::STARTING_1) { ALOGW("%s(%d): unsynchronized mState:%d change", __func__, recordTrack->id(), (int)recordTrack->state()); // Someone else has changed state, let them take over, // leave mState in the new state. recordTrack->clearSyncStartEvent(); return INVALID_OPERATION; } // we're ok, but perhaps startInput has failed if (status != NO_ERROR) { ALOGW("%s(%d): startInput failed, status %d", __func__, recordTrack->id(), status); // We are in ActiveTracks if STARTING_1 and valid, so remove from ActiveTracks, // leave in STARTING_1, so destroy() will not call stopInput. mActiveTracks.remove(recordTrack); recordTrack->clearSyncStartEvent(); return status; } sendIoConfigEvent_l( AUDIO_CLIENT_STARTED, recordTrack->creatorPid(), recordTrack->portId()); } recordTrack->logBeginInterval(patchSourcesToString(&mPatch)); // log to MediaMetrics // Catch up with current buffer indices if thread is already running. // This is what makes a new client discard all buffered data. If the track's mRsmpInFront // was initialized to some value closer to the thread's mRsmpInFront, then the track could // see previously buffered data before it called start(), but with greater risk of overrun. recordTrack->resamplerBufferProvider()->reset(); if (!recordTrack->isDirect()) { // clear any converter state as new data will be discontinuous recordTrack->recordBufferConverter()->reset(); } recordTrack->setState(IAfTrackBase::STARTING_2); // signal thread to start mWaitWorkCV.notify_all(); return status; } } void RecordThread::syncStartEventCallback(const wp& event) { const sp strongEvent = event.promote(); if (strongEvent != 0) { sp ptr = std::any_cast>(strongEvent->cookie()).promote(); if (ptr != nullptr) { // TODO(b/291317898) handleSyncStartEvent is in IAfTrackBase not IAfRecordTrack. ptr->handleSyncStartEvent(strongEvent); } } } bool RecordThread::stop(IAfRecordTrack* recordTrack) { ALOGV("RecordThread::stop"); audio_utils::unique_lock _l(mutex()); // if we're invalid, we can't be on the ActiveTracks. if (mActiveTracks.indexOf(recordTrack) < 0 || recordTrack->state() == IAfTrackBase::PAUSING) { return false; } // note that threadLoop may still be processing the track at this point [without lock] recordTrack->setState(IAfTrackBase::PAUSING); // NOTE: Waiting here is important to keep stop synchronous. // This is needed for proper patchRecord peer release. while (recordTrack->state() == IAfTrackBase::PAUSING && !recordTrack->isInvalid()) { mWaitWorkCV.notify_all(); // signal thread to stop mStartStopCV.wait(_l, getTid()); } if (recordTrack->state() == IAfTrackBase::PAUSED) { // successful stop ALOGV("Record stopped OK"); return true; } // don't handle anything - we've been invalidated or restarted and in a different state ALOGW_IF("%s(%d): unsynchronized stop, state: %d", __func__, recordTrack->id(), recordTrack->state()); return false; } bool RecordThread::isValidSyncEvent(const sp& /* event */) const { return false; } status_t RecordThread::setSyncEvent(const sp& /* event */) { #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future if (!isValidSyncEvent(event)) { return BAD_VALUE; } audio_session_t eventSession = event->triggerSession(); status_t ret = NAME_NOT_FOUND; audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; if (eventSession == track->sessionId()) { (void) track->setSyncEvent(event); ret = NO_ERROR; } } return ret; #else return BAD_VALUE; #endif } status_t RecordThread::getActiveMicrophones( std::vector* activeMicrophones) const { ALOGV("RecordThread::getActiveMicrophones"); audio_utils::lock_guard _l(mutex()); if (!isStreamInitialized()) { return NO_INIT; } status_t status = mInput->stream->getActiveMicrophones(activeMicrophones); return status; } status_t RecordThread::setPreferredMicrophoneDirection( audio_microphone_direction_t direction) { ALOGV("setPreferredMicrophoneDirection(%d)", direction); audio_utils::lock_guard _l(mutex()); if (!isStreamInitialized()) { return NO_INIT; } return mInput->stream->setPreferredMicrophoneDirection(direction); } status_t RecordThread::setPreferredMicrophoneFieldDimension(float zoom) { ALOGV("setPreferredMicrophoneFieldDimension(%f)", zoom); audio_utils::lock_guard _l(mutex()); if (!isStreamInitialized()) { return NO_INIT; } return mInput->stream->setPreferredMicrophoneFieldDimension(zoom); } status_t RecordThread::shareAudioHistory( const std::string& sharedAudioPackageName, audio_session_t sharedSessionId, int64_t sharedAudioStartMs) { audio_utils::lock_guard _l(mutex()); return shareAudioHistory_l(sharedAudioPackageName, sharedSessionId, sharedAudioStartMs); } status_t RecordThread::shareAudioHistory_l( const std::string& sharedAudioPackageName, audio_session_t sharedSessionId, int64_t sharedAudioStartMs) { if ((hasAudioSession_l(sharedSessionId) & ThreadBase::TRACK_SESSION) == 0) { return BAD_VALUE; } if (sharedAudioStartMs < 0 || sharedAudioStartMs > INT64_MAX / mSampleRate) { return BAD_VALUE; } // Current implementation of the input resampling buffer wraps around indexes at 32 bit. // As we cannot detect more than one wraparound, only accept values up current write position // after one wraparound // We assume recent wraparounds on mRsmpInRear only given it is unlikely that the requesting // app waits several hours after the start time was computed. int64_t sharedAudioStartFrames = sharedAudioStartMs * mSampleRate / 1000; const int32_t sharedOffset = audio_utils::safe_sub_overflow(mRsmpInRear, (int32_t)sharedAudioStartFrames); // Bring the start frame position within the input buffer to match the documented // "best effort" behavior of the API. if (sharedOffset < 0) { sharedAudioStartFrames = mRsmpInRear; } else if (sharedOffset > static_cast(mRsmpInFrames)) { sharedAudioStartFrames = audio_utils::safe_sub_overflow(mRsmpInRear, (int32_t)mRsmpInFrames); } mSharedAudioPackageName = sharedAudioPackageName; if (mSharedAudioPackageName.empty()) { resetAudioHistory_l(); } else { mSharedAudioSessionId = sharedSessionId; mSharedAudioStartFrames = (int32_t)sharedAudioStartFrames; } return NO_ERROR; } void RecordThread::resetAudioHistory_l() { mSharedAudioSessionId = AUDIO_SESSION_NONE; mSharedAudioStartFrames = -1; mSharedAudioPackageName = ""; } ThreadBase::MetadataUpdate RecordThread::updateMetadata_l() { if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) { return {}; // nothing to do } StreamInHalInterface::SinkMetadata metadata; auto backInserter = std::back_inserter(metadata.tracks); for (const sp& track : mActiveTracks) { track->copyMetadataTo(backInserter); } mInput->stream->updateSinkMetadata(metadata); MetadataUpdate change; change.recordMetadataUpdate = metadata.tracks; return change; } // destroyTrack_l() must be called with ThreadBase::mutex() held void RecordThread::destroyTrack_l(const sp& track) { track->terminate(); track->setState(IAfTrackBase::STOPPED); // active tracks are removed by threadLoop() if (mActiveTracks.indexOf(track) < 0) { removeTrack_l(track); } } void RecordThread::removeTrack_l(const sp& track) { String8 result; track->appendDump(result, false /* active */); mLocalLog.log("removeTrack_l (%p) %s", track.get(), result.c_str()); mTracks.remove(track); // need anything related to effects here? if (track->isFastTrack()) { ALOG_ASSERT(!mFastTrackAvail); mFastTrackAvail = true; } } void RecordThread::dumpInternals_l(int fd, const Vector& /* args */) { AudioStreamIn *input = mInput; audio_input_flags_t flags = input != NULL ? input->flags : AUDIO_INPUT_FLAG_NONE; dprintf(fd, " AudioStreamIn: %p flags %#x (%s)\n", input, flags, toString(flags).c_str()); dprintf(fd, " Frames read: %lld\n", (long long)mFramesRead); if (mActiveTracks.isEmpty()) { dprintf(fd, " No active record clients\n"); } if (input != nullptr) { dprintf(fd, " Hal stream dump:\n"); (void)input->stream->dump(fd); } dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no"); dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no"); // Make a non-atomic copy of fast capture dump state so it won't change underneath us // while we are dumping it. It may be inconsistent, but it won't mutate! // This is a large object so we place it on the heap. // FIXME 25972958: Need an intelligent copy constructor that does not touch unused pages. const std::unique_ptr copy = std::make_unique(mFastCaptureDumpState); copy->dump(fd); } void RecordThread::dumpTracks_l(int fd, const Vector& /* args */) { String8 result; size_t numtracks = mTracks.size(); size_t numactive = mActiveTracks.size(); size_t numactiveseen = 0; dprintf(fd, " %zu Tracks", numtracks); const char *prefix = " "; if (numtracks) { dprintf(fd, " of which %zu are active\n", numactive); result.append(prefix); mTracks[0]->appendDumpHeader(result); for (size_t i = 0; i < numtracks ; ++i) { sp track = mTracks[i]; if (track != 0) { bool active = mActiveTracks.indexOf(track) >= 0; if (active) { numactiveseen++; } result.append(prefix); track->appendDump(result, active); } } } else { dprintf(fd, "\n"); } if (numactiveseen != numactive) { result.append(" The following tracks are in the active list but" " not in the track list\n"); result.append(prefix); mActiveTracks[0]->appendDumpHeader(result); for (size_t i = 0; i < numactive; ++i) { sp track = mActiveTracks[i]; if (mTracks.indexOf(track) < 0) { result.append(prefix); track->appendDump(result, true /* active */); } } } write(fd, result.c_str(), result.size()); } void RecordThread::setRecordSilenced(audio_port_handle_t portId, bool silenced) { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mTracks.size() ; i++) { sp track = mTracks[i]; if (track != 0 && track->portId() == portId) { track->setSilenced(silenced); } } } void ResamplerBufferProvider::reset() { const auto threadBase = mRecordTrack->thread().promote(); auto* const recordThread = static_cast(threadBase->asIAfRecordThread().get()); mRsmpInUnrel = 0; const int32_t rear = recordThread->mRsmpInRear; ssize_t deltaFrames = 0; if (mRecordTrack->startFrames() >= 0) { int32_t startFrames = mRecordTrack->startFrames(); // Accept a recent wraparound of mRsmpInRear if (startFrames <= rear) { deltaFrames = rear - startFrames; } else { deltaFrames = (int32_t)((int64_t)rear + UINT32_MAX + 1 - startFrames); } // start frame cannot be further in the past than start of resampling buffer if ((size_t) deltaFrames > recordThread->mRsmpInFrames) { deltaFrames = recordThread->mRsmpInFrames; } } mRsmpInFront = audio_utils::safe_sub_overflow(rear, static_cast(deltaFrames)); } void ResamplerBufferProvider::sync( size_t *framesAvailable, bool *hasOverrun) { const auto threadBase = mRecordTrack->thread().promote(); auto* const recordThread = static_cast(threadBase->asIAfRecordThread().get()); const int32_t rear = recordThread->mRsmpInRear; const int32_t front = mRsmpInFront; const ssize_t filled = audio_utils::safe_sub_overflow(rear, front); size_t framesIn; bool overrun = false; if (filled < 0) { // should not happen, but treat like a massive overrun and re-sync framesIn = 0; mRsmpInFront = rear; overrun = true; } else if ((size_t) filled <= recordThread->mRsmpInFrames) { framesIn = (size_t) filled; } else { // client is not keeping up with server, but give it latest data framesIn = recordThread->mRsmpInFrames; mRsmpInFront = /* front = */ audio_utils::safe_sub_overflow( rear, static_cast(framesIn)); overrun = true; } if (framesAvailable != NULL) { *framesAvailable = framesIn; } if (hasOverrun != NULL) { *hasOverrun = overrun; } } // AudioBufferProvider interface status_t ResamplerBufferProvider::getNextBuffer( AudioBufferProvider::Buffer* buffer) { const auto threadBase = mRecordTrack->thread().promote(); if (threadBase == 0) { buffer->frameCount = 0; buffer->raw = NULL; return NOT_ENOUGH_DATA; } auto* const recordThread = static_cast(threadBase->asIAfRecordThread().get()); int32_t rear = recordThread->mRsmpInRear; int32_t front = mRsmpInFront; ssize_t filled = audio_utils::safe_sub_overflow(rear, front); // FIXME should not be P2 (don't want to increase latency) // FIXME if client not keeping up, discard LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames)); // 'filled' may be non-contiguous, so return only the first contiguous chunk front &= recordThread->mRsmpInFramesP2 - 1; size_t part1 = recordThread->mRsmpInFramesP2 - front; if (part1 > (size_t) filled) { part1 = filled; } size_t ask = buffer->frameCount; ALOG_ASSERT(ask > 0); if (part1 > ask) { part1 = ask; } if (part1 == 0) { // out of data is fine since the resampler will return a short-count. buffer->raw = NULL; buffer->frameCount = 0; mRsmpInUnrel = 0; return NOT_ENOUGH_DATA; } buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize; buffer->frameCount = part1; mRsmpInUnrel = part1; return NO_ERROR; } // AudioBufferProvider interface void ResamplerBufferProvider::releaseBuffer( AudioBufferProvider::Buffer* buffer) { int32_t stepCount = static_cast(buffer->frameCount); if (stepCount == 0) { return; } ALOG_ASSERT(stepCount <= (int32_t)mRsmpInUnrel); mRsmpInUnrel -= stepCount; mRsmpInFront = audio_utils::safe_add_overflow(mRsmpInFront, stepCount); buffer->raw = NULL; buffer->frameCount = 0; } void RecordThread::checkBtNrec() { audio_utils::lock_guard _l(mutex()); checkBtNrec_l(); } void RecordThread::checkBtNrec_l() { // disable AEC and NS if the device is a BT SCO headset supporting those // pre processings bool suspend = audio_is_bluetooth_sco_device(inDeviceType_l()) && mAfThreadCallback->btNrecIsOff(); if (mBtNrecSuspended.exchange(suspend) != suspend) { for (size_t i = 0; i < mEffectChains.size(); i++) { setEffectSuspended_l(FX_IID_AEC, suspend, mEffectChains[i]->sessionId()); setEffectSuspended_l(FX_IID_NS, suspend, mEffectChains[i]->sessionId()); } } } bool RecordThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; status = NO_ERROR; audio_format_t reqFormat = mFormat; uint32_t samplingRate = mSampleRate; // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs). [[maybe_unused]] audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount); AudioParameter param = AudioParameter(keyValuePair); int value; // scope for AutoPark extends to end of method AutoPark park(mFastCapture); // TODO Investigate when this code runs. Check with audio policy when a sample rate and // channel count change can be requested. Do we mandate the first client defines the // HAL sampling rate and channel count or do we allow changes on the fly? if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { samplingRate = value; reconfig = true; } if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { if (!audio_is_linear_pcm((audio_format_t) value)) { status = BAD_VALUE; } else { reqFormat = (audio_format_t) value; reconfig = true; } } if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { audio_channel_mask_t mask = (audio_channel_mask_t) value; if (!audio_is_input_channel(mask) || audio_channel_count_from_in_mask(mask) > FCC_LIMIT) { status = BAD_VALUE; } else { channelMask = mask; reconfig = true; } } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be guaranteed // if frame count is changed after track creation if (mActiveTracks.size() > 0) { status = INVALID_OPERATION; } else { reconfig = true; } } if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { LOG_FATAL("Should not set routing device in RecordThread"); } if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR && mAudioSource != (audio_source_t)value) { LOG_FATAL("Should not set audio source in RecordThread"); } if (status == NO_ERROR) { status = mInput->stream->setParameters(keyValuePair); if (status == INVALID_OPERATION) { inputStandBy(); status = mInput->stream->setParameters(keyValuePair); } if (reconfig) { if (status == BAD_VALUE) { audio_config_base_t config = AUDIO_CONFIG_BASE_INITIALIZER; if (mInput->stream->getAudioProperties(&config) == OK && audio_is_linear_pcm(config.format) && audio_is_linear_pcm(reqFormat) && config.sample_rate <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate) && audio_channel_count_from_in_mask(config.channel_mask) <= FCC_LIMIT) { status = NO_ERROR; } } if (status == NO_ERROR) { readInputParameters_l(); sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); } } } return reconfig; } String8 RecordThread::getParameters(const String8& keys) { audio_utils::lock_guard _l(mutex()); if (initCheck() == NO_ERROR) { String8 out_s8; if (mInput->stream->getParameters(keys, &out_s8) == OK) { return out_s8; } } return {}; } void RecordThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid, audio_port_handle_t portId) { sp desc; switch (event) { case AUDIO_INPUT_OPENED: case AUDIO_INPUT_REGISTERED: case AUDIO_INPUT_CONFIG_CHANGED: desc = sp::make(mId, mPatch, true /*isInput*/, mSampleRate, mFormat, mChannelMask, mFrameCount, mFrameCount); break; case AUDIO_CLIENT_STARTED: desc = sp::make(mId, mPatch, portId); break; case AUDIO_INPUT_CLOSED: default: desc = sp::make(mId); break; } mAfThreadCallback->ioConfigChanged_l(event, desc, pid); } void RecordThread::readInputParameters_l() { const audio_config_base_t audioConfig = mInput->getAudioProperties(); mSampleRate = audioConfig.sample_rate; mChannelMask = audioConfig.channel_mask; if (!audio_is_input_channel(mChannelMask)) { LOG_ALWAYS_FATAL("Channel mask %#x not valid for input", mChannelMask); } mChannelCount = audio_channel_count_from_in_mask(mChannelMask); // Get actual HAL format. status_t result = mInput->stream->getAudioProperties(nullptr, nullptr, &mHALFormat); LOG_ALWAYS_FATAL_IF(result != OK, "Error when retrieving input stream format: %d", result); // Get format from the shim, which will be different than the HAL format // if recording compressed audio from IEC61937 wrapped sources. mFormat = audioConfig.format; if (!audio_is_valid_format(mFormat)) { LOG_ALWAYS_FATAL("Format %#x not valid for input", mFormat); } if (audio_is_linear_pcm(mFormat)) { LOG_ALWAYS_FATAL_IF(mChannelCount > FCC_LIMIT, "HAL channel count %d > %d", mChannelCount, FCC_LIMIT); } else { // Can have more that FCC_LIMIT channels in encoded streams. ALOGI("HAL format %#x is not linear pcm", mFormat); } mFrameSize = mInput->getFrameSize(); LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero", mFrameSize); result = mInput->stream->getBufferSize(&mBufferSize); LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result); mFrameCount = mBufferSize / mFrameSize; ALOGV("%p RecordThread params: mChannelCount=%u, mFormat=%#x, mFrameSize=%zu, " "mBufferSize=%zu, mFrameCount=%zu", this, mChannelCount, mFormat, mFrameSize, mBufferSize, mFrameCount); // mRsmpInFrames must be 0 before calling resizeInputBuffer_l for the first time mRsmpInFrames = 0; resizeInputBuffer_l(0 /*maxSharedAudioHistoryMs*/); // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints. // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks? audio_input_flags_t flags = mInput->flags; mediametrics::LogItem item(mThreadMetrics.getMetricsId()); item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS) .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str()) .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str()) .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate) .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask) .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount) .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount) .record(); } uint32_t RecordThread::getInputFramesLost() const { audio_utils::lock_guard _l(mutex()); uint32_t result; if (initCheck() == NO_ERROR && mInput->stream->getInputFramesLost(&result) == OK) { return result; } return 0; } KeyedVector RecordThread::sessionIds() const { KeyedVector ids; audio_utils::lock_guard _l(mutex()); for (size_t j = 0; j < mTracks.size(); ++j) { sp track = mTracks[j]; audio_session_t sessionId = track->sessionId(); if (ids.indexOfKey(sessionId) < 0) { ids.add(sessionId, true); } } return ids; } AudioStreamIn* RecordThread::clearInput() { audio_utils::lock_guard _l(mutex()); AudioStreamIn *input = mInput; mInput = NULL; mInputSource.clear(); return input; } // this method must always be called either with ThreadBase mutex() held or inside the thread loop sp RecordThread::stream() const { if (mInput == NULL) { return NULL; } return mInput->stream; } status_t RecordThread::addEffectChain_l(const sp& chain) { ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this); chain->setThread(this); chain->setInBuffer(NULL); chain->setOutBuffer(NULL); checkSuspendOnAddEffectChain_l(chain); // make sure enabled pre processing effects state is communicated to the HAL as we // just moved them to a new input stream. chain->syncHalEffectsState_l(); mEffectChains.add(chain); return NO_ERROR; } size_t RecordThread::removeEffectChain_l(const sp& chain) { ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this); for (size_t i = 0; i < mEffectChains.size(); i++) { if (chain == mEffectChains[i]) { mEffectChains.removeAt(i); break; } } return mEffectChains.size(); } status_t RecordThread::createAudioPatch_l(const struct audio_patch* patch, audio_patch_handle_t *handle) { status_t status = NO_ERROR; // store new device and send to effects mInDeviceTypeAddr.mType = patch->sources[0].ext.device.type; mInDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address); audio_port_handle_t deviceId = patch->sources[0].id; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setInputDevice_l(inDeviceTypeAddr()); } checkBtNrec_l(); // store new source and send to effects if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) { mAudioSource = patch->sinks[0].ext.mix.usecase.source; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setAudioSource_l(mAudioSource); } } if (mInput->audioHwDev->supportsAudioPatches()) { sp hwDevice = mInput->audioHwDev->hwDevice(); status = hwDevice->createAudioPatch(patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, handle); } else { status = mInput->stream->legacyCreateAudioPatch(patch->sources[0], patch->sinks[0].ext.mix.usecase.source, patch->sources[0].ext.device.type); *handle = AUDIO_PATCH_HANDLE_NONE; } if ((mPatch.num_sources == 0) || (mPatch.sources[0].id != deviceId)) { sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); mPatch = *patch; } const std::string pathSourcesAsString = patchSourcesToString(patch); mThreadMetrics.logEndInterval(); mThreadMetrics.logCreatePatch(pathSourcesAsString, /* outDevices */ {}); mThreadMetrics.logBeginInterval(); // also dispatch to active AudioRecords for (const auto &track : mActiveTracks) { track->logEndInterval(); track->logBeginInterval(pathSourcesAsString); } // Force meteadata update after a route change mActiveTracks.setHasChanged(); return status; } status_t RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status = NO_ERROR; mPatch = audio_patch{}; mInDeviceTypeAddr.reset(); if (mInput->audioHwDev->supportsAudioPatches()) { sp hwDevice = mInput->audioHwDev->hwDevice(); status = hwDevice->releaseAudioPatch(handle); } else { status = mInput->stream->legacyReleaseAudioPatch(); } // Force meteadata update after a route change mActiveTracks.setHasChanged(); return status; } void RecordThread::updateOutDevices(const DeviceDescriptorBaseVector& outDevices) { audio_utils::lock_guard _l(mutex()); mOutDevices = outDevices; mOutDeviceTypeAddrs = deviceTypeAddrsFromDescriptors(mOutDevices); for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevices_l(outDeviceTypeAddrs()); } } int32_t RecordThread::getOldestFront_l() { if (mTracks.size() == 0) { return mRsmpInRear; } int32_t oldestFront = mRsmpInRear; int32_t maxFilled = 0; for (size_t i = 0; i < mTracks.size(); i++) { int32_t front = mTracks[i]->resamplerBufferProvider()->getFront(); int32_t filled; (void)__builtin_sub_overflow(mRsmpInRear, front, &filled); if (filled > maxFilled) { oldestFront = front; maxFilled = filled; } } if (maxFilled > static_cast(mRsmpInFrames)) { (void)__builtin_sub_overflow(mRsmpInRear, mRsmpInFrames, &oldestFront); } return oldestFront; } void RecordThread::updateFronts_l(int32_t offset) { if (offset == 0) { return; } for (size_t i = 0; i < mTracks.size(); i++) { int32_t front = mTracks[i]->resamplerBufferProvider()->getFront(); front = audio_utils::safe_sub_overflow(front, offset); mTracks[i]->resamplerBufferProvider()->setFront(front); } } void RecordThread::resizeInputBuffer_l(int32_t maxSharedAudioHistoryMs) { // This is the formula for calculating the temporary buffer size. // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to // 1 full output buffer, regardless of the alignment of the available input. // The value is somewhat arbitrary, and could probably be even larger. // A larger value should allow more old data to be read after a track calls start(), // without increasing latency. // // Note this is independent of the maximum downsampling ratio permitted for capture. size_t minRsmpInFrames = mFrameCount * 7; // maxSharedAudioHistoryMs != 0 indicates a request to possibly make some part of the audio // capture history available to another client using the same session ID: // dimension the resampler input buffer accordingly. // Get oldest client read position: getOldestFront_l() must be called before altering // mRsmpInRear, or mRsmpInFrames int32_t previousFront = getOldestFront_l(); size_t previousRsmpInFramesP2 = mRsmpInFramesP2; int32_t previousRear = mRsmpInRear; mRsmpInRear = 0; ALOG_ASSERT(maxSharedAudioHistoryMs >= 0 && maxSharedAudioHistoryMs <= kMaxSharedAudioHistoryMs, "resizeInputBuffer_l() called with invalid max shared history %d", maxSharedAudioHistoryMs); if (maxSharedAudioHistoryMs != 0) { // resizeInputBuffer_l should never be called with a non zero shared history if the // buffer was not already allocated ALOG_ASSERT(mRsmpInBuffer != nullptr && mRsmpInFrames != 0, "resizeInputBuffer_l() called with shared history and unallocated buffer"); size_t rsmpInFrames = (size_t)maxSharedAudioHistoryMs * mSampleRate / 1000; // never reduce resampler input buffer size if (rsmpInFrames <= mRsmpInFrames) { return; } mRsmpInFrames = rsmpInFrames; } mMaxSharedAudioHistoryMs = maxSharedAudioHistoryMs; // Note: mRsmpInFrames is 0 when called with maxSharedAudioHistoryMs equals to 0 so it is always // initialized if (mRsmpInFrames < minRsmpInFrames) { mRsmpInFrames = minRsmpInFrames; } mRsmpInFramesP2 = roundup(mRsmpInFrames); // TODO optimize audio capture buffer sizes ... // Here we calculate the size of the sliding buffer used as a source // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7). // For current HAL frame counts, this is usually 2048 = 40 ms. It would // be better to have it derived from the pipe depth in the long term. // The current value is higher than necessary. However it should not add to latency. // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer mRsmpInFramesOA = mRsmpInFramesP2 + mFrameCount - 1; void *rsmpInBuffer; (void)posix_memalign(&rsmpInBuffer, 32, mRsmpInFramesOA * mFrameSize); // if posix_memalign fails, will segv here. memset(rsmpInBuffer, 0, mRsmpInFramesOA * mFrameSize); // Copy audio history if any from old buffer before freeing it if (previousRear != 0) { ALOG_ASSERT(mRsmpInBuffer != nullptr, "resizeInputBuffer_l() called with null buffer but frames already read from HAL"); ssize_t unread = audio_utils::safe_sub_overflow(previousRear, previousFront); previousFront &= previousRsmpInFramesP2 - 1; size_t part1 = previousRsmpInFramesP2 - previousFront; if (part1 > (size_t) unread) { part1 = unread; } if (part1 != 0) { memcpy(rsmpInBuffer, (const uint8_t*)mRsmpInBuffer + previousFront * mFrameSize, part1 * mFrameSize); mRsmpInRear = part1; part1 = unread - part1; if (part1 != 0) { memcpy((uint8_t*)rsmpInBuffer + mRsmpInRear * mFrameSize, (const uint8_t*)mRsmpInBuffer, part1 * mFrameSize); mRsmpInRear += part1; } } // Update front for all clients according to new rear updateFronts_l(audio_utils::safe_sub_overflow(previousRear, mRsmpInRear)); } else { mRsmpInRear = 0; } free(mRsmpInBuffer); mRsmpInBuffer = rsmpInBuffer; } void RecordThread::addPatchTrack(const sp& record) { audio_utils::lock_guard _l(mutex()); mTracks.add(record); if (record->getSource()) { mSource = record->getSource(); } } void RecordThread::deletePatchTrack(const sp& record) { audio_utils::lock_guard _l(mutex()); if (mSource == record->getSource()) { mSource = mInput; } destroyTrack_l(record); } void RecordThread::toAudioPortConfig(struct audio_port_config* config) { ThreadBase::toAudioPortConfig(config); config->role = AUDIO_PORT_ROLE_SINK; config->ext.mix.hw_module = mInput->audioHwDev->handle(); config->ext.mix.usecase.source = mAudioSource; if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) { config->config_mask |= AUDIO_PORT_CONFIG_FLAGS; config->flags.input = mInput->flags; } } // ---------------------------------------------------------------------------- // Mmap // ---------------------------------------------------------------------------- // Mmap stream control interface implementation. Each MmapThreadHandle controls one // MmapPlaybackThread or MmapCaptureThread instance. class MmapThreadHandle : public MmapStreamInterface { public: explicit MmapThreadHandle(const sp& thread); ~MmapThreadHandle() override; // MmapStreamInterface virtuals status_t createMmapBuffer(int32_t minSizeFrames, struct audio_mmap_buffer_info* info) final; status_t getMmapPosition(struct audio_mmap_position* position) final; status_t getExternalPosition(uint64_t* position, int64_t* timeNanos) final; status_t start(const AudioClient& client, const audio_attributes_t* attr, audio_port_handle_t* handle) final; status_t stop(audio_port_handle_t handle) final; status_t standby() final; status_t reportData(const void* buffer, size_t frameCount) final; private: const sp mThread; }; /* static */ sp IAfMmapThread::createMmapStreamInterfaceAdapter( const sp& mmapThread) { return sp::make(mmapThread); } MmapThreadHandle::MmapThreadHandle(const sp& thread) : mThread(thread) { assert(thread != 0); // thread must start non-null and stay non-null } // MmapStreamInterface could be directly implemented by MmapThread excepting this // special handling on adapter dtor. MmapThreadHandle::~MmapThreadHandle() { mThread->disconnect(); } status_t MmapThreadHandle::createMmapBuffer(int32_t minSizeFrames, struct audio_mmap_buffer_info *info) { return mThread->createMmapBuffer(minSizeFrames, info); } status_t MmapThreadHandle::getMmapPosition(struct audio_mmap_position* position) { return mThread->getMmapPosition(position); } status_t MmapThreadHandle::getExternalPosition(uint64_t* position, int64_t *timeNanos) { return mThread->getExternalPosition(position, timeNanos); } status_t MmapThreadHandle::start(const AudioClient& client, const audio_attributes_t *attr, audio_port_handle_t *handle) { return mThread->start(client, attr, handle); } status_t MmapThreadHandle::stop(audio_port_handle_t handle) { return mThread->stop(handle); } status_t MmapThreadHandle::standby() { return mThread->standby(); } status_t MmapThreadHandle::reportData(const void* buffer, size_t frameCount) { return mThread->reportData(buffer, frameCount); } MmapThread::MmapThread( const sp& afThreadCallback, audio_io_handle_t id, AudioHwDevice *hwDev, const sp& stream, bool systemReady, bool isOut) : ThreadBase(afThreadCallback, id, (isOut ? MMAP_PLAYBACK : MMAP_CAPTURE), systemReady, isOut), mSessionId(AUDIO_SESSION_NONE), mPortId(AUDIO_PORT_HANDLE_NONE), mHalStream(stream), mHalDevice(hwDev->hwDevice()), mAudioHwDev(hwDev), mActiveTracks(&this->mLocalLog), mHalVolFloat(-1.0f), // Initialize to illegal value so it always gets set properly later. mNoCallbackWarningCount(0) { mStandby = true; readHalParameters_l(); } void MmapThread::onFirstRef() { run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO); } void MmapThread::disconnect() { ActiveTracks activeTracks; audio_port_handle_t localPortId; { audio_utils::lock_guard _l(mutex()); for (const sp& t : mActiveTracks) { activeTracks.add(t); } localPortId = mPortId; } for (const sp& t : activeTracks) { stop(t->portId()); } // This will decrement references and may cause the destruction of this thread. if (isOutput()) { AudioSystem::releaseOutput(localPortId); } else { AudioSystem::releaseInput(localPortId); } } void MmapThread::configure_l(const audio_attributes_t* attr, audio_stream_type_t streamType __unused, audio_session_t sessionId, const sp& callback, audio_port_handle_t deviceId, audio_port_handle_t portId) { mAttr = *attr; mSessionId = sessionId; mCallback = callback; mDeviceId = deviceId; mPortId = portId; } status_t MmapThread::createMmapBuffer(int32_t minSizeFrames, struct audio_mmap_buffer_info *info) { audio_utils::lock_guard l(mutex()); if (mHalStream == 0) { return NO_INIT; } mStandby = true; return mHalStream->createMmapBuffer(minSizeFrames, info); } status_t MmapThread::getMmapPosition(struct audio_mmap_position* position) const { audio_utils::lock_guard l(mutex()); if (mHalStream == 0) { return NO_INIT; } return mHalStream->getMmapPosition(position); } status_t MmapThread::exitStandby_l() { // The HAL must receive track metadata before starting the stream updateMetadata_l(); status_t ret = mHalStream->start(); if (ret != NO_ERROR) { ALOGE("%s: error mHalStream->start() = %d for first track", __FUNCTION__, ret); return ret; } if (mStandby) { mThreadMetrics.logBeginInterval(); mThreadSnapshot.onBegin(); mStandby = false; } return NO_ERROR; } status_t MmapThread::start(const AudioClient& client, const audio_attributes_t *attr, audio_port_handle_t *handle) { audio_utils::lock_guard l(mutex()); ALOGV("%s clientUid %d mStandby %d mPortId %d *handle %d", __FUNCTION__, client.attributionSource.uid, mStandby, mPortId, *handle); if (mHalStream == 0) { return NO_INIT; } status_t ret; // For the first track, reuse portId and session allocated when the stream was opened. if (*handle == mPortId) { acquireWakeLock_l(); return NO_ERROR; } audio_port_handle_t portId = AUDIO_PORT_HANDLE_NONE; audio_io_handle_t io = mId; const AttributionSourceState adjAttributionSource = afutils::checkAttributionSourcePackage( client.attributionSource); const auto localSessionId = mSessionId; auto localAttr = mAttr; if (isOutput()) { audio_config_t config = AUDIO_CONFIG_INITIALIZER; config.sample_rate = mSampleRate; config.channel_mask = mChannelMask; config.format = mFormat; audio_stream_type_t stream = streamType_l(); audio_output_flags_t flags = (audio_output_flags_t)(AUDIO_OUTPUT_FLAG_MMAP_NOIRQ | AUDIO_OUTPUT_FLAG_DIRECT); audio_port_handle_t deviceId = mDeviceId; std::vector secondaryOutputs; bool isSpatialized; bool isBitPerfect; mutex().unlock(); ret = AudioSystem::getOutputForAttr(&localAttr, &io, localSessionId, &stream, adjAttributionSource, &config, flags, &deviceId, &portId, &secondaryOutputs, &isSpatialized, &isBitPerfect); mutex().lock(); mAttr = localAttr; ALOGD_IF(!secondaryOutputs.empty(), "MmapThread::start does not support secondary outputs, ignoring them"); } else { audio_config_base_t config; config.sample_rate = mSampleRate; config.channel_mask = mChannelMask; config.format = mFormat; audio_port_handle_t deviceId = mDeviceId; mutex().unlock(); ret = AudioSystem::getInputForAttr(&localAttr, &io, RECORD_RIID_INVALID, localSessionId, adjAttributionSource, &config, AUDIO_INPUT_FLAG_MMAP_NOIRQ, &deviceId, &portId); mutex().lock(); // localAttr is const for getInputForAttr. } // APM should not chose a different input or output stream for the same set of attributes // and audo configuration if (ret != NO_ERROR || io != mId) { ALOGE("%s: error getting output or input from APM (error %d, io %d expected io %d)", __FUNCTION__, ret, io, mId); return BAD_VALUE; } if (isOutput()) { mutex().unlock(); ret = AudioSystem::startOutput(portId); mutex().lock(); } else { { // Add the track record before starting input so that the silent status for the // client can be cached. setClientSilencedState_l(portId, false /*silenced*/); } mutex().unlock(); ret = AudioSystem::startInput(portId); mutex().lock(); } // abort if start is rejected by audio policy manager if (ret != NO_ERROR) { ALOGE("%s: error start rejected by AudioPolicyManager = %d", __FUNCTION__, ret); if (!mActiveTracks.isEmpty()) { mutex().unlock(); if (isOutput()) { AudioSystem::releaseOutput(portId); } else { AudioSystem::releaseInput(portId); } mutex().lock(); } else { mHalStream->stop(); } eraseClientSilencedState_l(portId); return PERMISSION_DENIED; } // Given that MmapThread::mAttr is mutable, should a MmapTrack have attributes ? sp track = IAfMmapTrack::create( this, attr == nullptr ? mAttr : *attr, mSampleRate, mFormat, mChannelMask, mSessionId, isOutput(), client.attributionSource, IPCThreadState::self()->getCallingPid(), portId); if (!isOutput()) { track->setSilenced_l(isClientSilenced_l(portId)); } if (isOutput()) { // force volume update when a new track is added mHalVolFloat = -1.0f; } else if (!track->isSilenced_l()) { for (const sp& t : mActiveTracks) { if (t->isSilenced_l() && t->uid() != static_cast(client.attributionSource.uid)) { t->invalidate(); } } } mActiveTracks.add(track); sp chain = getEffectChain_l(mSessionId); if (chain != 0) { chain->setStrategy(getStrategyForStream(streamType_l())); chain->incTrackCnt(); chain->incActiveTrackCnt(); } track->logBeginInterval(patchSinksToString(&mPatch)); // log to MediaMetrics *handle = portId; if (mActiveTracks.size() == 1) { ret = exitStandby_l(); } broadcast_l(); ALOGV("%s DONE status %d handle %d stream %p", __FUNCTION__, ret, *handle, mHalStream.get()); return ret; } status_t MmapThread::stop(audio_port_handle_t handle) { ALOGV("%s handle %d", __FUNCTION__, handle); audio_utils::lock_guard l(mutex()); if (mHalStream == 0) { return NO_INIT; } if (handle == mPortId) { releaseWakeLock_l(); return NO_ERROR; } sp track; for (const sp& t : mActiveTracks) { if (handle == t->portId()) { track = t; break; } } if (track == 0) { return BAD_VALUE; } mActiveTracks.remove(track); eraseClientSilencedState_l(track->portId()); mutex().unlock(); if (isOutput()) { AudioSystem::stopOutput(track->portId()); AudioSystem::releaseOutput(track->portId()); } else { AudioSystem::stopInput(track->portId()); AudioSystem::releaseInput(track->portId()); } mutex().lock(); sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { chain->decActiveTrackCnt(); chain->decTrackCnt(); } if (mActiveTracks.isEmpty()) { mHalStream->stop(); } broadcast_l(); return NO_ERROR; } status_t MmapThread::standby() NO_THREAD_SAFETY_ANALYSIS // clang bug { ALOGV("%s", __FUNCTION__); audio_utils::lock_guard l_{mutex()}; if (mHalStream == 0) { return NO_INIT; } if (!mActiveTracks.isEmpty()) { return INVALID_OPERATION; } mHalStream->standby(); if (!mStandby) { mThreadMetrics.logEndInterval(); mThreadSnapshot.onEnd(); mStandby = true; } releaseWakeLock_l(); return NO_ERROR; } status_t MmapThread::reportData(const void* /*buffer*/, size_t /*frameCount*/) { // This is a stub implementation. The MmapPlaybackThread overrides this function. return INVALID_OPERATION; } void MmapThread::readHalParameters_l() { status_t result = mHalStream->getAudioProperties(&mSampleRate, &mChannelMask, &mHALFormat); LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving audio properties from HAL: %d", result); mFormat = mHALFormat; LOG_ALWAYS_FATAL_IF(!audio_is_linear_pcm(mFormat), "HAL format %#x is not linear pcm", mFormat); result = mHalStream->getFrameSize(&mFrameSize); LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving frame size from HAL: %d", result); LOG_ALWAYS_FATAL_IF(mFrameSize <= 0, "Error frame size was %zu but must be greater than zero", mFrameSize); result = mHalStream->getBufferSize(&mBufferSize); LOG_ALWAYS_FATAL_IF(result != OK, "Error retrieving buffer size from HAL: %d", result); mFrameCount = mBufferSize / mFrameSize; // TODO: make a readHalParameters call? mediametrics::LogItem item(mThreadMetrics.getMetricsId()); item.set(AMEDIAMETRICS_PROP_EVENT, AMEDIAMETRICS_PROP_EVENT_VALUE_READPARAMETERS) .set(AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mFormat).c_str()) .set(AMEDIAMETRICS_PROP_SAMPLERATE, (int32_t)mSampleRate) .set(AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mChannelMask) .set(AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mChannelCount) .set(AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount) /* .set(AMEDIAMETRICS_PROP_FLAGS, toString(flags).c_str()) .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELMASK, (int32_t)mHapticChannelMask) .set(AMEDIAMETRICS_PROP_PREFIX_HAPTIC AMEDIAMETRICS_PROP_CHANNELCOUNT, (int32_t)mHapticChannelCount) */ .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_ENCODING, IAfThreadBase::formatToString(mHALFormat).c_str()) .set(AMEDIAMETRICS_PROP_PREFIX_HAL AMEDIAMETRICS_PROP_FRAMECOUNT, (int32_t)mFrameCount) // sic - added HAL .record(); } bool MmapThread::threadLoop() { { audio_utils::unique_lock _l(mutex()); checkSilentMode_l(); } const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid())); while (!exitPending()) { Vector> effectChains; { // under Thread lock audio_utils::unique_lock _l(mutex()); if (mSignalPending) { // A signal was raised while we were unlocked mSignalPending = false; } else { if (mConfigEvents.isEmpty()) { // we're about to wait, flush the binder command buffer IPCThreadState::self()->flushCommands(); if (exitPending()) { break; } // wait until we have something to do... ALOGV("%s going to sleep", myName.c_str()); mWaitWorkCV.wait(_l); ALOGV("%s waking up", myName.c_str()); checkSilentMode_l(); continue; } } processConfigEvents_l(); processVolume_l(); checkInvalidTracks_l(); mActiveTracks.updatePowerState_l(this); updateMetadata_l(); lockEffectChains_l(effectChains); } // release Thread lock for (size_t i = 0; i < effectChains.size(); i ++) { effectChains[i]->process_l(); // Thread is not locked, but effect chain is locked } // enable changes in effect chain, including moving to another thread. unlockEffectChains(effectChains); // Effect chains will be actually deleted here if they were removed from // mEffectChains list during mixing or effects processing } threadLoop_exit(); if (!mStandby) { threadLoop_standby(); mStandby = true; } ALOGV("Thread %p type %d exiting", this, mType); return false; } // checkForNewParameter_l() must be called with ThreadBase::mutex() held bool MmapThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { AudioParameter param = AudioParameter(keyValuePair); int value; bool sendToHal = true; if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { LOG_FATAL("Should not happen set routing device in MmapThread"); } if (sendToHal) { status = mHalStream->setParameters(keyValuePair); } else { status = NO_ERROR; } return false; } String8 MmapThread::getParameters(const String8& keys) { audio_utils::lock_guard _l(mutex()); String8 out_s8; if (initCheck() == NO_ERROR && mHalStream->getParameters(keys, &out_s8) == OK) { return out_s8; } return {}; } void MmapThread::ioConfigChanged_l(audio_io_config_event_t event, pid_t pid, audio_port_handle_t portId __unused) { sp desc; bool isInput = false; switch (event) { case AUDIO_INPUT_OPENED: case AUDIO_INPUT_REGISTERED: case AUDIO_INPUT_CONFIG_CHANGED: isInput = true; FALLTHROUGH_INTENDED; case AUDIO_OUTPUT_OPENED: case AUDIO_OUTPUT_REGISTERED: case AUDIO_OUTPUT_CONFIG_CHANGED: desc = sp::make(mId, mPatch, isInput, mSampleRate, mFormat, mChannelMask, mFrameCount, mFrameCount); break; case AUDIO_INPUT_CLOSED: case AUDIO_OUTPUT_CLOSED: default: desc = sp::make(mId); break; } mAfThreadCallback->ioConfigChanged_l(event, desc, pid); } status_t MmapThread::createAudioPatch_l(const struct audio_patch* patch, audio_patch_handle_t *handle) NO_THREAD_SAFETY_ANALYSIS // elease and re-acquire mutex() { status_t status = NO_ERROR; // store new device and send to effects audio_devices_t type = AUDIO_DEVICE_NONE; audio_port_handle_t deviceId; AudioDeviceTypeAddrVector sinkDeviceTypeAddrs; AudioDeviceTypeAddr sourceDeviceTypeAddr; uint32_t numDevices = 0; if (isOutput()) { for (unsigned int i = 0; i < patch->num_sinks; i++) { LOG_ALWAYS_FATAL_IF(popcount(patch->sinks[i].ext.device.type) > 1 && !mAudioHwDev->supportsAudioPatches(), "Enumerated device type(%#x) must not be used " "as it does not support audio patches", patch->sinks[i].ext.device.type); type = static_cast(type | patch->sinks[i].ext.device.type); sinkDeviceTypeAddrs.emplace_back(patch->sinks[i].ext.device.type, patch->sinks[i].ext.device.address); } deviceId = patch->sinks[0].id; numDevices = mPatch.num_sinks; } else { type = patch->sources[0].ext.device.type; deviceId = patch->sources[0].id; numDevices = mPatch.num_sources; sourceDeviceTypeAddr.mType = patch->sources[0].ext.device.type; sourceDeviceTypeAddr.setAddress(patch->sources[0].ext.device.address); } for (size_t i = 0; i < mEffectChains.size(); i++) { if (isOutput()) { mEffectChains[i]->setDevices_l(sinkDeviceTypeAddrs); } else { mEffectChains[i]->setInputDevice_l(sourceDeviceTypeAddr); } } if (!isOutput()) { // store new source and send to effects if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) { mAudioSource = patch->sinks[0].ext.mix.usecase.source; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setAudioSource_l(mAudioSource); } } } // For mmap streams, once the routing has changed, they will be disconnected. It should be // okay to notify the client earlier before the new patch creation. if (mDeviceId != deviceId) { if (const sp callback = mCallback.promote()) { // The aaudioservice handle the routing changed event asynchronously. In that case, // it is safe to hold the lock here. callback->onRoutingChanged(deviceId); } } if (mAudioHwDev->supportsAudioPatches()) { status = mHalDevice->createAudioPatch(patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, handle); } else { audio_port_config port; std::optional source; if (isOutput()) { port = patch->sinks[0]; } else { port = patch->sources[0]; source = patch->sinks[0].ext.mix.usecase.source; } status = mHalStream->legacyCreateAudioPatch(port, source, type); *handle = AUDIO_PATCH_HANDLE_NONE; } if (numDevices == 0 || mDeviceId != deviceId) { if (isOutput()) { sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); mOutDeviceTypeAddrs = sinkDeviceTypeAddrs; checkSilentMode_l(); } else { sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); mInDeviceTypeAddr = sourceDeviceTypeAddr; } mPatch = *patch; mDeviceId = deviceId; } // Force meteadata update after a route change mActiveTracks.setHasChanged(); return status; } status_t MmapThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status = NO_ERROR; mPatch = audio_patch{}; mOutDeviceTypeAddrs.clear(); mInDeviceTypeAddr.reset(); bool supportsAudioPatches = mHalDevice->supportsAudioPatches(&supportsAudioPatches) == OK ? supportsAudioPatches : false; if (supportsAudioPatches) { status = mHalDevice->releaseAudioPatch(handle); } else { status = mHalStream->legacyReleaseAudioPatch(); } // Force meteadata update after a route change mActiveTracks.setHasChanged(); return status; } void MmapThread::toAudioPortConfig(struct audio_port_config* config) NO_THREAD_SAFETY_ANALYSIS // mAudioHwDev handle access { ThreadBase::toAudioPortConfig(config); if (isOutput()) { config->role = AUDIO_PORT_ROLE_SOURCE; config->ext.mix.hw_module = mAudioHwDev->handle(); config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT; } else { config->role = AUDIO_PORT_ROLE_SINK; config->ext.mix.hw_module = mAudioHwDev->handle(); config->ext.mix.usecase.source = mAudioSource; } } status_t MmapThread::addEffectChain_l(const sp& chain) { audio_session_t session = chain->sessionId(); ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session); // Attach all tracks with same session ID to this chain. // indicate all active tracks in the chain for (const sp& track : mActiveTracks) { if (session == track->sessionId()) { chain->incTrackCnt(); chain->incActiveTrackCnt(); } } chain->setThread(this); chain->setInBuffer(nullptr); chain->setOutBuffer(nullptr); chain->syncHalEffectsState_l(); mEffectChains.add(chain); checkSuspendOnAddEffectChain_l(chain); return NO_ERROR; } size_t MmapThread::removeEffectChain_l(const sp& chain) { audio_session_t session = chain->sessionId(); ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session); for (size_t i = 0; i < mEffectChains.size(); i++) { if (chain == mEffectChains[i]) { mEffectChains.removeAt(i); // detach all active tracks from the chain // detach all tracks with same session ID from this chain for (const sp& track : mActiveTracks) { if (session == track->sessionId()) { chain->decActiveTrackCnt(); chain->decTrackCnt(); } } break; } } return mEffectChains.size(); } void MmapThread::threadLoop_standby() { mHalStream->standby(); } void MmapThread::threadLoop_exit() { // Do not call callback->onTearDown() because it is redundant for thread exit // and because it can cause a recursive mutex lock on stop(). } status_t MmapThread::setSyncEvent(const sp& /* event */) { return BAD_VALUE; } bool MmapThread::isValidSyncEvent( const sp& /* event */) const { return false; } status_t MmapThread::checkEffectCompatibility_l( const effect_descriptor_t *desc, audio_session_t sessionId) { // No global effect sessions on mmap threads if (audio_is_global_session(sessionId)) { ALOGW("checkEffectCompatibility_l(): global effect %s on MMAP thread %s", desc->name, mThreadName); return BAD_VALUE; } if (!isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_PRE_PROC)) { ALOGW("checkEffectCompatibility_l(): non pre processing effect %s on capture mmap thread", desc->name); return BAD_VALUE; } if (isOutput() && ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) { ALOGW("checkEffectCompatibility_l(): pre processing effect %s created on playback mmap " "thread", desc->name); return BAD_VALUE; } // Only allow effects without processing load or latency if ((desc->flags & EFFECT_FLAG_NO_PROCESS_MASK) != EFFECT_FLAG_NO_PROCESS) { return BAD_VALUE; } if (IAfEffectModule::isHapticGenerator(&desc->type)) { ALOGE("%s(): HapticGenerator is not supported for MmapThread", __func__); return BAD_VALUE; } return NO_ERROR; } void MmapThread::checkInvalidTracks_l() { for (const sp& track : mActiveTracks) { if (track->isInvalid()) { if (const sp callback = mCallback.promote()) { // The aaudioservice handle the routing changed event asynchronously. In that case, // it is safe to hold the lock here. callback->onRoutingChanged(AUDIO_PORT_HANDLE_NONE); } else if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) { ALOGW("Could not notify MMAP stream tear down: no onRoutingChanged callback!"); mNoCallbackWarningCount++; } break; } } } void MmapThread::dumpInternals_l(int fd, const Vector& /* args */) { dprintf(fd, " Attributes: content type %d usage %d source %d\n", mAttr.content_type, mAttr.usage, mAttr.source); dprintf(fd, " Session: %d port Id: %d\n", mSessionId, mPortId); if (mActiveTracks.isEmpty()) { dprintf(fd, " No active clients\n"); } } void MmapThread::dumpTracks_l(int fd, const Vector& /* args */) { String8 result; size_t numtracks = mActiveTracks.size(); dprintf(fd, " %zu Tracks\n", numtracks); const char *prefix = " "; if (numtracks) { result.append(prefix); mActiveTracks[0]->appendDumpHeader(result); for (size_t i = 0; i < numtracks ; ++i) { sp track = mActiveTracks[i]; result.append(prefix); track->appendDump(result, true /* active */); } } else { dprintf(fd, "\n"); } write(fd, result.c_str(), result.size()); } /* static */ sp IAfMmapPlaybackThread::create( const sp& afThreadCallback, audio_io_handle_t id, AudioHwDevice* hwDev, AudioStreamOut* output, bool systemReady) { return sp::make(afThreadCallback, id, hwDev, output, systemReady); } MmapPlaybackThread::MmapPlaybackThread( const sp& afThreadCallback, audio_io_handle_t id, AudioHwDevice *hwDev, AudioStreamOut *output, bool systemReady) : MmapThread(afThreadCallback, id, hwDev, output->stream, systemReady, true /* isOut */), mStreamType(AUDIO_STREAM_MUSIC), mOutput(output) { snprintf(mThreadName, kThreadNameLength, "AudioMmapOut_%X", id); mChannelCount = audio_channel_count_from_out_mask(mChannelMask); mMasterVolume = afThreadCallback->masterVolume_l(); mMasterMute = afThreadCallback->masterMute_l(); for (int i = AUDIO_STREAM_MIN; i < AUDIO_STREAM_FOR_POLICY_CNT; ++i) { const audio_stream_type_t stream{static_cast(i)}; mStreamTypes[stream].volume = 0.0f; mStreamTypes[stream].mute = mAfThreadCallback->streamMute_l(stream); } // Audio patch and call assistant volume are always max mStreamTypes[AUDIO_STREAM_PATCH].volume = 1.0f; mStreamTypes[AUDIO_STREAM_PATCH].mute = false; mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].volume = 1.0f; mStreamTypes[AUDIO_STREAM_CALL_ASSISTANT].mute = false; if (mAudioHwDev) { if (mAudioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } if (mAudioHwDev->canSetMasterMute()) { mMasterMute = false; } } } void MmapPlaybackThread::configure(const audio_attributes_t* attr, audio_stream_type_t streamType, audio_session_t sessionId, const sp& callback, audio_port_handle_t deviceId, audio_port_handle_t portId) { audio_utils::lock_guard l(mutex()); MmapThread::configure_l(attr, streamType, sessionId, callback, deviceId, portId); mStreamType = streamType; } AudioStreamOut* MmapPlaybackThread::clearOutput() { audio_utils::lock_guard _l(mutex()); AudioStreamOut *output = mOutput; mOutput = NULL; return output; } void MmapPlaybackThread::setMasterVolume(float value) { audio_utils::lock_guard _l(mutex()); // Don't apply master volume in SW if our HAL can do it for us. if (mAudioHwDev && mAudioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } else { mMasterVolume = value; } } void MmapPlaybackThread::setMasterMute(bool muted) { audio_utils::lock_guard _l(mutex()); // Don't apply master mute in SW if our HAL can do it for us. if (mAudioHwDev && mAudioHwDev->canSetMasterMute()) { mMasterMute = false; } else { mMasterMute = muted; } } void MmapPlaybackThread::setStreamVolume(audio_stream_type_t stream, float value) { audio_utils::lock_guard _l(mutex()); mStreamTypes[stream].volume = value; if (stream == mStreamType) { broadcast_l(); } } float MmapPlaybackThread::streamVolume(audio_stream_type_t stream) const { audio_utils::lock_guard _l(mutex()); return mStreamTypes[stream].volume; } void MmapPlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted) { audio_utils::lock_guard _l(mutex()); mStreamTypes[stream].mute = muted; if (stream == mStreamType) { broadcast_l(); } } void MmapPlaybackThread::invalidateTracks(audio_stream_type_t streamType) { audio_utils::lock_guard _l(mutex()); if (streamType == mStreamType) { for (const sp& track : mActiveTracks) { track->invalidate(); } broadcast_l(); } } void MmapPlaybackThread::invalidateTracks(std::set& portIds) { audio_utils::lock_guard _l(mutex()); bool trackMatch = false; for (const sp& track : mActiveTracks) { if (portIds.find(track->portId()) != portIds.end()) { track->invalidate(); trackMatch = true; portIds.erase(track->portId()); } if (portIds.empty()) { break; } } if (trackMatch) { broadcast_l(); } } void MmapPlaybackThread::processVolume_l() NO_THREAD_SAFETY_ANALYSIS // access of track->processMuteEvent_l { float volume; if (mMasterMute || streamMuted_l()) { volume = 0; } else { volume = mMasterVolume * streamVolume_l(); } if (volume != mHalVolFloat) { // Convert volumes from float to 8.24 uint32_t vol = (uint32_t)(volume * (1 << 24)); // Delegate volume control to effect in track effect chain if needed // only one effect chain can be present on DirectOutputThread, so if // there is one, the track is connected to it if (!mEffectChains.isEmpty()) { mEffectChains[0]->setVolume(&vol, &vol); volume = (float)vol / (1 << 24); } // Try to use HW volume control and fall back to SW control if not implemented if (mOutput->stream->setVolume(volume, volume) == NO_ERROR) { mHalVolFloat = volume; // HW volume control worked, so update value. mNoCallbackWarningCount = 0; } else { sp callback = mCallback.promote(); if (callback != 0) { mHalVolFloat = volume; // SW volume control worked, so update value. mNoCallbackWarningCount = 0; mutex().unlock(); callback->onVolumeChanged(volume); mutex().lock(); } else { if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) { ALOGW("Could not set MMAP stream volume: no volume callback!"); mNoCallbackWarningCount++; } } } for (const sp& track : mActiveTracks) { track->setMetadataHasChanged(); track->processMuteEvent_l(mAfThreadCallback->getOrCreateAudioManager(), /*muteState=*/{mMasterMute, streamVolume_l() == 0.f, streamMuted_l(), // TODO(b/241533526): adjust logic to include mute from AppOps false /*muteFromPlaybackRestricted*/, false /*muteFromClientVolume*/, false /*muteFromVolumeShaper*/}); } } } ThreadBase::MetadataUpdate MmapPlaybackThread::updateMetadata_l() { if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) { return {}; // nothing to do } StreamOutHalInterface::SourceMetadata metadata; for (const sp& track : mActiveTracks) { // No track is invalid as this is called after prepareTrack_l in the same critical section playback_track_metadata_v7_t trackMetadata; trackMetadata.base = { .usage = track->attributes().usage, .content_type = track->attributes().content_type, .gain = mHalVolFloat, // TODO: propagate from aaudio pre-mix volume }; trackMetadata.channel_mask = track->channelMask(), strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE); metadata.tracks.push_back(trackMetadata); } mOutput->stream->updateSourceMetadata(metadata); MetadataUpdate change; change.playbackMetadataUpdate = metadata.tracks; return change; }; void MmapPlaybackThread::checkSilentMode_l() { if (!mMasterMute) { char value[PROPERTY_VALUE_MAX]; if (property_get("ro.audio.silent", value, "0") > 0) { char *endptr; unsigned long ul = strtoul(value, &endptr, 0); if (*endptr == '\0' && ul != 0) { ALOGW("%s: mute from ro.audio.silent. Silence is golden", __func__); // The setprop command will not allow a property to be changed after // the first time it is set, so we don't have to worry about un-muting. setMasterMute_l(true); } } } } void MmapPlaybackThread::toAudioPortConfig(struct audio_port_config* config) { MmapThread::toAudioPortConfig(config); if (mOutput && mOutput->flags != AUDIO_OUTPUT_FLAG_NONE) { config->config_mask |= AUDIO_PORT_CONFIG_FLAGS; config->flags.output = mOutput->flags; } } status_t MmapPlaybackThread::getExternalPosition(uint64_t* position, int64_t* timeNanos) const { if (mOutput == nullptr) { return NO_INIT; } struct timespec timestamp; status_t status = mOutput->getPresentationPosition(position, ×tamp); if (status == NO_ERROR) { *timeNanos = timestamp.tv_sec * NANOS_PER_SECOND + timestamp.tv_nsec; } return status; } status_t MmapPlaybackThread::reportData(const void* buffer, size_t frameCount) { // Send to MelProcessor for sound dose measurement. auto processor = mMelProcessor.load(); if (processor) { processor->process(buffer, frameCount * mFrameSize); } return NO_ERROR; } // startMelComputation_l() must be called with AudioFlinger::mutex() held void MmapPlaybackThread::startMelComputation_l( const sp& processor) { ALOGV("%s: starting mel processor for thread %d", __func__, id()); mMelProcessor.store(processor); if (processor) { processor->resume(); } // no need to update output format for MMapPlaybackThread since it is // assigned constant for each thread } // stopMelComputation_l() must be called with AudioFlinger::mutex() held void MmapPlaybackThread::stopMelComputation_l() { ALOGV("%s: pausing mel processor for thread %d", __func__, id()); auto melProcessor = mMelProcessor.load(); if (melProcessor != nullptr) { melProcessor->pause(); } } void MmapPlaybackThread::dumpInternals_l(int fd, const Vector& args) { MmapThread::dumpInternals_l(fd, args); dprintf(fd, " Stream type: %d Stream volume: %f HAL volume: %f Stream mute %d\n", mStreamType, streamVolume_l(), mHalVolFloat, streamMuted_l()); dprintf(fd, " Master volume: %f Master mute %d\n", mMasterVolume, mMasterMute); } /* static */ sp IAfMmapCaptureThread::create( const sp& afThreadCallback, audio_io_handle_t id, AudioHwDevice* hwDev, AudioStreamIn* input, bool systemReady) { return sp::make(afThreadCallback, id, hwDev, input, systemReady); } MmapCaptureThread::MmapCaptureThread( const sp& afThreadCallback, audio_io_handle_t id, AudioHwDevice *hwDev, AudioStreamIn *input, bool systemReady) : MmapThread(afThreadCallback, id, hwDev, input->stream, systemReady, false /* isOut */), mInput(input) { snprintf(mThreadName, kThreadNameLength, "AudioMmapIn_%X", id); mChannelCount = audio_channel_count_from_in_mask(mChannelMask); } status_t MmapCaptureThread::exitStandby_l() { { // mInput might have been cleared by clearInput() if (mInput != nullptr && mInput->stream != nullptr) { mInput->stream->setGain(1.0f); } } return MmapThread::exitStandby_l(); } AudioStreamIn* MmapCaptureThread::clearInput() { audio_utils::lock_guard _l(mutex()); AudioStreamIn *input = mInput; mInput = NULL; return input; } void MmapCaptureThread::processVolume_l() { bool changed = false; bool silenced = false; sp callback = mCallback.promote(); if (callback == 0) { if (mNoCallbackWarningCount < kMaxNoCallbackWarnings) { ALOGW("Could not set MMAP stream silenced: no onStreamSilenced callback!"); mNoCallbackWarningCount++; } } // After a change occurred in track silenced state, mute capture in audio DSP if at least one // track is silenced and unmute otherwise for (size_t i = 0; i < mActiveTracks.size() && !silenced; i++) { if (!mActiveTracks[i]->getAndSetSilencedNotified_l()) { changed = true; silenced = mActiveTracks[i]->isSilenced_l(); } } if (changed) { mInput->stream->setGain(silenced ? 0.0f: 1.0f); } } ThreadBase::MetadataUpdate MmapCaptureThread::updateMetadata_l() { if (!isStreamInitialized() || !mActiveTracks.readAndClearHasChanged()) { return {}; // nothing to do } StreamInHalInterface::SinkMetadata metadata; for (const sp& track : mActiveTracks) { // No track is invalid as this is called after prepareTrack_l in the same critical section record_track_metadata_v7_t trackMetadata; trackMetadata.base = { .source = track->attributes().source, .gain = 1, // capture tracks do not have volumes }; trackMetadata.channel_mask = track->channelMask(), strncpy(trackMetadata.tags, track->attributes().tags, AUDIO_ATTRIBUTES_TAGS_MAX_SIZE); metadata.tracks.push_back(trackMetadata); } mInput->stream->updateSinkMetadata(metadata); MetadataUpdate change; change.recordMetadataUpdate = metadata.tracks; return change; } void MmapCaptureThread::setRecordSilenced(audio_port_handle_t portId, bool silenced) { audio_utils::lock_guard _l(mutex()); for (size_t i = 0; i < mActiveTracks.size() ; i++) { if (mActiveTracks[i]->portId() == portId) { mActiveTracks[i]->setSilenced_l(silenced); broadcast_l(); } } setClientSilencedIfExists_l(portId, silenced); } void MmapCaptureThread::toAudioPortConfig(struct audio_port_config* config) { MmapThread::toAudioPortConfig(config); if (mInput && mInput->flags != AUDIO_INPUT_FLAG_NONE) { config->config_mask |= AUDIO_PORT_CONFIG_FLAGS; config->flags.input = mInput->flags; } } status_t MmapCaptureThread::getExternalPosition( uint64_t* position, int64_t* timeNanos) const { if (mInput == nullptr) { return NO_INIT; } return mInput->getCapturePosition((int64_t*)position, timeNanos); } // ---------------------------------------------------------------------------- /* static */ sp IAfPlaybackThread::createBitPerfectThread( const sp& afThreadCallback, AudioStreamOut* output, audio_io_handle_t id, bool systemReady) { return sp::make(afThreadCallback, output, id, systemReady); } BitPerfectThread::BitPerfectThread(const sp &afThreadCallback, AudioStreamOut *output, audio_io_handle_t id, bool systemReady) : MixerThread(afThreadCallback, output, id, systemReady, BIT_PERFECT) {} PlaybackThread::mixer_state BitPerfectThread::prepareTracks_l( Vector>* tracksToRemove) { mixer_state result = MixerThread::prepareTracks_l(tracksToRemove); // If there is only one active track and it is bit-perfect, enable tee buffer. float volumeLeft = 1.0f; float volumeRight = 1.0f; if (sp bitPerfectTrack = getTrackToStreamBitPerfectly_l(); bitPerfectTrack != nullptr) { const int trackId = bitPerfectTrack->id(); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER, (void *)mSinkBuffer); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER_FRAME_COUNT, (void *)(uintptr_t)mNormalFrameCount); bitPerfectTrack->getFinalVolume(&volumeLeft, &volumeRight); mIsBitPerfect = true; } else { mIsBitPerfect = false; // No need to copy bit-perfect data directly to sink buffer given there are multiple tracks // active. for (const auto& track : mActiveTracks) { const int trackId = track->id(); mAudioMixer->setParameter( trackId, AudioMixer::TRACK, AudioMixer::TEE_BUFFER, nullptr); } } if (mVolumeLeft != volumeLeft || mVolumeRight != volumeRight) { mVolumeLeft = volumeLeft; mVolumeRight = volumeRight; setVolumeForOutput_l(volumeLeft, volumeRight); } return result; } void BitPerfectThread::threadLoop_mix() { MixerThread::threadLoop_mix(); mHasDataCopiedToSinkBuffer = mIsBitPerfect; } void BitPerfectThread::setTracksInternalMute( std::map* tracksInternalMute) { for (auto& track : mTracks) { if (auto it = tracksInternalMute->find(track->portId()); it != tracksInternalMute->end()) { track->setInternalMute(it->second); tracksInternalMute->erase(it); } } } sp BitPerfectThread::getTrackToStreamBitPerfectly_l() { if (com::android::media::audioserver:: fix_concurrent_playback_behavior_with_bit_perfect_client()) { sp bitPerfectTrack = nullptr; bool allOtherTracksMuted = true; // Return the bit perfect track if all other tracks are muted for (const auto& track : mActiveTracks) { if (track->isBitPerfect()) { bitPerfectTrack = track; } else if (track->getFinalVolume() != 0.f) { allOtherTracksMuted = false; if (bitPerfectTrack != nullptr) { break; } } } return allOtherTracksMuted ? bitPerfectTrack : nullptr; } else { if (mActiveTracks.size() == 1 && mActiveTracks[0]->isBitPerfect()) { return mActiveTracks[0]; } } return nullptr; } } // namespace android