/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.net; import android.annotation.Nullable; import android.compat.annotation.UnsupportedAppUsage; import android.net.sntp.Duration64; import android.net.sntp.Timestamp64; import android.os.SystemClock; import android.util.Log; import android.util.Slog; import com.android.internal.annotations.VisibleForTesting; import com.android.internal.util.TrafficStatsConstants; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import java.net.InetSocketAddress; import java.net.UnknownHostException; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.time.Duration; import java.time.Instant; import java.util.Objects; import java.util.Random; import java.util.function.Supplier; /** * Simple, single-use SNTP client class for retrieving network time. * * Sample usage: *
SntpClient client = new SntpClient();
 * if (client.requestTime("time.foo.com")) {
 *     long now = client.getNtpTime() + SystemClock.elapsedRealtime() - client.getNtpTimeReference();
 * }
 * 
* *

This class is not thread-safe. * * @hide */ public class SntpClient { private static final String TAG = "SntpClient"; private static final boolean DBG = true; private static final int REFERENCE_TIME_OFFSET = 16; private static final int ORIGINATE_TIME_OFFSET = 24; private static final int RECEIVE_TIME_OFFSET = 32; private static final int TRANSMIT_TIME_OFFSET = 40; private static final int NTP_PACKET_SIZE = 48; public static final int STANDARD_NTP_PORT = 123; private static final int NTP_MODE_CLIENT = 3; private static final int NTP_MODE_SERVER = 4; private static final int NTP_MODE_BROADCAST = 5; private static final int NTP_VERSION = 3; private static final int NTP_LEAP_NOSYNC = 3; private static final int NTP_STRATUM_DEATH = 0; private static final int NTP_STRATUM_MAX = 15; // The source of the current system clock time, replaceable for testing. private final Supplier mSystemTimeSupplier; private final Random mRandom; // The last offset calculated from an NTP server response private long mClockOffset; // The last system time computed from an NTP server response private long mNtpTime; // The value of SystemClock.elapsedRealtime() corresponding to mNtpTime / mClockOffset private long mNtpTimeReference; // The round trip (network) time in milliseconds private long mRoundTripTime; // Details of the NTP server used to obtain the time last. @Nullable private InetSocketAddress mServerSocketAddress; private static class InvalidServerReplyException extends Exception { public InvalidServerReplyException(String message) { super(message); } } @UnsupportedAppUsage public SntpClient() { this(Instant::now, defaultRandom()); } @VisibleForTesting public SntpClient(Supplier systemTimeSupplier, Random random) { mSystemTimeSupplier = Objects.requireNonNull(systemTimeSupplier); mRandom = Objects.requireNonNull(random); } /** * Sends an SNTP request to the given host and processes the response. * * @param host host name of the server. * @param port port of the server. * @param timeout network timeout in milliseconds. the timeout doesn't include the DNS lookup * time, and it applies to each individual query to the resolved addresses of * the NTP server. * @param network network over which to send the request. * @return true if the transaction was successful. */ public boolean requestTime(String host, int port, int timeout, Network network) { final Network networkForResolv = network.getPrivateDnsBypassingCopy(); try { final InetAddress[] addresses = networkForResolv.getAllByName(host); for (int i = 0; i < addresses.length; i++) { if (requestTime(addresses[i], port, timeout, networkForResolv)) { return true; } } } catch (UnknownHostException e) { Log.w(TAG, "Unknown host: " + host); EventLogTags.writeNtpFailure(host, e.toString()); } if (DBG) Log.d(TAG, "request time failed"); return false; } public boolean requestTime(InetAddress address, int port, int timeout, Network network) { DatagramSocket socket = null; final int oldTag = TrafficStats.getAndSetThreadStatsTag( TrafficStatsConstants.TAG_SYSTEM_NTP); try { socket = new DatagramSocket(); network.bindSocket(socket); socket.setSoTimeout(timeout); byte[] buffer = new byte[NTP_PACKET_SIZE]; DatagramPacket request = new DatagramPacket(buffer, buffer.length, address, port); // set mode = 3 (client) and version = 3 // mode is in low 3 bits of first byte // version is in bits 3-5 of first byte buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3); // get current time and write it to the request packet final Instant requestTime = mSystemTimeSupplier.get(); final Timestamp64 requestTimestamp = Timestamp64.fromInstant(requestTime); final Timestamp64 randomizedRequestTimestamp = requestTimestamp.randomizeSubMillis(mRandom); final long requestTicks = SystemClock.elapsedRealtime(); writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, randomizedRequestTimestamp); socket.send(request); // read the response DatagramPacket response = new DatagramPacket(buffer, buffer.length); socket.receive(response); final long responseTicks = SystemClock.elapsedRealtime(); final Instant responseTime = requestTime.plusMillis(responseTicks - requestTicks); final Timestamp64 responseTimestamp = Timestamp64.fromInstant(responseTime); // extract the results final byte leap = (byte) ((buffer[0] >> 6) & 0x3); final byte mode = (byte) (buffer[0] & 0x7); final int stratum = (int) (buffer[1] & 0xff); final Timestamp64 referenceTimestamp = readTimeStamp(buffer, REFERENCE_TIME_OFFSET); final Timestamp64 originateTimestamp = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET); final Timestamp64 receiveTimestamp = readTimeStamp(buffer, RECEIVE_TIME_OFFSET); final Timestamp64 transmitTimestamp = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET); /* Do validation according to RFC */ checkValidServerReply(leap, mode, stratum, transmitTimestamp, referenceTimestamp, randomizedRequestTimestamp, originateTimestamp); long totalTransactionDurationMillis = responseTicks - requestTicks; long serverDurationMillis = Duration64.between(receiveTimestamp, transmitTimestamp).toDuration().toMillis(); long roundTripTimeMillis = totalTransactionDurationMillis - serverDurationMillis; Duration clockOffsetDuration = calculateClockOffset(requestTimestamp, receiveTimestamp, transmitTimestamp, responseTimestamp); long clockOffsetMillis = clockOffsetDuration.toMillis(); EventLogTags.writeNtpSuccess( address.toString(), roundTripTimeMillis, clockOffsetMillis); if (DBG) { Log.d(TAG, "round trip: " + roundTripTimeMillis + "ms, " + "clock offset: " + clockOffsetMillis + "ms"); } // save our results - use the times on this side of the network latency // (response rather than request time) mClockOffset = clockOffsetMillis; mNtpTime = responseTime.plus(clockOffsetDuration).toEpochMilli(); mNtpTimeReference = responseTicks; mRoundTripTime = roundTripTimeMillis; mServerSocketAddress = new InetSocketAddress(address, port); } catch (Exception e) { EventLogTags.writeNtpFailure(address.toString(), e.toString()); if (DBG) Log.d(TAG, "request time failed: " + e); return false; } finally { if (socket != null) { socket.close(); } TrafficStats.setThreadStatsTag(oldTag); } return true; } /** Performs the NTP clock offset calculation. */ @VisibleForTesting public static Duration calculateClockOffset(Timestamp64 clientRequestTimestamp, Timestamp64 serverReceiveTimestamp, Timestamp64 serverTransmitTimestamp, Timestamp64 clientResponseTimestamp) { // According to RFC4330: // t is the system clock offset (the adjustment we are trying to find) // t = ((T2 - T1) + (T3 - T4)) / 2 // // Which is: // t = (([server]receiveTimestamp - [client]requestTimestamp) // + ([server]transmitTimestamp - [client]responseTimestamp)) / 2 // // See the NTP spec and tests: the numeric types used are deliberate: // + Duration64.between() uses 64-bit arithmetic (32-bit for the seconds). // + plus() / dividedBy() use Duration, which isn't the double precision floating point // used in NTPv4, but is good enough. return Duration64.between(clientRequestTimestamp, serverReceiveTimestamp) .plus(Duration64.between(clientResponseTimestamp, serverTransmitTimestamp)) .dividedBy(2); } @Deprecated @UnsupportedAppUsage public boolean requestTime(String host, int timeout) { Log.w(TAG, "Shame on you for calling the hidden API requestTime()!"); return false; } /** * Returns the offset calculated to apply to the client clock to arrive at {@link #getNtpTime()} */ @VisibleForTesting public long getClockOffset() { return mClockOffset; } /** * Returns the time computed from the NTP transaction. * * @return time value computed from NTP server response. */ @UnsupportedAppUsage public long getNtpTime() { return mNtpTime; } /** * Returns the reference clock value (value of SystemClock.elapsedRealtime()) * corresponding to the NTP time. * * @return reference clock corresponding to the NTP time. */ @UnsupportedAppUsage public long getNtpTimeReference() { return mNtpTimeReference; } /** * Returns the round trip time of the NTP transaction * * @return round trip time in milliseconds. */ @UnsupportedAppUsage public long getRoundTripTime() { return mRoundTripTime; } /** * Returns the address of the NTP server used in the NTP transaction */ @Nullable public InetSocketAddress getServerSocketAddress() { return mServerSocketAddress; } private static void checkValidServerReply( byte leap, byte mode, int stratum, Timestamp64 transmitTimestamp, Timestamp64 referenceTimestamp, Timestamp64 randomizedRequestTimestamp, Timestamp64 originateTimestamp) throws InvalidServerReplyException { if (leap == NTP_LEAP_NOSYNC) { throw new InvalidServerReplyException("unsynchronized server"); } if ((mode != NTP_MODE_SERVER) && (mode != NTP_MODE_BROADCAST)) { throw new InvalidServerReplyException("untrusted mode: " + mode); } if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) { throw new InvalidServerReplyException("untrusted stratum: " + stratum); } if (!randomizedRequestTimestamp.equals(originateTimestamp)) { throw new InvalidServerReplyException( "originateTimestamp != randomizedRequestTimestamp"); } if (transmitTimestamp.equals(Timestamp64.ZERO)) { throw new InvalidServerReplyException("zero transmitTimestamp"); } if (referenceTimestamp.equals(Timestamp64.ZERO)) { throw new InvalidServerReplyException("zero referenceTimestamp"); } } /** * Reads an unsigned 32 bit big endian number from the given offset in the buffer. */ private long readUnsigned32(byte[] buffer, int offset) { int i0 = buffer[offset++] & 0xFF; int i1 = buffer[offset++] & 0xFF; int i2 = buffer[offset++] & 0xFF; int i3 = buffer[offset] & 0xFF; int bits = (i0 << 24) | (i1 << 16) | (i2 << 8) | i3; return bits & 0xFFFF_FFFFL; } /** * Reads the NTP time stamp from the given offset in the buffer. */ private Timestamp64 readTimeStamp(byte[] buffer, int offset) { long seconds = readUnsigned32(buffer, offset); int fractionBits = (int) readUnsigned32(buffer, offset + 4); return Timestamp64.fromComponents(seconds, fractionBits); } /** * Writes the NTP time stamp at the given offset in the buffer. */ private void writeTimeStamp(byte[] buffer, int offset, Timestamp64 timestamp) { long seconds = timestamp.getEraSeconds(); // write seconds in big endian format buffer[offset++] = (byte) (seconds >>> 24); buffer[offset++] = (byte) (seconds >>> 16); buffer[offset++] = (byte) (seconds >>> 8); buffer[offset++] = (byte) (seconds); int fractionBits = timestamp.getFractionBits(); // write fraction in big endian format buffer[offset++] = (byte) (fractionBits >>> 24); buffer[offset++] = (byte) (fractionBits >>> 16); buffer[offset++] = (byte) (fractionBits >>> 8); buffer[offset] = (byte) (fractionBits); } private static Random defaultRandom() { Random random; try { random = SecureRandom.getInstanceStrong(); } catch (NoSuchAlgorithmException e) { // This should never happen. Slog.wtf(TAG, "Unable to access SecureRandom", e); random = new Random(System.currentTimeMillis()); } return random; } }