/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "perf_hint" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace android; using namespace aidl::android::os; using namespace std::chrono_literals; // Namespace for AIDL types coming from the PowerHAL namespace hal = aidl::android::hardware::power; using android::base::StringPrintf; struct APerformanceHintSession; constexpr int64_t SEND_HINT_TIMEOUT = std::chrono::nanoseconds(100ms).count(); struct AWorkDuration : public hal::WorkDuration {}; // Shared lock for the whole PerformanceHintManager and sessions static std::mutex sHintMutex = std::mutex{}; struct APerformanceHintManager { public: static APerformanceHintManager* getInstance(); APerformanceHintManager(std::shared_ptr service, int64_t preferredRateNanos); APerformanceHintManager() = delete; ~APerformanceHintManager() = default; APerformanceHintSession* createSession(const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos, hal::SessionTag tag = hal::SessionTag::APP); int64_t getPreferredRateNanos() const; private: // Necessary to create an empty binder object static void* tokenStubOnCreate(void*) { return nullptr; } static void tokenStubOnDestroy(void*) {} static binder_status_t tokenStubOnTransact(AIBinder*, transaction_code_t, const AParcel*, AParcel*) { return STATUS_OK; } static APerformanceHintManager* create(std::shared_ptr iHintManager); std::shared_ptr mHintManager; ndk::SpAIBinder mToken; const int64_t mPreferredRateNanos; }; struct APerformanceHintSession { public: APerformanceHintSession(std::shared_ptr hintManager, std::shared_ptr session, int64_t preferredRateNanos, int64_t targetDurationNanos, std::optional sessionConfig); APerformanceHintSession() = delete; ~APerformanceHintSession(); int updateTargetWorkDuration(int64_t targetDurationNanos); int reportActualWorkDuration(int64_t actualDurationNanos); int sendHint(SessionHint hint); int setThreads(const int32_t* threadIds, size_t size); int getThreadIds(int32_t* const threadIds, size_t* size); int setPreferPowerEfficiency(bool enabled); int reportActualWorkDuration(AWorkDuration* workDuration); private: friend struct APerformanceHintManager; int reportActualWorkDurationInternal(AWorkDuration* workDuration); std::shared_ptr mHintManager; std::shared_ptr mHintSession; // HAL preferred update rate const int64_t mPreferredRateNanos; // Target duration for choosing update rate int64_t mTargetDurationNanos; // First target hit timestamp int64_t mFirstTargetMetTimestamp; // Last target hit timestamp int64_t mLastTargetMetTimestamp; // Last hint reported from sendHint indexed by hint value std::vector mLastHintSentTimestamp; // Cached samples std::vector mActualWorkDurations; std::string mSessionName; static int64_t sIDCounter; // The most recent set of thread IDs std::vector mLastThreadIDs; std::optional mSessionConfig; // Tracing helpers void traceThreads(std::vector& tids); void tracePowerEfficient(bool powerEfficient); void traceActualDuration(int64_t actualDuration); void traceBatchSize(size_t batchSize); void traceTargetDuration(int64_t targetDuration); }; static std::shared_ptr* gIHintManagerForTesting = nullptr; static APerformanceHintManager* gHintManagerForTesting = nullptr; // Start above the int32 range so we don't collide with config sessions int64_t APerformanceHintSession::sIDCounter = INT32_MAX; // ===================================== APerformanceHintManager implementation APerformanceHintManager::APerformanceHintManager(std::shared_ptr manager, int64_t preferredRateNanos) : mHintManager(std::move(manager)), mPreferredRateNanos(preferredRateNanos) { static AIBinder_Class* tokenBinderClass = AIBinder_Class_define("phm_token", tokenStubOnCreate, tokenStubOnDestroy, tokenStubOnTransact); mToken = ndk::SpAIBinder(AIBinder_new(tokenBinderClass, nullptr)); } APerformanceHintManager* APerformanceHintManager::getInstance() { if (gHintManagerForTesting) return gHintManagerForTesting; if (gIHintManagerForTesting) { APerformanceHintManager* manager = create(*gIHintManagerForTesting); gIHintManagerForTesting = nullptr; return manager; } static APerformanceHintManager* instance = create(nullptr); return instance; } APerformanceHintManager* APerformanceHintManager::create(std::shared_ptr manager) { if (!manager) { manager = IHintManager::fromBinder( ndk::SpAIBinder(AServiceManager_waitForService("performance_hint"))); } if (manager == nullptr) { ALOGE("%s: PerformanceHint service is not ready ", __FUNCTION__); return nullptr; } int64_t preferredRateNanos = -1L; ndk::ScopedAStatus ret = manager->getHintSessionPreferredRate(&preferredRateNanos); if (!ret.isOk()) { ALOGE("%s: PerformanceHint cannot get preferred rate. %s", __FUNCTION__, ret.getMessage()); return nullptr; } if (preferredRateNanos <= 0) { preferredRateNanos = -1L; } return new APerformanceHintManager(std::move(manager), preferredRateNanos); } APerformanceHintSession* APerformanceHintManager::createSession( const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos, hal::SessionTag tag) { std::vector tids(threadIds, threadIds + size); std::shared_ptr session; ndk::ScopedAStatus ret; std::optional sessionConfig; ret = mHintManager->createHintSessionWithConfig(mToken, tids, initialTargetWorkDurationNanos, tag, &sessionConfig, &session); if (!ret.isOk() || !session) { return nullptr; } auto out = new APerformanceHintSession(mHintManager, std::move(session), mPreferredRateNanos, initialTargetWorkDurationNanos, sessionConfig); std::scoped_lock lock(sHintMutex); out->traceThreads(tids); out->traceTargetDuration(initialTargetWorkDurationNanos); out->tracePowerEfficient(false); return out; } int64_t APerformanceHintManager::getPreferredRateNanos() const { return mPreferredRateNanos; } // ===================================== APerformanceHintSession implementation APerformanceHintSession::APerformanceHintSession(std::shared_ptr hintManager, std::shared_ptr session, int64_t preferredRateNanos, int64_t targetDurationNanos, std::optional sessionConfig) : mHintManager(hintManager), mHintSession(std::move(session)), mPreferredRateNanos(preferredRateNanos), mTargetDurationNanos(targetDurationNanos), mFirstTargetMetTimestamp(0), mLastTargetMetTimestamp(0), mSessionConfig(sessionConfig) { if (sessionConfig->id > INT32_MAX) { ALOGE("Session ID too large, must fit 32-bit integer"); } std::scoped_lock lock(sHintMutex); constexpr int numEnums = ndk::enum_range().end() - ndk::enum_range().begin(); mLastHintSentTimestamp = std::vector(numEnums, 0); int64_t traceId = sessionConfig.has_value() ? sessionConfig->id : ++sIDCounter; mSessionName = android::base::StringPrintf("ADPF Session %" PRId64, traceId); } APerformanceHintSession::~APerformanceHintSession() { ndk::ScopedAStatus ret = mHintSession->close(); if (!ret.isOk()) { ALOGE("%s: HintSession close failed: %s", __FUNCTION__, ret.getMessage()); } } int APerformanceHintSession::updateTargetWorkDuration(int64_t targetDurationNanos) { if (targetDurationNanos <= 0) { ALOGE("%s: targetDurationNanos must be positive", __FUNCTION__); return EINVAL; } ndk::ScopedAStatus ret = mHintSession->updateTargetWorkDuration(targetDurationNanos); if (!ret.isOk()) { ALOGE("%s: HintSession updateTargetWorkDuration failed: %s", __FUNCTION__, ret.getMessage()); return EPIPE; } std::scoped_lock lock(sHintMutex); mTargetDurationNanos = targetDurationNanos; /** * Most of the workload is target_duration dependent, so now clear the cached samples * as they are most likely obsolete. */ mActualWorkDurations.clear(); traceBatchSize(0); traceTargetDuration(targetDurationNanos); mFirstTargetMetTimestamp = 0; mLastTargetMetTimestamp = 0; return 0; } int APerformanceHintSession::reportActualWorkDuration(int64_t actualDurationNanos) { hal::WorkDuration workDuration{.durationNanos = actualDurationNanos, .workPeriodStartTimestampNanos = 0, .cpuDurationNanos = actualDurationNanos, .gpuDurationNanos = 0}; return reportActualWorkDurationInternal(static_cast(&workDuration)); } int APerformanceHintSession::sendHint(SessionHint hint) { std::scoped_lock lock(sHintMutex); if (hint < 0 || hint >= static_cast(mLastHintSentTimestamp.size())) { ALOGE("%s: invalid session hint %d", __FUNCTION__, hint); return EINVAL; } int64_t now = uptimeNanos(); // Limit sendHint to a pre-detemined rate for safety if (now < (mLastHintSentTimestamp[hint] + SEND_HINT_TIMEOUT)) { return 0; } ndk::ScopedAStatus ret = mHintSession->sendHint(hint); if (!ret.isOk()) { ALOGE("%s: HintSession sendHint failed: %s", __FUNCTION__, ret.getMessage()); return EPIPE; } mLastHintSentTimestamp[hint] = now; return 0; } int APerformanceHintSession::setThreads(const int32_t* threadIds, size_t size) { if (size == 0) { ALOGE("%s: the list of thread ids must not be empty.", __FUNCTION__); return EINVAL; } std::vector tids(threadIds, threadIds + size); ndk::ScopedAStatus ret = mHintManager->setHintSessionThreads(mHintSession, tids); if (!ret.isOk()) { ALOGE("%s: failed: %s", __FUNCTION__, ret.getMessage()); if (ret.getExceptionCode() == EX_ILLEGAL_ARGUMENT) { return EINVAL; } else if (ret.getExceptionCode() == EX_SECURITY) { return EPERM; } return EPIPE; } std::scoped_lock lock(sHintMutex); traceThreads(tids); return 0; } int APerformanceHintSession::getThreadIds(int32_t* const threadIds, size_t* size) { std::vector tids; ndk::ScopedAStatus ret = mHintManager->getHintSessionThreadIds(mHintSession, &tids); if (!ret.isOk()) { ALOGE("%s: failed: %s", __FUNCTION__, ret.getMessage()); return EPIPE; } // When threadIds is nullptr, this is the first call to determine the size // of the thread ids list. if (threadIds == nullptr) { *size = tids.size(); return 0; } // Second call to return the actual list of thread ids. *size = tids.size(); for (size_t i = 0; i < *size; ++i) { threadIds[i] = tids[i]; } return 0; } int APerformanceHintSession::setPreferPowerEfficiency(bool enabled) { ndk::ScopedAStatus ret = mHintSession->setMode(static_cast(hal::SessionMode::POWER_EFFICIENCY), enabled); if (!ret.isOk()) { ALOGE("%s: HintSession setPreferPowerEfficiency failed: %s", __FUNCTION__, ret.getMessage()); return EPIPE; } std::scoped_lock lock(sHintMutex); tracePowerEfficient(enabled); return OK; } int APerformanceHintSession::reportActualWorkDuration(AWorkDuration* workDuration) { return reportActualWorkDurationInternal(workDuration); } int APerformanceHintSession::reportActualWorkDurationInternal(AWorkDuration* workDuration) { int64_t actualTotalDurationNanos = workDuration->durationNanos; int64_t now = uptimeNanos(); workDuration->timeStampNanos = now; std::scoped_lock lock(sHintMutex); traceActualDuration(workDuration->durationNanos); mActualWorkDurations.push_back(std::move(*workDuration)); if (actualTotalDurationNanos >= mTargetDurationNanos) { // Reset timestamps if we are equal or over the target. mFirstTargetMetTimestamp = 0; } else { // Set mFirstTargetMetTimestamp for first time meeting target. if (!mFirstTargetMetTimestamp || !mLastTargetMetTimestamp || (now - mLastTargetMetTimestamp > 2 * mPreferredRateNanos)) { mFirstTargetMetTimestamp = now; } /** * Rate limit the change if the update is over mPreferredRateNanos since first * meeting target and less than mPreferredRateNanos since last meeting target. */ if (now - mFirstTargetMetTimestamp > mPreferredRateNanos && now - mLastTargetMetTimestamp <= mPreferredRateNanos) { traceBatchSize(mActualWorkDurations.size()); return 0; } mLastTargetMetTimestamp = now; } ndk::ScopedAStatus ret = mHintSession->reportActualWorkDuration2(mActualWorkDurations); if (!ret.isOk()) { ALOGE("%s: HintSession reportActualWorkDuration failed: %s", __FUNCTION__, ret.getMessage()); mFirstTargetMetTimestamp = 0; mLastTargetMetTimestamp = 0; traceBatchSize(mActualWorkDurations.size()); return ret.getExceptionCode() == EX_ILLEGAL_ARGUMENT ? EINVAL : EPIPE; } mActualWorkDurations.clear(); traceBatchSize(0); return 0; } // ===================================== Tracing helpers void APerformanceHintSession::traceThreads(std::vector& tids) { std::set tidSet{tids.begin(), tids.end()}; // Disable old TID tracing for (int32_t tid : mLastThreadIDs) { if (!tidSet.count(tid)) { std::string traceName = android::base::StringPrintf("%s TID: %" PRId32, mSessionName.c_str(), tid); ATrace_setCounter(traceName.c_str(), 0); } } // Add new TID tracing for (int32_t tid : tids) { std::string traceName = android::base::StringPrintf("%s TID: %" PRId32, mSessionName.c_str(), tid); ATrace_setCounter(traceName.c_str(), 1); } mLastThreadIDs = std::move(tids); } void APerformanceHintSession::tracePowerEfficient(bool powerEfficient) { ATrace_setCounter((mSessionName + " power efficiency mode").c_str(), powerEfficient); } void APerformanceHintSession::traceActualDuration(int64_t actualDuration) { ATrace_setCounter((mSessionName + " actual duration").c_str(), actualDuration); } void APerformanceHintSession::traceBatchSize(size_t batchSize) { std::string traceName = StringPrintf("%s batch size", mSessionName.c_str()); ATrace_setCounter((mSessionName + " batch size").c_str(), batchSize); } void APerformanceHintSession::traceTargetDuration(int64_t targetDuration) { ATrace_setCounter((mSessionName + " target duration").c_str(), targetDuration); } // ===================================== C API APerformanceHintManager* APerformanceHint_getManager() { return APerformanceHintManager::getInstance(); } #define VALIDATE_PTR(ptr) \ LOG_ALWAYS_FATAL_IF(ptr == nullptr, "%s: " #ptr " is nullptr", __FUNCTION__); #define VALIDATE_INT(value, cmp) \ if (!(value cmp)) { \ ALOGE("%s: Invalid value. Check failed: (" #value " " #cmp ") with value: %" PRIi64, \ __FUNCTION__, value); \ return EINVAL; \ } #define WARN_INT(value, cmp) \ if (!(value cmp)) { \ ALOGE("%s: Invalid value. Check failed: (" #value " " #cmp ") with value: %" PRIi64, \ __FUNCTION__, value); \ } APerformanceHintSession* APerformanceHint_createSession(APerformanceHintManager* manager, const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos) { VALIDATE_PTR(manager) VALIDATE_PTR(threadIds) return manager->createSession(threadIds, size, initialTargetWorkDurationNanos); } APerformanceHintSession* APerformanceHint_createSessionInternal( APerformanceHintManager* manager, const int32_t* threadIds, size_t size, int64_t initialTargetWorkDurationNanos, SessionTag tag) { VALIDATE_PTR(manager) VALIDATE_PTR(threadIds) return manager->createSession(threadIds, size, initialTargetWorkDurationNanos, static_cast(tag)); } int64_t APerformanceHint_getPreferredUpdateRateNanos(APerformanceHintManager* manager) { VALIDATE_PTR(manager) return manager->getPreferredRateNanos(); } int APerformanceHint_updateTargetWorkDuration(APerformanceHintSession* session, int64_t targetDurationNanos) { VALIDATE_PTR(session) return session->updateTargetWorkDuration(targetDurationNanos); } int APerformanceHint_reportActualWorkDuration(APerformanceHintSession* session, int64_t actualDurationNanos) { VALIDATE_PTR(session) VALIDATE_INT(actualDurationNanos, > 0) return session->reportActualWorkDuration(actualDurationNanos); } void APerformanceHint_closeSession(APerformanceHintSession* session) { VALIDATE_PTR(session) delete session; } int APerformanceHint_sendHint(APerformanceHintSession* session, SessionHint hint) { VALIDATE_PTR(session) return session->sendHint(hint); } int APerformanceHint_setThreads(APerformanceHintSession* session, const pid_t* threadIds, size_t size) { VALIDATE_PTR(session) VALIDATE_PTR(threadIds) return session->setThreads(threadIds, size); } int APerformanceHint_getThreadIds(APerformanceHintSession* session, int32_t* const threadIds, size_t* const size) { VALIDATE_PTR(session) return session->getThreadIds(threadIds, size); } int APerformanceHint_setPreferPowerEfficiency(APerformanceHintSession* session, bool enabled) { VALIDATE_PTR(session) return session->setPreferPowerEfficiency(enabled); } int APerformanceHint_reportActualWorkDuration2(APerformanceHintSession* session, AWorkDuration* workDurationPtr) { VALIDATE_PTR(session) VALIDATE_PTR(workDurationPtr) VALIDATE_INT(workDurationPtr->durationNanos, > 0) VALIDATE_INT(workDurationPtr->workPeriodStartTimestampNanos, > 0) VALIDATE_INT(workDurationPtr->cpuDurationNanos, >= 0) VALIDATE_INT(workDurationPtr->gpuDurationNanos, >= 0) VALIDATE_INT(workDurationPtr->gpuDurationNanos + workDurationPtr->cpuDurationNanos, > 0) return session->reportActualWorkDuration(workDurationPtr); } AWorkDuration* AWorkDuration_create() { return new AWorkDuration(); } void AWorkDuration_release(AWorkDuration* aWorkDuration) { VALIDATE_PTR(aWorkDuration) delete aWorkDuration; } void AWorkDuration_setActualTotalDurationNanos(AWorkDuration* aWorkDuration, int64_t actualTotalDurationNanos) { VALIDATE_PTR(aWorkDuration) WARN_INT(actualTotalDurationNanos, > 0) aWorkDuration->durationNanos = actualTotalDurationNanos; } void AWorkDuration_setWorkPeriodStartTimestampNanos(AWorkDuration* aWorkDuration, int64_t workPeriodStartTimestampNanos) { VALIDATE_PTR(aWorkDuration) WARN_INT(workPeriodStartTimestampNanos, > 0) aWorkDuration->workPeriodStartTimestampNanos = workPeriodStartTimestampNanos; } void AWorkDuration_setActualCpuDurationNanos(AWorkDuration* aWorkDuration, int64_t actualCpuDurationNanos) { VALIDATE_PTR(aWorkDuration) WARN_INT(actualCpuDurationNanos, >= 0) aWorkDuration->cpuDurationNanos = actualCpuDurationNanos; } void AWorkDuration_setActualGpuDurationNanos(AWorkDuration* aWorkDuration, int64_t actualGpuDurationNanos) { VALIDATE_PTR(aWorkDuration) WARN_INT(actualGpuDurationNanos, >= 0) aWorkDuration->gpuDurationNanos = actualGpuDurationNanos; } void APerformanceHint_setIHintManagerForTesting(void* iManager) { delete gHintManagerForTesting; gHintManagerForTesting = nullptr; gIHintManagerForTesting = static_cast*>(iManager); }