/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "libtimeinstate" #include "cputimeinstate.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using android::base::StringPrintf; using android::base::unique_fd; namespace android { namespace bpf { static std::mutex gInitializedMutex; static bool gInitialized = false; static std::mutex gTrackingMutex; static bool gTracking = false; static uint32_t gNPolicies = 0; static uint32_t gNCpus = 0; static std::vector> gPolicyFreqs; static std::vector> gPolicyCpus; static std::vector gCpuIndexMap; static std::set gAllFreqs; static unique_fd gTisTotalMapFd; static unique_fd gTisMapFd; static unique_fd gConcurrentMapFd; static unique_fd gUidLastUpdateMapFd; static unique_fd gPidTisMapFd; static std::optional> readNumbersFromFile(const std::string &path) { std::string data; if (!android::base::ReadFileToString(path, &data)) return {}; auto strings = android::base::Split(data, " \n"); std::vector ret; for (const auto &s : strings) { if (s.empty()) continue; uint32_t n; if (!android::base::ParseUint(s, &n)) return {}; ret.emplace_back(n); } return ret; } static int isPolicyFile(const struct dirent *d) { return android::base::StartsWith(d->d_name, "policy"); } static int comparePolicyFiles(const struct dirent **d1, const struct dirent **d2) { uint32_t policyN1, policyN2; if (sscanf((*d1)->d_name, "policy%" SCNu32 "", &policyN1) != 1 || sscanf((*d2)->d_name, "policy%" SCNu32 "", &policyN2) != 1) return 0; return policyN1 - policyN2; } static bool initGlobals() { std::lock_guard guard(gInitializedMutex); if (gInitialized) return true; gNCpus = get_nprocs_conf(); struct dirent **dirlist; const char basepath[] = "/sys/devices/system/cpu/cpufreq"; int ret = scandir(basepath, &dirlist, isPolicyFile, comparePolicyFiles); if (ret == -1 || ret == 0) return false; gNPolicies = ret; std::vector policyFileNames; for (uint32_t i = 0; i < gNPolicies; ++i) { policyFileNames.emplace_back(dirlist[i]->d_name); free(dirlist[i]); } free(dirlist); uint32_t max_cpu_number = 0; for (const auto &policy : policyFileNames) { std::vector freqs; for (const auto &name : {"available", "boost"}) { std::string path = StringPrintf("%s/%s/scaling_%s_frequencies", basepath, policy.c_str(), name); auto nums = readNumbersFromFile(path); if (!nums) continue; freqs.insert(freqs.end(), nums->begin(), nums->end()); } if (freqs.empty()) return false; std::sort(freqs.begin(), freqs.end()); gPolicyFreqs.emplace_back(freqs); for (auto freq : freqs) gAllFreqs.insert(freq); std::string path = StringPrintf("%s/%s/%s", basepath, policy.c_str(), "related_cpus"); auto cpus = readNumbersFromFile(path); if (!cpus) return false; for (auto cpu : *cpus) { if(cpu > max_cpu_number) max_cpu_number = cpu; } gPolicyCpus.emplace_back(*cpus); } gCpuIndexMap = std::vector(max_cpu_number+1, -1); uint32_t cpuorder = 0; for (const auto &cpuList : gPolicyCpus) { for (auto cpu : cpuList) { gCpuIndexMap[cpu] = cpuorder++; } } gTisTotalMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_total_time_in_state_map")}; if (gTisTotalMapFd < 0) return false; gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_time_in_state_map")}; if (gTisMapFd < 0) return false; gConcurrentMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_concurrent_times_map")}; if (gConcurrentMapFd < 0) return false; gUidLastUpdateMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_timeInState_uid_last_update_map")}; if (gUidLastUpdateMapFd < 0) return false; gPidTisMapFd = unique_fd{mapRetrieveRO(BPF_FS_PATH "map_timeInState_pid_time_in_state_map")}; if (gPidTisMapFd < 0) return false; unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map")); if (trackedPidMapFd < 0) return false; gInitialized = true; return true; } static int retrieveProgramFd(const std::string &eventType, const std::string &eventName) { std::string path = StringPrintf(BPF_FS_PATH "prog_timeInState_tracepoint_%s_%s", eventType.c_str(), eventName.c_str()); return retrieveProgram(path.c_str()); } static bool attachTracepointProgram(const std::string &eventType, const std::string &eventName) { int prog_fd = retrieveProgramFd(eventType, eventName); if (prog_fd < 0) return false; return bpf_attach_tracepoint(prog_fd, eventType.c_str(), eventName.c_str()) >= 0; } static std::optional getPolicyFreqIdx(uint32_t policy) { auto path = StringPrintf("/sys/devices/system/cpu/cpufreq/policy%u/scaling_cur_freq", gPolicyCpus[policy][0]); auto freqVec = readNumbersFromFile(path); if (!freqVec.has_value() || freqVec->size() != 1) return {}; for (uint32_t idx = 0; idx < gPolicyFreqs[policy].size(); ++idx) { if ((*freqVec)[0] == gPolicyFreqs[policy][idx]) return idx + 1; } return {}; } // Check if tracking is expected to work without activating it. bool isTrackingUidTimesSupported() { auto freqs = getCpuFreqs(); if (!freqs || freqs->empty()) return false; if (gTracking) return true; if (retrieveProgramFd("sched", "sched_switch") < 0) return false; if (retrieveProgramFd("power", "cpu_frequency") < 0) return false; if (retrieveProgramFd("sched", "sched_process_free") < 0) return false; return true; } // Start tracking and aggregating data to be reported by getUidCpuFreqTimes and getUidsCpuFreqTimes. // Returns true on success, false otherwise. // Tracking is active only once a live process has successfully called this function; if the calling // process dies then it must be called again to resume tracking. // This function should *not* be called while tracking is already active; doing so is unnecessary // and can lead to accounting errors. bool startTrackingUidTimes() { std::lock_guard guard(gTrackingMutex); if (!initGlobals()) return false; if (gTracking) return true; unique_fd cpuPolicyFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_policy_map")); if (cpuPolicyFd < 0) return false; for (uint32_t i = 0; i < gPolicyCpus.size(); ++i) { for (auto &cpu : gPolicyCpus[i]) { if (writeToMapEntry(cpuPolicyFd, &cpu, &i, BPF_ANY)) return false; } } unique_fd freqToIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_freq_to_idx_map")); if (freqToIdxFd < 0) return false; freq_idx_key_t key; for (uint32_t i = 0; i < gNPolicies; ++i) { key.policy = i; for (uint32_t j = 0; j < gPolicyFreqs[i].size(); ++j) { key.freq = gPolicyFreqs[i][j]; // Start indexes at 1 so that uninitialized state is distinguishable from lowest freq. // The uid_times map still uses 0-based indexes, and the sched_switch program handles // conversion between them, so this does not affect our map reading code. uint32_t idx = j + 1; if (writeToMapEntry(freqToIdxFd, &key, &idx, BPF_ANY)) return false; } } unique_fd cpuLastUpdateFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_cpu_last_update_map")); if (cpuLastUpdateFd < 0) return false; std::vector zeros(get_nprocs_conf(), 0); uint32_t zero = 0; if (writeToMapEntry(cpuLastUpdateFd, &zero, zeros.data(), BPF_ANY)) return false; unique_fd nrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_nr_active_map")); if (nrActiveFd < 0) return false; if (writeToMapEntry(nrActiveFd, &zero, &zero, BPF_ANY)) return false; unique_fd policyNrActiveFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_nr_active_map")); if (policyNrActiveFd < 0) return false; for (uint32_t i = 0; i < gNPolicies; ++i) { if (writeToMapEntry(policyNrActiveFd, &i, &zero, BPF_ANY)) return false; } unique_fd policyFreqIdxFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_policy_freq_idx_map")); if (policyFreqIdxFd < 0) return false; for (uint32_t i = 0; i < gNPolicies; ++i) { auto freqIdx = getPolicyFreqIdx(i); if (!freqIdx.has_value()) return false; if (writeToMapEntry(policyFreqIdxFd, &i, &(*freqIdx), BPF_ANY)) return false; } gTracking = attachTracepointProgram("sched", "sched_switch") && attachTracepointProgram("power", "cpu_frequency") && attachTracepointProgram("sched", "sched_process_free"); return gTracking; } std::optional>> getCpuFreqs() { if (!gInitialized && !initGlobals()) return {}; return gPolicyFreqs; } std::optional>> getTotalCpuFreqTimes() { if (!gInitialized && !initGlobals()) return {}; std::vector> out; uint32_t maxFreqCount = 0; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); out.emplace_back(freqList.size(), 0); } std::vector vals(gNCpus); const uint32_t freqCount = maxFreqCount <= MAX_FREQS_FOR_TOTAL ? maxFreqCount : MAX_FREQS_FOR_TOTAL; for (uint32_t freqIdx = 0; freqIdx < freqCount; ++freqIdx) { if (findMapEntry(gTisTotalMapFd, &freqIdx, vals.data())) return {}; for (uint32_t policyIdx = 0; policyIdx < gNPolicies; ++policyIdx) { if (freqIdx >= gPolicyFreqs[policyIdx].size()) continue; for (const auto &cpu : gPolicyCpus[policyIdx]) { out[policyIdx][freqIdx] += vals[gCpuIndexMap[cpu]]; } } } return out; } // Retrieve the times in ns that uid spent running at each CPU frequency. // Return contains no value on error, otherwise it contains a vector of vectors using the format: // [[t0_0, t0_1, ...], // [t1_0, t1_1, ...], ...] // where ti_j is the ns that uid spent running on the ith cluster at that cluster's jth lowest freq. std::optional>> getUidCpuFreqTimes(uint32_t uid) { if (!gInitialized && !initGlobals()) return {}; std::vector> out; uint32_t maxFreqCount = 0; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); out.emplace_back(freqList.size(), 0); } std::vector vals(gNCpus); for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) { const time_key_t key = {.uid = uid, .bucket = i}; if (findMapEntry(gTisMapFd, &key, vals.data())) { time_key_t tmpKey; if (errno != ENOENT || getFirstMapKey(gTisMapFd, &tmpKey)) return {}; continue; } auto offset = i * FREQS_PER_ENTRY; auto nextOffset = (i + 1) * FREQS_PER_ENTRY; for (uint32_t j = 0; j < gNPolicies; ++j) { if (offset >= gPolicyFreqs[j].size()) continue; auto begin = out[j].begin() + offset; auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : out[j].end(); for (const auto &cpu : gPolicyCpus[j]) { std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, std::plus()); } } } return out; } static std::optional uidUpdatedSince(uint32_t uid, uint64_t lastUpdate, uint64_t *newLastUpdate) { uint64_t uidLastUpdate; if (findMapEntry(gUidLastUpdateMapFd, &uid, &uidLastUpdate)) return {}; // Updates that occurred during the previous read may have been missed. To mitigate // this, don't ignore entries updated up to 1s before *lastUpdate constexpr uint64_t NSEC_PER_SEC = 1000000000; if (uidLastUpdate + NSEC_PER_SEC < lastUpdate) return false; if (uidLastUpdate > *newLastUpdate) *newLastUpdate = uidLastUpdate; return true; } // Retrieve the times in ns that each uid spent running at each CPU freq. // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors // using the format: // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], // uid1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } // where ti_j_k is the ns uid i spent running on the jth cluster at the cluster's kth lowest freq. std::optional>>> getUidsCpuFreqTimes() { return getUidsUpdatedCpuFreqTimes(nullptr); } // Retrieve the times in ns that each uid spent running at each CPU freq, excluding UIDs that have // not run since before lastUpdate. // Return format is the same as getUidsCpuFreqTimes() std::optional>>> getUidsUpdatedCpuFreqTimes(uint64_t *lastUpdate) { if (!gInitialized && !initGlobals()) return {}; time_key_t key, prevKey; std::unordered_map>> map; if (getFirstMapKey(gTisMapFd, &key)) { if (errno == ENOENT) return map; return std::nullopt; } std::vector> mapFormat; for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0); uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; std::vector vals(gNCpus); do { if (lastUpdate) { auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); if (!uidUpdated.has_value()) return {}; if (!*uidUpdated) continue; } if (findMapEntry(gTisMapFd, &key, vals.data())) return {}; if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat); auto offset = key.bucket * FREQS_PER_ENTRY; auto nextOffset = (key.bucket + 1) * FREQS_PER_ENTRY; for (uint32_t i = 0; i < gNPolicies; ++i) { if (offset >= gPolicyFreqs[i].size()) continue; auto begin = map[key.uid][i].begin() + offset; auto end = nextOffset < gPolicyFreqs[i].size() ? begin + FREQS_PER_ENTRY : map[key.uid][i].end(); for (const auto &cpu : gPolicyCpus[i]) { std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, std::plus()); } } prevKey = key; } while (prevKey = key, !getNextMapKey(gTisMapFd, &prevKey, &key)); if (errno != ENOENT) return {}; if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; return map; } static bool verifyConcurrentTimes(const concurrent_time_t &ct) { uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0); uint64_t policySum = 0; for (const auto &vec : ct.policy) { policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0); } return activeSum == policySum; } // Retrieve the times in ns that uid spent running concurrently with each possible number of other // tasks on each cluster (policy times) and overall (active times). // Return contains no value on error, otherwise it contains a concurrent_time_t with the format: // {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]} // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster std::optional getUidConcurrentTimes(uint32_t uid, bool retry) { if (!gInitialized && !initGlobals()) return {}; concurrent_time_t ret = {.active = std::vector(gNCpus, 0)}; for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0); std::vector vals(gNCpus); for (uint32_t i = 0; i <= (gNCpus - 1) / CPUS_PER_ENTRY; ++i) { const time_key_t key = {.uid = uid, .bucket = i}; if (findMapEntry(gConcurrentMapFd, &key, vals.data())) { time_key_t tmpKey; if (errno != ENOENT || getFirstMapKey(gConcurrentMapFd, &tmpKey)) return {}; continue; } auto offset = key.bucket * CPUS_PER_ENTRY; auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; auto activeBegin = ret.active.begin() + offset; auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end(); for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, std::plus()); } for (uint32_t policy = 0; policy < gNPolicies; ++policy) { if (offset >= gPolicyCpus[policy].size()) continue; auto policyBegin = ret.policy[policy].begin() + offset; auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY : ret.policy[policy].end(); for (const auto &cpu : gPolicyCpus[policy]) { std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy), policyBegin, std::plus()); } } } if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false); return ret; } // Retrieve the times in ns that each uid spent running concurrently with each possible number of // other tasks on each cluster (policy times) and overall (active times). // Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's // using the format: // { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...} // where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent // running on the ith cluster, concurrently with tasks on j other cpus in the same cluster. std::optional> getUidsConcurrentTimes() { return getUidsUpdatedConcurrentTimes(nullptr); } // Retrieve the times in ns that each uid spent running concurrently with each possible number of // other tasks on each cluster (policy times) and overall (active times), excluding UIDs that have // not run since before lastUpdate. // Return format is the same as getUidsConcurrentTimes() std::optional> getUidsUpdatedConcurrentTimes( uint64_t *lastUpdate) { if (!gInitialized && !initGlobals()) return {}; time_key_t key, prevKey; std::unordered_map ret; if (getFirstMapKey(gConcurrentMapFd, &key)) { if (errno == ENOENT) return ret; return {}; } concurrent_time_t retFormat = {.active = std::vector(gNCpus, 0)}; for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0); std::vector vals(gNCpus); std::vector::iterator activeBegin, activeEnd, policyBegin, policyEnd; uint64_t newLastUpdate = lastUpdate ? *lastUpdate : 0; do { if (key.bucket > (gNCpus - 1) / CPUS_PER_ENTRY) return {}; if (lastUpdate) { auto uidUpdated = uidUpdatedSince(key.uid, *lastUpdate, &newLastUpdate); if (!uidUpdated.has_value()) return {}; if (!*uidUpdated) continue; } if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {}; if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat); auto offset = key.bucket * CPUS_PER_ENTRY; auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; activeBegin = ret[key.uid].active.begin(); activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end(); for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, std::plus()); } for (uint32_t policy = 0; policy < gNPolicies; ++policy) { if (offset >= gPolicyCpus[policy].size()) continue; policyBegin = ret[key.uid].policy[policy].begin() + offset; policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY : ret[key.uid].policy[policy].end(); for (const auto &cpu : gPolicyCpus[policy]) { std::transform(policyBegin, policyEnd, std::begin(vals[gCpuIndexMap[cpu]].policy), policyBegin, std::plus()); } } } while (prevKey = key, !getNextMapKey(gConcurrentMapFd, &prevKey, &key)); if (errno != ENOENT) return {}; for (const auto &[key, value] : ret) { if (!verifyConcurrentTimes(value)) { auto val = getUidConcurrentTimes(key, false); if (val.has_value()) ret[key] = val.value(); } } if (lastUpdate && newLastUpdate > *lastUpdate) *lastUpdate = newLastUpdate; return ret; } // Clear all time in state data for a given uid. Returns false on error, true otherwise. // This is only suitable for clearing data when an app is uninstalled; if called on a UID with // running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that // UID. bool clearUidTimes(uint32_t uid) { if (!gInitialized && !initGlobals()) return false; time_key_t key = {.uid = uid}; uint32_t maxFreqCount = 0; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); } tis_val_t zeros = {0}; std::vector vals(gNCpus, zeros); for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) return false; if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false; } concurrent_val_t czeros = { .active = {0}, .policy = {0}, }; std::vector cvals(gNCpus, czeros); for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT) return false; if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false; } if (deleteMapEntry(gUidLastUpdateMapFd, &uid) && errno != ENOENT) return false; return true; } bool startTrackingProcessCpuTimes(pid_t pid) { if (!gInitialized && !initGlobals()) return false; unique_fd trackedPidHashMapFd( mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_hash_map")); if (trackedPidHashMapFd < 0) return false; unique_fd trackedPidMapFd(mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_tracked_map")); if (trackedPidMapFd < 0) return false; for (uint32_t index = 0; index < MAX_TRACKED_PIDS; index++) { // Find first available [index, pid] entry in the pid_tracked_hash_map map if (writeToMapEntry(trackedPidHashMapFd, &index, &pid, BPF_NOEXIST) != 0) { if (errno != EEXIST) { return false; } continue; // This index is already taken } tracked_pid_t tracked_pid = {.pid = pid, .state = TRACKED_PID_STATE_ACTIVE}; if (writeToMapEntry(trackedPidMapFd, &index, &tracked_pid, BPF_ANY) != 0) { return false; } return true; } return false; } // Marks the specified task identified by its PID (aka TID) for CPU time-in-state tracking // aggregated with other tasks sharing the same TGID and aggregation key. bool startAggregatingTaskCpuTimes(pid_t pid, uint16_t aggregationKey) { if (!gInitialized && !initGlobals()) return false; unique_fd taskAggregationMapFd( mapRetrieveWO(BPF_FS_PATH "map_timeInState_pid_task_aggregation_map")); if (taskAggregationMapFd < 0) return false; return writeToMapEntry(taskAggregationMapFd, &pid, &aggregationKey, BPF_ANY) == 0; } // Retrieves the times in ns that each thread spent running at each CPU freq, aggregated by // aggregation key. // Return contains no value on error, otherwise it contains a map from aggregation keys // to vectors of vectors using the format: // { aggKey0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], // aggKey1 -> [[t1_0_0, t1_0_1, ...], [t1_1_0, t1_1_1, ...], ...], ... } // where ti_j_k is the ns tid i spent running on the jth cluster at the cluster's kth lowest freq. std::optional>>> getAggregatedTaskCpuFreqTimes(pid_t tgid, const std::vector &aggregationKeys) { if (!gInitialized && !initGlobals()) return {}; uint32_t maxFreqCount = 0; std::vector> mapFormat; for (const auto &freqList : gPolicyFreqs) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); mapFormat.emplace_back(freqList.size(), 0); } bool dataCollected = false; std::unordered_map>> map; std::vector vals(gNCpus); for (uint16_t aggregationKey : aggregationKeys) { map.emplace(aggregationKey, mapFormat); aggregated_task_tis_key_t key{.tgid = tgid, .aggregation_key = aggregationKey}; for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { if (findMapEntry(gPidTisMapFd, &key, vals.data()) != 0) { if (errno != ENOENT) { return {}; } continue; } else { dataCollected = true; } // Combine data by aggregating time-in-state data grouped by CPU cluster aka policy. uint32_t offset = key.bucket * FREQS_PER_ENTRY; uint32_t nextOffset = offset + FREQS_PER_ENTRY; for (uint32_t j = 0; j < gNPolicies; ++j) { if (offset >= gPolicyFreqs[j].size()) continue; auto begin = map[key.aggregation_key][j].begin() + offset; auto end = nextOffset < gPolicyFreqs[j].size() ? begin + FREQS_PER_ENTRY : map[key.aggregation_key][j].end(); for (const auto &cpu : gPolicyCpus[j]) { std::transform(begin, end, std::begin(vals[gCpuIndexMap[cpu]].ar), begin, std::plus()); } } } } if (!dataCollected) { // Check if eBPF is supported on this device. If it is, gTisMap should not be empty. time_key_t key; if (getFirstMapKey(gTisMapFd, &key) != 0) { return {}; } } return map; } } // namespace bpf } // namespace android