/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "IGraphicBufferProducer_test" //#define LOG_NDEBUG 0 #include "Constants.h" #include "MockConsumer.h" #include #include #include #include #include #include #include #include #define ASSERT_OK(x) ASSERT_EQ(OK, (x)) #define EXPECT_OK(x) EXPECT_EQ(OK, (x)) #define TEST_TOKEN ((IProducerListener*)(NULL)) #define TEST_API NATIVE_WINDOW_API_CPU #define TEST_API_OTHER NATIVE_WINDOW_API_EGL // valid API that's not TEST_API #define TEST_CONTROLLED_BY_APP false namespace android { namespace { // Default dimensions before setDefaultBufferSize is called const uint32_t DEFAULT_WIDTH = 1; const uint32_t DEFAULT_HEIGHT = 1; // Default format before setDefaultBufferFormat is called const PixelFormat DEFAULT_FORMAT = HAL_PIXEL_FORMAT_RGBA_8888; // Default transform hint before setTransformHint is called const uint32_t DEFAULT_TRANSFORM_HINT = 0; // TODO: Make these constants in header const int DEFAULT_CONSUMER_USAGE_BITS = 0; // Parameters for a generic "valid" input for queueBuffer. const int64_t QUEUE_BUFFER_INPUT_TIMESTAMP = 1384888611; const bool QUEUE_BUFFER_INPUT_IS_AUTO_TIMESTAMP = false; const android_dataspace QUEUE_BUFFER_INPUT_DATASPACE = HAL_DATASPACE_UNKNOWN; const Rect QUEUE_BUFFER_INPUT_RECT = Rect(DEFAULT_WIDTH, DEFAULT_HEIGHT); const int QUEUE_BUFFER_INPUT_SCALING_MODE = 0; const int QUEUE_BUFFER_INPUT_TRANSFORM = 0; const sp QUEUE_BUFFER_INPUT_FENCE = Fence::NO_FENCE; const uint32_t QUEUE_BUFFER_INPUT_STICKY_TRANSFORM = 0; const bool QUEUE_BUFFER_INPUT_GET_TIMESTAMPS = 0; const int QUEUE_BUFFER_INPUT_SLOT = -1; // Enums to control which IGraphicBufferProducer backend to test. enum IGraphicBufferProducerTestCode { USE_BUFFER_QUEUE_PRODUCER = 0, }; }; // namespace anonymous class IGraphicBufferProducerTest : public ::testing::TestWithParam { protected: IGraphicBufferProducerTest() {} virtual void SetUp() { mMC = new MockConsumer; switch (GetParam()) { case USE_BUFFER_QUEUE_PRODUCER: { BufferQueue::createBufferQueue(&mProducer, &mConsumer); break; } default: { // Should never reach here. LOG_ALWAYS_FATAL("Invalid test params: %u", GetParam()); break; } } // Test check: Can't connect producer if no consumer yet if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/73267953): Make BufferHub honor producer and consumer connection. ASSERT_EQ(NO_INIT, TryConnectProducer()); } // Must connect consumer before producer connects will succeed. ASSERT_OK(mConsumer->consumerConnect(mMC, /*controlledByApp*/ false)); } status_t TryConnectProducer() { IGraphicBufferProducer::QueueBufferOutput output; return mProducer->connect(TEST_TOKEN, TEST_API, TEST_CONTROLLED_BY_APP, &output); // TODO: use params to vary token, api, producercontrolledbyapp, etc } // Connect to a producer in a 'correct' fashion. // Precondition: Consumer is connected. void ConnectProducer() { ASSERT_OK(TryConnectProducer()); } // Create a generic "valid" input for queueBuffer // -- uses the default buffer format, width, etc. static IGraphicBufferProducer::QueueBufferInput CreateBufferInput() { return QueueBufferInputBuilder().build(); } // Builder pattern to slightly vary *almost* correct input // -- avoids copying and pasting struct QueueBufferInputBuilder { QueueBufferInputBuilder() { timestamp = QUEUE_BUFFER_INPUT_TIMESTAMP; isAutoTimestamp = QUEUE_BUFFER_INPUT_IS_AUTO_TIMESTAMP; dataSpace = QUEUE_BUFFER_INPUT_DATASPACE; crop = QUEUE_BUFFER_INPUT_RECT; scalingMode = QUEUE_BUFFER_INPUT_SCALING_MODE; transform = QUEUE_BUFFER_INPUT_TRANSFORM; fence = QUEUE_BUFFER_INPUT_FENCE; stickyTransform = QUEUE_BUFFER_INPUT_STICKY_TRANSFORM; getTimestamps = QUEUE_BUFFER_INPUT_GET_TIMESTAMPS; slot = QUEUE_BUFFER_INPUT_SLOT; } IGraphicBufferProducer::QueueBufferInput build() { return IGraphicBufferProducer::QueueBufferInput( timestamp, isAutoTimestamp, dataSpace, crop, scalingMode, transform, fence, stickyTransform, getTimestamps, slot); } QueueBufferInputBuilder& setTimestamp(int64_t timestamp) { this->timestamp = timestamp; return *this; } QueueBufferInputBuilder& setIsAutoTimestamp(bool isAutoTimestamp) { this->isAutoTimestamp = isAutoTimestamp; return *this; } QueueBufferInputBuilder& setDataSpace(android_dataspace dataSpace) { this->dataSpace = dataSpace; return *this; } QueueBufferInputBuilder& setCrop(Rect crop) { this->crop = crop; return *this; } QueueBufferInputBuilder& setScalingMode(int scalingMode) { this->scalingMode = scalingMode; return *this; } QueueBufferInputBuilder& setTransform(uint32_t transform) { this->transform = transform; return *this; } QueueBufferInputBuilder& setFence(sp fence) { this->fence = fence; return *this; } QueueBufferInputBuilder& setStickyTransform(uint32_t stickyTransform) { this->stickyTransform = stickyTransform; return *this; } QueueBufferInputBuilder& setGetTimestamps(bool getTimestamps) { this->getTimestamps = getTimestamps; return *this; } QueueBufferInputBuilder& setSlot(int slot) { this->slot = slot; return *this; } private: int64_t timestamp; bool isAutoTimestamp; android_dataspace dataSpace; Rect crop; int scalingMode; uint32_t transform; sp fence; uint32_t stickyTransform; bool getTimestamps; int slot; }; // struct QueueBufferInputBuilder status_t dequeueBuffer(uint32_t w, uint32_t h, uint32_t format, uint32_t usage, IGraphicBufferProducer::DequeueBufferOutput* result) { result->result = mProducer->dequeueBuffer(&result->slot, &result->fence, w, h, format, usage, &result->bufferAge, nullptr); return result->result; } void setupDequeueRequestBuffer(int *slot, sp *fence, sp *buffer) { ASSERT_TRUE(slot != nullptr); ASSERT_TRUE(fence != nullptr); ASSERT_TRUE(buffer != nullptr); ASSERT_NO_FATAL_FAILURE(ConnectProducer()); ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(slot, fence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))); EXPECT_LE(0, *slot); EXPECT_GT(BufferQueue::NUM_BUFFER_SLOTS, *slot); // Request the buffer (pre-requisite for queueing) ASSERT_OK(mProducer->requestBuffer(*slot, buffer)); } private: // hide from test body sp mMC; protected: // accessible from test body sp mProducer; sp mConsumer; }; TEST_P(IGraphicBufferProducerTest, ConnectFirst_ReturnsError) { IGraphicBufferProducer::QueueBufferOutput output; // NULL output returns BAD_VALUE EXPECT_EQ(BAD_VALUE, mProducer->connect(TEST_TOKEN, TEST_API, TEST_CONTROLLED_BY_APP, /*output*/nullptr)); // Invalid API returns bad value EXPECT_EQ(BAD_VALUE, mProducer->connect(TEST_TOKEN, /*api*/0xDEADBEEF, TEST_CONTROLLED_BY_APP, &output)); // TODO: get a token from a dead process somehow } TEST_P(IGraphicBufferProducerTest, ConnectAgain_ReturnsError) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); // Can't connect when there is already a producer connected IGraphicBufferProducer::QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->connect(TEST_TOKEN, TEST_API, TEST_CONTROLLED_BY_APP, &output)); ASSERT_OK(mConsumer->consumerDisconnect()); // Can't connect when IGBP is abandoned if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/73267953): Make BufferHub honor producer and consumer connection. EXPECT_EQ(NO_INIT, mProducer->connect(TEST_TOKEN, TEST_API, TEST_CONTROLLED_BY_APP, &output)); } } TEST_P(IGraphicBufferProducerTest, Disconnect_Succeeds) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); ASSERT_OK(mProducer->disconnect(TEST_API)); } TEST_P(IGraphicBufferProducerTest, Disconnect_ReturnsError) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); // Must disconnect with same API number ASSERT_EQ(BAD_VALUE, mProducer->disconnect(TEST_API_OTHER)); // API must not be out of range ASSERT_EQ(BAD_VALUE, mProducer->disconnect(/*api*/0xDEADBEEF)); // TODO: somehow kill mProducer so that this returns DEAD_OBJECT } TEST_P(IGraphicBufferProducerTest, Query_Succeeds) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int32_t value = -1; EXPECT_OK(mProducer->query(NATIVE_WINDOW_WIDTH, &value)); EXPECT_EQ(DEFAULT_WIDTH, static_cast(value)); EXPECT_OK(mProducer->query(NATIVE_WINDOW_HEIGHT, &value)); EXPECT_EQ(DEFAULT_HEIGHT, static_cast(value)); EXPECT_OK(mProducer->query(NATIVE_WINDOW_FORMAT, &value)); EXPECT_EQ(DEFAULT_FORMAT, value); EXPECT_OK(mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &value)); EXPECT_LE(0, value); EXPECT_GE(BufferQueue::NUM_BUFFER_SLOTS, value); EXPECT_OK(mProducer->query(NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND, &value)); EXPECT_FALSE(value); // Can't run behind when we haven't touched the queue EXPECT_OK(mProducer->query(NATIVE_WINDOW_CONSUMER_USAGE_BITS, &value)); EXPECT_EQ(DEFAULT_CONSUMER_USAGE_BITS, value); { // Test the batched version std::vector inputs = { NATIVE_WINDOW_WIDTH, NATIVE_WINDOW_HEIGHT, NATIVE_WINDOW_FORMAT, NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, NATIVE_WINDOW_CONSUMER_RUNNING_BEHIND, NATIVE_WINDOW_CONSUMER_USAGE_BITS }; using QueryOutput = IGraphicBufferProducer::QueryOutput; std::vector outputs; EXPECT_OK(mProducer->query(inputs, &outputs)); EXPECT_EQ(DEFAULT_WIDTH, static_cast(outputs[0].value)); EXPECT_EQ(DEFAULT_HEIGHT, static_cast(outputs[1].value)); EXPECT_EQ(DEFAULT_FORMAT, outputs[2].value); EXPECT_LE(0, outputs[3].value); EXPECT_FALSE(outputs[4].value); EXPECT_EQ(DEFAULT_CONSUMER_USAGE_BITS, outputs[5].value); for (const QueryOutput& output : outputs) { EXPECT_OK(output.result); } } } TEST_P(IGraphicBufferProducerTest, Query_ReturnsError) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); // One past the end of the last 'query' enum value. Update this if we add more enums. const int NATIVE_WINDOW_QUERY_LAST_OFF_BY_ONE = NATIVE_WINDOW_BUFFER_AGE + 1; int value; // What was out of range EXPECT_EQ(BAD_VALUE, mProducer->query(/*what*/-1, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(/*what*/0xDEADBEEF, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_QUERY_LAST_OFF_BY_ONE, &value)); // Some enums from window.h are 'invalid' EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_CONCRETE_TYPE, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_DEFAULT_WIDTH, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_DEFAULT_HEIGHT, &value)); EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_TRANSFORM_HINT, &value)); // TODO: Consider documented the above enums as unsupported or make a new enum for IGBP { // Test the batched version std::vector inputs = { -1, static_cast(0xDEADBEEF), NATIVE_WINDOW_QUERY_LAST_OFF_BY_ONE, NATIVE_WINDOW_QUEUES_TO_WINDOW_COMPOSER, NATIVE_WINDOW_CONCRETE_TYPE, NATIVE_WINDOW_DEFAULT_WIDTH, NATIVE_WINDOW_DEFAULT_HEIGHT, NATIVE_WINDOW_TRANSFORM_HINT}; using QueryOutput = IGraphicBufferProducer::QueryOutput; std::vector outputs; EXPECT_OK(mProducer->query(inputs, &outputs)); for (const QueryOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } // Value was NULL EXPECT_EQ(BAD_VALUE, mProducer->query(NATIVE_WINDOW_FORMAT, /*value*/nullptr)); ASSERT_OK(mConsumer->consumerDisconnect()); // BQ was abandoned if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/73267953): Make BufferHub honor producer and consumer connection. EXPECT_EQ(NO_INIT, mProducer->query(NATIVE_WINDOW_FORMAT, &value)); } // TODO: other things in window.h that are supported by Surface::query // but not by BufferQueue::query } // TODO: queue under more complicated situations not involving just a single buffer TEST_P(IGraphicBufferProducerTest, Queue_Succeeds) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int dequeuedSlot = -1; sp dequeuedFence; ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))); EXPECT_LE(0, dequeuedSlot); EXPECT_GT(BufferQueue::NUM_BUFFER_SLOTS, dequeuedSlot); // Request the buffer (pre-requisite for queueing) sp dequeuedBuffer; ASSERT_OK(mProducer->requestBuffer(dequeuedSlot, &dequeuedBuffer)); // A generic "valid" input IGraphicBufferProducer::QueueBufferInput input = CreateBufferInput(); IGraphicBufferProducer::QueueBufferOutput output; // Queue the buffer back into the BQ ASSERT_OK(mProducer->queueBuffer(dequeuedSlot, input, &output)); { EXPECT_EQ(DEFAULT_WIDTH, output.width); EXPECT_EQ(DEFAULT_HEIGHT, output.height); EXPECT_EQ(DEFAULT_TRANSFORM_HINT, output.transformHint); // Since queueBuffer was called exactly once if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/70041889): BufferHubProducer need to support metadata: numPendingBuffers EXPECT_EQ(1u, output.numPendingBuffers); // TODO(b/70041952): BufferHubProducer need to support metadata: nextFrameNumber EXPECT_EQ(2u, output.nextFrameNumber); } } // Buffer was not in the dequeued state EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test batched methods constexpr size_t BATCH_SIZE = 4; ASSERT_OK(mProducer->setMaxDequeuedBufferCount(BATCH_SIZE)); // Dequeue using DequeueBufferInput = IGraphicBufferProducer::DequeueBufferInput; using DequeueBufferOutput = IGraphicBufferProducer::DequeueBufferOutput; DequeueBufferInput dequeueInput; dequeueInput.width = DEFAULT_WIDTH; dequeueInput.height = DEFAULT_HEIGHT; dequeueInput.format = DEFAULT_FORMAT; dequeueInput.usage = TEST_PRODUCER_USAGE_BITS; dequeueInput.getTimestamps = false; std::vector dequeueInputs(BATCH_SIZE, dequeueInput); std::vector dequeueOutputs; EXPECT_OK(mProducer->dequeueBuffers(dequeueInputs, &dequeueOutputs)); ASSERT_EQ(dequeueInputs.size(), dequeueOutputs.size()); // Request std::vector requestInputs; requestInputs.reserve(BATCH_SIZE); for (const DequeueBufferOutput& dequeueOutput : dequeueOutputs) { ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & dequeueOutput.result); requestInputs.emplace_back(dequeueOutput.slot); } using RequestBufferOutput = IGraphicBufferProducer::RequestBufferOutput; std::vector requestOutputs; EXPECT_OK(mProducer->requestBuffers(requestInputs, &requestOutputs)); ASSERT_EQ(requestInputs.size(), requestOutputs.size()); for (const RequestBufferOutput& requestOutput : requestOutputs) { EXPECT_OK(requestOutput.result); } // Queue using QueueBufferInput = IGraphicBufferProducer::QueueBufferInput; using QueueBufferOutput = IGraphicBufferProducer::QueueBufferOutput; std::vector queueInputs; queueInputs.reserve(BATCH_SIZE); for (const DequeueBufferOutput& dequeueOutput : dequeueOutputs) { queueInputs.emplace_back(CreateBufferInput()).slot = dequeueOutput.slot; } std::vector queueOutputs; EXPECT_OK(mProducer->queueBuffers(queueInputs, &queueOutputs)); ASSERT_EQ(queueInputs.size(), queueOutputs.size()); for (const QueueBufferOutput& queueOutput : queueOutputs) { EXPECT_OK(queueOutput.result); } // Re-queue EXPECT_OK(mProducer->queueBuffers(queueInputs, &queueOutputs)); ASSERT_EQ(queueInputs.size(), queueOutputs.size()); for (const QueueBufferOutput& queueOutput : queueOutputs) { EXPECT_EQ(BAD_VALUE, queueOutput.result); } } } TEST_P(IGraphicBufferProducerTest, Queue_ReturnsError) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); using QueueBufferInput = IGraphicBufferProducer::QueueBufferInput; using QueueBufferOutput = IGraphicBufferProducer::QueueBufferOutput; // Invalid slot number { // A generic "valid" input QueueBufferInput input = CreateBufferInput(); QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(/*slot*/-1, input, &output)); EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(/*slot*/0xDEADBEEF, input, &output)); EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(BufferQueue::NUM_BUFFER_SLOTS, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = -1; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Slot was not in the dequeued state (all slots start out in Free state) { QueueBufferInput input = CreateBufferInput(); QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(/*slot*/0, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = 0; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Put the slot into the "dequeued" state for the rest of the test int dequeuedSlot = -1; sp dequeuedFence; ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))); // Slot was enqueued without requesting a buffer { QueueBufferInput input = CreateBufferInput(); QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Request the buffer so that the rest of the tests don't fail on earlier checks. sp dequeuedBuffer; ASSERT_OK(mProducer->requestBuffer(dequeuedSlot, &dequeuedBuffer)); // Fence was NULL { sp nullFence = nullptr; QueueBufferInput input = QueueBufferInputBuilder().setFence(nullFence).build(); QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Scaling mode was unknown { IGraphicBufferProducer::QueueBufferInput input = QueueBufferInputBuilder().setScalingMode(-1).build(); IGraphicBufferProducer::QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } input = QueueBufferInputBuilder().setScalingMode(0xDEADBEEF).build(); EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Crop rect is out of bounds of the buffer dimensions { IGraphicBufferProducer::QueueBufferInput input = QueueBufferInputBuilder().setCrop(Rect(DEFAULT_WIDTH + 1, DEFAULT_HEIGHT + 1)) .build(); IGraphicBufferProducer::QueueBufferOutput output; EXPECT_EQ(BAD_VALUE, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(BAD_VALUE, output.result); } } } // Abandon the buffer queue so that the last test fails ASSERT_OK(mConsumer->consumerDisconnect()); // The buffer queue has been abandoned. if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { IGraphicBufferProducer::QueueBufferInput input = CreateBufferInput(); IGraphicBufferProducer::QueueBufferOutput output; // TODO(b/73267953): Make BufferHub honor producer and consumer connection. EXPECT_EQ(NO_INIT, mProducer->queueBuffer(dequeuedSlot, input, &output)); { // Test with the batched version constexpr size_t BATCH_SIZE = 16; input.slot = dequeuedSlot; std::vector inputs(BATCH_SIZE, input); std::vector outputs; EXPECT_OK(mProducer->queueBuffers(inputs, &outputs)); ASSERT_EQ(inputs.size(), outputs.size()); for (const QueueBufferOutput& output : outputs) { EXPECT_EQ(NO_INIT, output.result); } } } } TEST_P(IGraphicBufferProducerTest, CancelBuffer_DoesntCrash) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int dequeuedSlot = -1; sp dequeuedFence; ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))); // No return code, but at least test that it doesn't blow up... // TODO: add a return code mProducer->cancelBuffer(dequeuedSlot, dequeuedFence); { // Test batched methods constexpr size_t BATCH_SIZE = 4; ASSERT_OK(mProducer->setMaxDequeuedBufferCount(BATCH_SIZE)); // Dequeue using DequeueBufferInput = IGraphicBufferProducer::DequeueBufferInput; using DequeueBufferOutput = IGraphicBufferProducer::DequeueBufferOutput; DequeueBufferInput dequeueInput; dequeueInput.width = DEFAULT_WIDTH; dequeueInput.height = DEFAULT_HEIGHT; dequeueInput.format = DEFAULT_FORMAT; dequeueInput.usage = TEST_PRODUCER_USAGE_BITS; dequeueInput.getTimestamps = false; std::vector dequeueInputs(BATCH_SIZE, dequeueInput); std::vector dequeueOutputs; EXPECT_OK(mProducer->dequeueBuffers(dequeueInputs, &dequeueOutputs)); ASSERT_EQ(dequeueInputs.size(), dequeueOutputs.size()); // Cancel using CancelBufferInput = IGraphicBufferProducer::CancelBufferInput; std::vector cancelInputs; cancelInputs.reserve(BATCH_SIZE); for (const DequeueBufferOutput& dequeueOutput : dequeueOutputs) { ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & dequeueOutput.result); CancelBufferInput& cancelInput = cancelInputs.emplace_back(); cancelInput.slot = dequeueOutput.slot; cancelInput.fence = dequeueOutput.fence; } std::vector cancelOutputs; EXPECT_OK(mProducer->cancelBuffers(cancelInputs, &cancelOutputs)); ASSERT_EQ(cancelInputs.size(), cancelOutputs.size()); for (status_t result : cancelOutputs) { EXPECT_OK(result); } } } TEST_P(IGraphicBufferProducerTest, SetMaxDequeuedBufferCount_Succeeds) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int minUndequeuedBuffers; ASSERT_OK(mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &minUndequeuedBuffers)); const int minBuffers = 1; const int maxBuffers = BufferQueue::NUM_BUFFER_SLOTS - minUndequeuedBuffers; ASSERT_OK(mProducer->setAsyncMode(false)) << "async mode: " << false; ASSERT_OK(mProducer->setMaxDequeuedBufferCount(minBuffers)) << "bufferCount: " << minBuffers; // Should now be able to dequeue up to minBuffers times IGraphicBufferProducer::DequeueBufferOutput result; for (int i = 0; i < minBuffers; ++i) { EXPECT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (dequeueBuffer(DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, &result))) << "iteration: " << i << ", slot: " << result.slot; } ASSERT_OK(mProducer->setMaxDequeuedBufferCount(maxBuffers)); // queue the first buffer to enable max dequeued buffer count checking IGraphicBufferProducer::QueueBufferInput input = CreateBufferInput(); IGraphicBufferProducer::QueueBufferOutput output; sp buffer; ASSERT_OK(mProducer->requestBuffer(result.slot, &buffer)); ASSERT_OK(mProducer->queueBuffer(result.slot, input, &output)); // Should now be able to dequeue up to maxBuffers times int dequeuedSlot = -1; sp dequeuedFence; for (int i = 0; i < maxBuffers; ++i) { EXPECT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))) << "iteration: " << i << ", slot: " << dequeuedSlot; } // Cancel a buffer, so we can decrease the buffer count ASSERT_OK(mProducer->cancelBuffer(dequeuedSlot, dequeuedFence)); // Should now be able to decrease the max dequeued count by 1 ASSERT_OK(mProducer->setMaxDequeuedBufferCount(maxBuffers-1)); } TEST_P(IGraphicBufferProducerTest, SetMaxDequeuedBufferCount_Fails) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int minUndequeuedBuffers; ASSERT_OK(mProducer->query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, &minUndequeuedBuffers)); const int minBuffers = 1; const int maxBuffers = BufferQueue::NUM_BUFFER_SLOTS - minUndequeuedBuffers; ASSERT_OK(mProducer->setAsyncMode(false)) << "async mode: " << false; // Buffer count was out of range EXPECT_EQ(BAD_VALUE, mProducer->setMaxDequeuedBufferCount(0)) << "bufferCount: " << 0; EXPECT_EQ(BAD_VALUE, mProducer->setMaxDequeuedBufferCount(maxBuffers + 1)) << "bufferCount: " << maxBuffers + 1; // Set max dequeue count to 2 ASSERT_OK(mProducer->setMaxDequeuedBufferCount(2)); // Dequeue 2 buffers int dequeuedSlot = -1; sp dequeuedFence; for (int i = 0; i < 2; i++) { ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))) << "slot: " << dequeuedSlot; } // Client has too many buffers dequeued EXPECT_EQ(BAD_VALUE, mProducer->setMaxDequeuedBufferCount(1)) << "bufferCount: " << minBuffers; // Abandon buffer queue ASSERT_OK(mConsumer->consumerDisconnect()); // Fail because the buffer queue was abandoned if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/73267953): Make BufferHub honor producer and consumer connection. EXPECT_EQ(NO_INIT, mProducer->setMaxDequeuedBufferCount(minBuffers)) << "bufferCount: " << minBuffers; } } TEST_P(IGraphicBufferProducerTest, SetAsyncMode_Succeeds) { ASSERT_OK(mConsumer->setMaxAcquiredBufferCount(1)) << "maxAcquire: " << 1; ASSERT_NO_FATAL_FAILURE(ConnectProducer()); ASSERT_OK(mProducer->setAsyncMode(true)) << "async mode: " << true; ASSERT_OK(mProducer->setMaxDequeuedBufferCount(1)) << "maxDequeue: " << 1; int dequeuedSlot = -1; sp dequeuedFence; IGraphicBufferProducer::QueueBufferInput input = CreateBufferInput(); IGraphicBufferProducer::QueueBufferOutput output; sp dequeuedBuffer; // Should now be able to queue/dequeue as many buffers as we want without // blocking for (int i = 0; i < 5; ++i) { ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))) << "slot : " << dequeuedSlot; ASSERT_OK(mProducer->requestBuffer(dequeuedSlot, &dequeuedBuffer)); ASSERT_OK(mProducer->queueBuffer(dequeuedSlot, input, &output)); } } TEST_P(IGraphicBufferProducerTest, SetAsyncMode_Fails) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); // Prerequisite to fail out a valid setBufferCount call { int dequeuedSlot = -1; sp dequeuedFence; ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&dequeuedSlot, &dequeuedFence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))) << "slot: " << dequeuedSlot; } // Abandon buffer queue ASSERT_OK(mConsumer->consumerDisconnect()); // Fail because the buffer queue was abandoned if (GetParam() == USE_BUFFER_QUEUE_PRODUCER) { // TODO(b/36724099): Make BufferHub honor producer and consumer connection. EXPECT_EQ(NO_INIT, mProducer->setAsyncMode(false)) << "asyncMode: " << false; } } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_dequeueBuffer) { int slot = -1; sp fence; ASSERT_EQ(NO_INIT, mProducer->dequeueBuffer(&slot, &fence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_detachNextBuffer) { sp fence; sp buffer; ASSERT_EQ(NO_INIT, mProducer->detachNextBuffer(&buffer, &fence)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_requestBuffer) { ASSERT_NO_FATAL_FAILURE(ConnectProducer()); int slot = -1; sp fence; ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & (mProducer->dequeueBuffer(&slot, &fence, DEFAULT_WIDTH, DEFAULT_HEIGHT, DEFAULT_FORMAT, TEST_PRODUCER_USAGE_BITS, nullptr, nullptr))); EXPECT_LE(0, slot); EXPECT_GT(BufferQueue::NUM_BUFFER_SLOTS, slot); ASSERT_OK(mProducer->disconnect(TEST_API)); sp buffer; ASSERT_EQ(NO_INIT, mProducer->requestBuffer(slot, &buffer)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_detachBuffer) { int slot = -1; sp fence; sp buffer; setupDequeueRequestBuffer(&slot, &fence, &buffer); ASSERT_OK(mProducer->disconnect(TEST_API)); ASSERT_EQ(NO_INIT, mProducer->detachBuffer(slot)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_queueBuffer) { int slot = -1; sp fence; sp buffer; setupDequeueRequestBuffer(&slot, &fence, &buffer); ASSERT_OK(mProducer->disconnect(TEST_API)); // A generic "valid" input IGraphicBufferProducer::QueueBufferInput input = CreateBufferInput(); IGraphicBufferProducer::QueueBufferOutput output; ASSERT_EQ(NO_INIT, mProducer->queueBuffer(slot, input, &output)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_cancelBuffer) { int slot = -1; sp fence; sp buffer; setupDequeueRequestBuffer(&slot, &fence, &buffer); ASSERT_OK(mProducer->disconnect(TEST_API)); ASSERT_EQ(NO_INIT, mProducer->cancelBuffer(slot, fence)); } TEST_P(IGraphicBufferProducerTest, DisconnectedProducerReturnsError_attachBuffer) { int slot = -1; sp fence; sp buffer; setupDequeueRequestBuffer(&slot, &fence, &buffer); ASSERT_TRUE(buffer != nullptr); ASSERT_OK(mProducer->detachBuffer(slot)); EXPECT_OK(buffer->initCheck()); ASSERT_OK(mProducer->disconnect(TEST_API)); ASSERT_EQ(NO_INIT, mProducer->attachBuffer(&slot, buffer)); } TEST_P(IGraphicBufferProducerTest, DetachThenAttach_Succeeds) { int slot = -1; sp fence; sp buffer; setupDequeueRequestBuffer(&slot, &fence, &buffer); ASSERT_TRUE(buffer != nullptr); ASSERT_OK(mProducer->detachBuffer(slot)); EXPECT_OK(buffer->initCheck()); EXPECT_OK(mProducer->attachBuffer(&slot, buffer)); EXPECT_OK(buffer->initCheck()); ASSERT_OK(mProducer->detachBuffer(slot)); { // Test batched methods constexpr size_t BATCH_SIZE = 4; ASSERT_OK(mProducer->setMaxDequeuedBufferCount(BATCH_SIZE)); // Dequeue using DequeueBufferInput = IGraphicBufferProducer::DequeueBufferInput; using DequeueBufferOutput = IGraphicBufferProducer::DequeueBufferOutput; DequeueBufferInput dequeueInput; dequeueInput.width = DEFAULT_WIDTH; dequeueInput.height = DEFAULT_HEIGHT; dequeueInput.format = DEFAULT_FORMAT; dequeueInput.usage = TEST_PRODUCER_USAGE_BITS; dequeueInput.getTimestamps = false; std::vector dequeueInputs(BATCH_SIZE, dequeueInput); std::vector dequeueOutputs; EXPECT_OK(mProducer->dequeueBuffers(dequeueInputs, &dequeueOutputs)); ASSERT_EQ(dequeueInputs.size(), dequeueOutputs.size()); // Request std::vector requestInputs; requestInputs.reserve(BATCH_SIZE); for (const DequeueBufferOutput& dequeueOutput : dequeueOutputs) { ASSERT_EQ(OK, ~IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION & dequeueOutput.result); requestInputs.emplace_back(dequeueOutput.slot); } using RequestBufferOutput = IGraphicBufferProducer::RequestBufferOutput; std::vector requestOutputs; EXPECT_OK(mProducer->requestBuffers(requestInputs, &requestOutputs)); ASSERT_EQ(requestInputs.size(), requestOutputs.size()); for (const RequestBufferOutput& requestOutput : requestOutputs) { EXPECT_OK(requestOutput.result); } // Detach std::vector detachInputs; detachInputs.reserve(BATCH_SIZE); for (const DequeueBufferOutput& dequeueOutput : dequeueOutputs) { detachInputs.emplace_back(dequeueOutput.slot); } std::vector detachOutputs; EXPECT_OK(mProducer->detachBuffers(detachInputs, &detachOutputs)); ASSERT_EQ(detachInputs.size(), detachOutputs.size()); for (status_t result : detachOutputs) { EXPECT_OK(result); } // Attach using AttachBufferOutput = IGraphicBufferProducer::AttachBufferOutput; std::vector> attachInputs; attachInputs.reserve(BATCH_SIZE); for (const RequestBufferOutput& requestOutput : requestOutputs) { attachInputs.emplace_back(requestOutput.buffer); } std::vector attachOutputs; EXPECT_OK(mProducer->attachBuffers(attachInputs, &attachOutputs)); ASSERT_EQ(attachInputs.size(), attachOutputs.size()); for (const AttachBufferOutput& attachOutput : attachOutputs) { EXPECT_OK(attachOutput.result); EXPECT_NE(-1, attachOutput.slot); } } } INSTANTIATE_TEST_CASE_P(IGraphicBufferProducerBackends, IGraphicBufferProducerTest, ::testing::Values(USE_BUFFER_QUEUE_PRODUCER)); } // namespace android