/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "VelocityTracker" #include #include #include #include #include #include #include #include #include #include #include using std::literals::chrono_literals::operator""ms; namespace android { /** * Log debug messages about velocity tracking. * Enable this via "adb shell setprop log.tag.VelocityTrackerVelocity DEBUG" (requires restart) */ const bool DEBUG_VELOCITY = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Velocity", ANDROID_LOG_INFO); /** * Log debug messages about the progress of the algorithm itself. * Enable this via "adb shell setprop log.tag.VelocityTrackerStrategy DEBUG" (requires restart) */ const bool DEBUG_STRATEGY = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Strategy", ANDROID_LOG_INFO); /** * Log debug messages about the 'impulse' strategy. * Enable this via "adb shell setprop log.tag.VelocityTrackerImpulse DEBUG" (requires restart) */ const bool DEBUG_IMPULSE = __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Impulse", ANDROID_LOG_INFO); // Nanoseconds per milliseconds. static const nsecs_t NANOS_PER_MS = 1000000; // Seconds per nanosecond. static const float SECONDS_PER_NANO = 1E-9; // All axes supported for velocity tracking, mapped to their default strategies. // Although other strategies are available for testing and comparison purposes, // the default strategy is the one that applications will actually use. Be very careful // when adjusting the default strategy because it can dramatically affect // (often in a bad way) the user experience. static const std::map DEFAULT_STRATEGY_BY_AXIS = {{AMOTION_EVENT_AXIS_X, VelocityTracker::Strategy::LSQ2}, {AMOTION_EVENT_AXIS_Y, VelocityTracker::Strategy::LSQ2}, {AMOTION_EVENT_AXIS_SCROLL, VelocityTracker::Strategy::IMPULSE}}; // Axes specifying location on a 2D plane (i.e. X and Y). static const std::set PLANAR_AXES = {AMOTION_EVENT_AXIS_X, AMOTION_EVENT_AXIS_Y}; // Axes whose motion values are differential values (i.e. deltas). static const std::set DIFFERENTIAL_AXES = {AMOTION_EVENT_AXIS_SCROLL}; // Threshold for determining that a pointer has stopped moving. // Some input devices do not send ACTION_MOVE events in the case where a pointer has // stopped. We need to detect this case so that we can accurately predict the // velocity after the pointer starts moving again. static const std::chrono::duration ASSUME_POINTER_STOPPED_TIME = 40ms; static std::string toString(std::chrono::nanoseconds t) { std::stringstream stream; stream.precision(1); stream << std::fixed << std::chrono::duration(t).count() << " ms"; return stream.str(); } static float vectorDot(const float* a, const float* b, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { r += *(a++) * *(b++); } return r; } static float vectorNorm(const float* a, uint32_t m) { float r = 0; for (size_t i = 0; i < m; i++) { float t = *(a++); r += t * t; } return sqrtf(r); } static std::string vectorToString(const float* a, uint32_t m) { std::string str; str += "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += android::base::StringPrintf(" %f", *(a++)); } str += " ]"; return str; } static std::string vectorToString(const std::vector& v) { return vectorToString(v.data(), v.size()); } static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) { std::string str; str = "["; for (size_t i = 0; i < m; i++) { if (i) { str += ","; } str += " ["; for (size_t j = 0; j < n; j++) { if (j) { str += ","; } str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]); } str += " ]"; } str += " ]"; return str; } // --- VelocityTracker --- VelocityTracker::VelocityTracker(const Strategy strategy) : mLastEventTime(0), mCurrentPointerIdBits(0), mOverrideStrategy(strategy) {} bool VelocityTracker::isAxisSupported(int32_t axis) { return DEFAULT_STRATEGY_BY_AXIS.find(axis) != DEFAULT_STRATEGY_BY_AXIS.end(); } void VelocityTracker::configureStrategy(int32_t axis) { const bool isDifferentialAxis = DIFFERENTIAL_AXES.find(axis) != DIFFERENTIAL_AXES.end(); if (isDifferentialAxis || mOverrideStrategy == VelocityTracker::Strategy::DEFAULT) { // Do not allow overrides of strategies for differential axes, for now. mConfiguredStrategies[axis] = createStrategy(DEFAULT_STRATEGY_BY_AXIS.at(axis), /*deltaValues=*/isDifferentialAxis); } else { mConfiguredStrategies[axis] = createStrategy(mOverrideStrategy, /*deltaValues=*/false); } } std::unique_ptr VelocityTracker::createStrategy( VelocityTracker::Strategy strategy, bool deltaValues) { switch (strategy) { case VelocityTracker::Strategy::IMPULSE: ALOGI_IF(DEBUG_STRATEGY, "Initializing impulse strategy"); return std::make_unique(deltaValues); case VelocityTracker::Strategy::LSQ1: return std::make_unique(1); case VelocityTracker::Strategy::LSQ2: ALOGI_IF(DEBUG_STRATEGY && !DEBUG_IMPULSE, "Initializing lsq2 strategy"); return std::make_unique(2); case VelocityTracker::Strategy::LSQ3: return std::make_unique(3); case VelocityTracker::Strategy::WLSQ2_DELTA: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::DELTA); case VelocityTracker::Strategy::WLSQ2_CENTRAL: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::CENTRAL); case VelocityTracker::Strategy::WLSQ2_RECENT: return std::make_unique< LeastSquaresVelocityTrackerStrategy>(2, LeastSquaresVelocityTrackerStrategy:: Weighting::RECENT); case VelocityTracker::Strategy::INT1: return std::make_unique(1); case VelocityTracker::Strategy::INT2: return std::make_unique(2); case VelocityTracker::Strategy::LEGACY: return std::make_unique(); default: break; } LOG(FATAL) << "Invalid strategy: " << ftl::enum_string(strategy) << ", deltaValues = " << deltaValues; return nullptr; } void VelocityTracker::clear() { mCurrentPointerIdBits.clear(); mActivePointerId = std::nullopt; mConfiguredStrategies.clear(); } void VelocityTracker::clearPointer(int32_t pointerId) { mCurrentPointerIdBits.clearBit(pointerId); if (mActivePointerId && *mActivePointerId == pointerId) { // The active pointer id is being removed. Mark it invalid and try to find a new one // from the remaining pointers. mActivePointerId = std::nullopt; if (!mCurrentPointerIdBits.isEmpty()) { mActivePointerId = mCurrentPointerIdBits.firstMarkedBit(); } } for (const auto& [_, strategy] : mConfiguredStrategies) { strategy->clearPointer(pointerId); } } void VelocityTracker::addMovement(nsecs_t eventTime, int32_t pointerId, int32_t axis, float position) { if (pointerId < 0 || pointerId > MAX_POINTER_ID) { LOG(FATAL) << "Invalid pointer ID " << pointerId << " for axis " << MotionEvent::getLabel(axis); } if (mCurrentPointerIdBits.hasBit(pointerId) && std::chrono::nanoseconds(eventTime - mLastEventTime) > ASSUME_POINTER_STOPPED_TIME) { ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state.", toString(std::chrono::nanoseconds(eventTime - mLastEventTime)).c_str()); // We have not received any movements for too long. Assume that all pointers // have stopped. mConfiguredStrategies.clear(); } mLastEventTime = eventTime; mCurrentPointerIdBits.markBit(pointerId); if (!mActivePointerId) { // Let this be the new active pointer if no active pointer is currently set mActivePointerId = pointerId; } if (mConfiguredStrategies.find(axis) == mConfiguredStrategies.end()) { configureStrategy(axis); } mConfiguredStrategies[axis]->addMovement(eventTime, pointerId, position); if (DEBUG_VELOCITY) { LOG(INFO) << "VelocityTracker: addMovement axis=" << MotionEvent::getLabel(axis) << ", eventTime=" << eventTime << ", pointerId=" << pointerId << ", activePointerId=" << toString(mActivePointerId) << ", position=" << position << ", velocity=" << toString(getVelocity(axis, pointerId)); } } void VelocityTracker::addMovement(const MotionEvent& event) { // Stores data about which axes to process based on the incoming motion event. std::set axesToProcess; int32_t actionMasked = event.getActionMasked(); switch (actionMasked) { case AMOTION_EVENT_ACTION_DOWN: case AMOTION_EVENT_ACTION_HOVER_ENTER: // Clear all pointers on down before adding the new movement. clear(); axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; case AMOTION_EVENT_ACTION_POINTER_DOWN: { // Start a new movement trace for a pointer that just went down. // We do this on down instead of on up because the client may want to query the // final velocity for a pointer that just went up. clearPointer(event.getPointerId(event.getActionIndex())); axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; } case AMOTION_EVENT_ACTION_MOVE: case AMOTION_EVENT_ACTION_HOVER_MOVE: axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end()); break; case AMOTION_EVENT_ACTION_POINTER_UP: if (event.getFlags() & AMOTION_EVENT_FLAG_CANCELED) { clearPointer(event.getPointerId(event.getActionIndex())); return; } // Continue to ACTION_UP to ensure that the POINTER_STOPPED logic is triggered. [[fallthrough]]; case AMOTION_EVENT_ACTION_UP: { std::chrono::nanoseconds delaySinceLastEvent(event.getEventTime() - mLastEventTime); if (delaySinceLastEvent > ASSUME_POINTER_STOPPED_TIME) { ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state upon pointer liftoff.", toString(delaySinceLastEvent).c_str()); // We have not received any movements for too long. Assume that all pointers // have stopped. for (int32_t axis : PLANAR_AXES) { mConfiguredStrategies.erase(axis); } } // These actions because they do not convey any new information about // pointer movement. We also want to preserve the last known velocity of the pointers. // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position // of the pointers that went up. ACTION_POINTER_UP does include the new position of // pointers that remained down but we will also receive an ACTION_MOVE with this // information if any of them actually moved. Since we don't know how many pointers // will be going up at once it makes sense to just wait for the following ACTION_MOVE // before adding the movement. return; } case AMOTION_EVENT_ACTION_SCROLL: axesToProcess.insert(AMOTION_EVENT_AXIS_SCROLL); break; case AMOTION_EVENT_ACTION_CANCEL: { clear(); return; } default: // Ignore all other actions. return; } const size_t historySize = event.getHistorySize(); for (size_t h = 0; h <= historySize; h++) { const nsecs_t eventTime = event.getHistoricalEventTime(h); for (size_t i = 0; i < event.getPointerCount(); i++) { if (event.isResampled(i, h)) { continue; // skip resampled samples } const int32_t pointerId = event.getPointerId(i); for (int32_t axis : axesToProcess) { const float position = event.getHistoricalAxisValue(axis, i, h); addMovement(eventTime, pointerId, axis, position); } } } } std::optional VelocityTracker::getVelocity(int32_t axis, int32_t pointerId) const { const auto& it = mConfiguredStrategies.find(axis); if (it != mConfiguredStrategies.end()) { return it->second->getVelocity(pointerId); } return {}; } VelocityTracker::ComputedVelocity VelocityTracker::getComputedVelocity(int32_t units, float maxVelocity) { ComputedVelocity computedVelocity; for (const auto& [axis, _] : mConfiguredStrategies) { BitSet32 copyIdBits = BitSet32(mCurrentPointerIdBits); while (!copyIdBits.isEmpty()) { uint32_t id = copyIdBits.clearFirstMarkedBit(); std::optional velocity = getVelocity(axis, id); if (velocity) { float adjustedVelocity = std::clamp(*velocity * units / 1000, -maxVelocity, maxVelocity); computedVelocity.addVelocity(axis, id, adjustedVelocity); } } } return computedVelocity; } AccumulatingVelocityTrackerStrategy::AccumulatingVelocityTrackerStrategy( nsecs_t horizonNanos, bool maintainHorizonDuringAdd) : mHorizonNanos(horizonNanos), mMaintainHorizonDuringAdd(maintainHorizonDuringAdd) {} void AccumulatingVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mMovements.erase(pointerId); } void AccumulatingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { auto [ringBufferIt, _] = mMovements.try_emplace(pointerId, HISTORY_SIZE); RingBuffer& movements = ringBufferIt->second; const size_t size = movements.size(); if (size != 0 && movements[size - 1].eventTime == eventTime) { // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include // the new pointer. If the eventtimes for both events are identical, just update the data // for this time (i.e. pop out the last element, and insert the updated movement). // We only compare against the last value, as it is likely that addMovement is called // in chronological order as events occur. movements.popBack(); } movements.pushBack({eventTime, position}); // Clear movements that do not fall within `mHorizonNanos` of the latest movement. // Note that, if in the future we decide to use more movements (i.e. increase HISTORY_SIZE), // we can consider making this step binary-search based, which will give us some improvement. if (mMaintainHorizonDuringAdd) { while (eventTime - movements[0].eventTime > mHorizonNanos) { movements.popFront(); } } } // --- LeastSquaresVelocityTrackerStrategy --- LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree, Weighting weighting) : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/, true /*maintainHorizonDuringAdd*/), mDegree(degree), mWeighting(weighting) {} LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {} /** * Solves a linear least squares problem to obtain a N degree polynomial that fits * the specified input data as nearly as possible. * * Returns true if a solution is found, false otherwise. * * The input consists of two vectors of data points X and Y with indices 0..m-1 * along with a weight vector W of the same size. * * The output is a vector B with indices 0..n that describes a polynomial * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i] * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized. * * Accordingly, the weight vector W should be initialized by the caller with the * reciprocal square root of the variance of the error in each input data point. * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]). * The weights express the relative importance of each data point. If the weights are * all 1, then the data points are considered to be of equal importance when fitting * the polynomial. It is a good idea to choose weights that diminish the importance * of data points that may have higher than usual error margins. * * Errors among data points are assumed to be independent. W is represented here * as a vector although in the literature it is typically taken to be a diagonal matrix. * * That is to say, the function that generated the input data can be approximated * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n. * * The coefficient of determination (R^2) is also returned to describe the goodness * of fit of the model for the given data. It is a value between 0 and 1, where 1 * indicates perfect correspondence. * * This function first expands the X vector to a m by n matrix A such that * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then * multiplies it by w[i]./ * * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q * and an m by n upper triangular matrix R. Because R is upper triangular (lower * part is all zeroes), we can simplify the decomposition into an m by n matrix * Q1 and a n by n matrix R1 such that A = Q1 R1. * * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y) * to find B. * * For efficiency, we lay out A and Q column-wise in memory because we frequently * operate on the column vectors. Conversely, we lay out R row-wise. * * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares * http://en.wikipedia.org/wiki/Gram-Schmidt */ static std::optional solveLeastSquares(const std::vector& x, const std::vector& y, const std::vector& w, uint32_t n) { const size_t m = x.size(); ALOGD_IF(DEBUG_STRATEGY, "solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n), vectorToString(x).c_str(), vectorToString(y).c_str(), vectorToString(w).c_str()); LOG_ALWAYS_FATAL_IF(m != y.size() || m != w.size(), "Mismatched vector sizes"); // Expand the X vector to a matrix A, pre-multiplied by the weights. float a[n][m]; // column-major order for (uint32_t h = 0; h < m; h++) { a[0][h] = w[h]; for (uint32_t i = 1; i < n; i++) { a[i][h] = a[i - 1][h] * x[h]; } } ALOGD_IF(DEBUG_STRATEGY, " - a=%s", matrixToString(&a[0][0], m, n, /*rowMajor=*/false).c_str()); // Apply the Gram-Schmidt process to A to obtain its QR decomposition. float q[n][m]; // orthonormal basis, column-major order float r[n][n]; // upper triangular matrix, row-major order for (uint32_t j = 0; j < n; j++) { for (uint32_t h = 0; h < m; h++) { q[j][h] = a[j][h]; } for (uint32_t i = 0; i < j; i++) { float dot = vectorDot(&q[j][0], &q[i][0], m); for (uint32_t h = 0; h < m; h++) { q[j][h] -= dot * q[i][h]; } } float norm = vectorNorm(&q[j][0], m); if (norm < 0.000001f) { // vectors are linearly dependent or zero so no solution ALOGD_IF(DEBUG_STRATEGY, " - no solution, norm=%f", norm); return {}; } float invNorm = 1.0f / norm; for (uint32_t h = 0; h < m; h++) { q[j][h] *= invNorm; } for (uint32_t i = 0; i < n; i++) { r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m); } } if (DEBUG_STRATEGY) { ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, /*rowMajor=*/false).c_str()); ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, /*rowMajor=*/true).c_str()); // calculate QR, if we factored A correctly then QR should equal A float qr[n][m]; for (uint32_t h = 0; h < m; h++) { for (uint32_t i = 0; i < n; i++) { qr[i][h] = 0; for (uint32_t j = 0; j < n; j++) { qr[i][h] += q[j][h] * r[j][i]; } } } ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, /*rowMajor=*/false).c_str()); } // Solve R B = Qt W Y to find B. This is easy because R is upper triangular. // We just work from bottom-right to top-left calculating B's coefficients. float wy[m]; for (uint32_t h = 0; h < m; h++) { wy[h] = y[h] * w[h]; } std::array outB; for (uint32_t i = n; i != 0; ) { i--; outB[i] = vectorDot(&q[i][0], wy, m); for (uint32_t j = n - 1; j > i; j--) { outB[i] -= r[i][j] * outB[j]; } outB[i] /= r[i][i]; } ALOGD_IF(DEBUG_STRATEGY, " - b=%s", vectorToString(outB.data(), n).c_str()); // Calculate the coefficient of determination as 1 - (SSerr / SStot) where // SSerr is the residual sum of squares (variance of the error), // and SStot is the total sum of squares (variance of the data) where each // has been weighted. float ymean = 0; for (uint32_t h = 0; h < m; h++) { ymean += y[h]; } ymean /= m; if (DEBUG_STRATEGY) { float sserr = 0; float sstot = 0; for (uint32_t h = 0; h < m; h++) { float err = y[h] - outB[0]; float term = 1; for (uint32_t i = 1; i < n; i++) { term *= x[h]; err -= term * outB[i]; } sserr += w[h] * w[h] * err * err; float var = y[h] - ymean; sstot += w[h] * w[h] * var * var; } ALOGD(" - sserr=%f", sserr); ALOGD(" - sstot=%f", sstot); } return outB[1]; } /* * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to * the default implementation */ std::optional LeastSquaresVelocityTrackerStrategy::solveUnweightedLeastSquaresDeg2( const RingBuffer& movements) const { // Solving y = a*x^2 + b*x + c, where // - "x" is age (i.e. duration since latest movement) of the movemnets // - "y" is positions of the movements. float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0; const size_t count = movements.size(); const Movement& newestMovement = movements[count - 1]; for (size_t i = 0; i < count; i++) { const Movement& movement = movements[i]; nsecs_t age = newestMovement.eventTime - movement.eventTime; float xi = -age * SECONDS_PER_NANO; float yi = movement.position; float xi2 = xi*xi; float xi3 = xi2*xi; float xi4 = xi3*xi; float xiyi = xi*yi; float xi2yi = xi2*yi; sxi += xi; sxi2 += xi2; sxiyi += xiyi; sxi2yi += xi2yi; syi += yi; sxi3 += xi3; sxi4 += xi4; } float Sxx = sxi2 - sxi*sxi / count; float Sxy = sxiyi - sxi*syi / count; float Sxx2 = sxi3 - sxi*sxi2 / count; float Sx2y = sxi2yi - sxi2*syi / count; float Sx2x2 = sxi4 - sxi2*sxi2 / count; float denominator = Sxx*Sx2x2 - Sxx2*Sxx2; if (denominator == 0) { ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2); return std::nullopt; } return (Sxy * Sx2x2 - Sx2y * Sxx2) / denominator; } std::optional LeastSquaresVelocityTrackerStrategy::getVelocity(int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } const RingBuffer& movements = movementIt->second; const size_t size = movements.size(); if (size == 0) { return std::nullopt; // no data } uint32_t degree = mDegree; if (degree > size - 1) { degree = size - 1; } if (degree <= 0) { return std::nullopt; } if (degree == 2 && mWeighting == Weighting::NONE) { // Optimize unweighted, quadratic polynomial fit return solveUnweightedLeastSquaresDeg2(movements); } // Iterate over movement samples in reverse time order and collect samples. std::vector positions; std::vector w; std::vector time; const Movement& newestMovement = movements[size - 1]; for (ssize_t i = size - 1; i >= 0; i--) { const Movement& movement = movements[i]; nsecs_t age = newestMovement.eventTime - movement.eventTime; positions.push_back(movement.position); w.push_back(chooseWeight(pointerId, i)); time.push_back(-age * 0.000000001f); } // General case for an Nth degree polynomial fit return solveLeastSquares(time, positions, w, degree + 1); } float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint32_t index) const { const RingBuffer& movements = mMovements.at(pointerId); const size_t size = movements.size(); switch (mWeighting) { case Weighting::DELTA: { // Weight points based on how much time elapsed between them and the next // point so that points that "cover" a shorter time span are weighed less. // delta 0ms: 0.5 // delta 10ms: 1.0 if (index == size - 1) { return 1.0f; } float deltaMillis = (movements[index + 1].eventTime - movements[index].eventTime) * 0.000001f; if (deltaMillis < 0) { return 0.5f; } if (deltaMillis < 10) { return 0.5f + deltaMillis * 0.05; } return 1.0f; } case Weighting::CENTRAL: { // Weight points based on their age, weighing very recent and very old points less. // age 0ms: 0.5 // age 10ms: 1.0 // age 50ms: 1.0 // age 60ms: 0.5 float ageMillis = (movements[size - 1].eventTime - movements[index].eventTime) * 0.000001f; if (ageMillis < 0) { return 0.5f; } if (ageMillis < 10) { return 0.5f + ageMillis * 0.05; } if (ageMillis < 50) { return 1.0f; } if (ageMillis < 60) { return 0.5f + (60 - ageMillis) * 0.05; } return 0.5f; } case Weighting::RECENT: { // Weight points based on their age, weighing older points less. // age 0ms: 1.0 // age 50ms: 1.0 // age 100ms: 0.5 float ageMillis = (movements[size - 1].eventTime - movements[index].eventTime) * 0.000001f; if (ageMillis < 50) { return 1.0f; } if (ageMillis < 100) { return 0.5f + (100 - ageMillis) * 0.01f; } return 0.5f; } case Weighting::NONE: return 1.0f; } } // --- IntegratingVelocityTrackerStrategy --- IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) : mDegree(degree) { } IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() { } void IntegratingVelocityTrackerStrategy::clearPointer(int32_t pointerId) { mPointerIdBits.clearBit(pointerId); } void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId, float position) { State& state = mPointerState[pointerId]; if (mPointerIdBits.hasBit(pointerId)) { updateState(state, eventTime, position); } else { initState(state, eventTime, position); } mPointerIdBits.markBit(pointerId); } std::optional IntegratingVelocityTrackerStrategy::getVelocity(int32_t pointerId) const { if (mPointerIdBits.hasBit(pointerId)) { return mPointerState[pointerId].vel; } return std::nullopt; } void IntegratingVelocityTrackerStrategy::initState(State& state, nsecs_t eventTime, float pos) const { state.updateTime = eventTime; state.degree = 0; state.pos = pos; state.accel = 0; state.vel = 0; } void IntegratingVelocityTrackerStrategy::updateState(State& state, nsecs_t eventTime, float pos) const { const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS; const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds if (eventTime <= state.updateTime + MIN_TIME_DELTA) { return; } float dt = (eventTime - state.updateTime) * 0.000000001f; state.updateTime = eventTime; float vel = (pos - state.pos) / dt; if (state.degree == 0) { state.vel = vel; state.degree = 1; } else { float alpha = dt / (FILTER_TIME_CONSTANT + dt); if (mDegree == 1) { state.vel += (vel - state.vel) * alpha; } else { float accel = (vel - state.vel) / dt; if (state.degree == 1) { state.accel = accel; state.degree = 2; } else { state.accel += (accel - state.accel) * alpha; } state.vel += (state.accel * dt) * alpha; } } state.pos = pos; } // --- LegacyVelocityTrackerStrategy --- LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/, false /*maintainHorizonDuringAdd*/) {} LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() { } std::optional LegacyVelocityTrackerStrategy::getVelocity(int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } const RingBuffer& movements = movementIt->second; const size_t size = movements.size(); if (size == 0) { return std::nullopt; // no data } const Movement& newestMovement = movements[size - 1]; // Find the oldest sample that contains the pointer and that is not older than HORIZON. nsecs_t minTime = newestMovement.eventTime - HORIZON; uint32_t oldestIndex = size - 1; for (ssize_t i = size - 1; i >= 0; i--) { const Movement& nextOldestMovement = movements[i]; if (nextOldestMovement.eventTime < minTime) { break; } oldestIndex = i; } // Calculate an exponentially weighted moving average of the velocity estimate // at different points in time measured relative to the oldest sample. // This is essentially an IIR filter. Newer samples are weighted more heavily // than older samples. Samples at equal time points are weighted more or less // equally. // // One tricky problem is that the sample data may be poorly conditioned. // Sometimes samples arrive very close together in time which can cause us to // overestimate the velocity at that time point. Most samples might be measured // 16ms apart but some consecutive samples could be only 0.5sm apart because // the hardware or driver reports them irregularly or in bursts. float accumV = 0; uint32_t samplesUsed = 0; const Movement& oldestMovement = movements[oldestIndex]; float oldestPosition = oldestMovement.position; nsecs_t lastDuration = 0; for (size_t i = oldestIndex; i < size; i++) { const Movement& movement = movements[i]; nsecs_t duration = movement.eventTime - oldestMovement.eventTime; // If the duration between samples is small, we may significantly overestimate // the velocity. Consequently, we impose a minimum duration constraint on the // samples that we include in the calculation. if (duration >= MIN_DURATION) { float position = movement.position; float scale = 1000000000.0f / duration; // one over time delta in seconds float v = (position - oldestPosition) * scale; accumV = (accumV * lastDuration + v * duration) / (duration + lastDuration); lastDuration = duration; samplesUsed += 1; } } if (samplesUsed) { return accumV; } return std::nullopt; } // --- ImpulseVelocityTrackerStrategy --- ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy(bool deltaValues) : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/, true /*maintainHorizonDuringAdd*/), mDeltaValues(deltaValues) {} ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() { } /** * Calculate the total impulse provided to the screen and the resulting velocity. * * The touchscreen is modeled as a physical object. * Initial condition is discussed below, but for now suppose that v(t=0) = 0 * * The kinetic energy of the object at the release is E=0.5*m*v^2 * Then vfinal = sqrt(2E/m). The goal is to calculate E. * * The kinetic energy at the release is equal to the total work done on the object by the finger. * The total work W is the sum of all dW along the path. * * dW = F*dx, where dx is the piece of path traveled. * Force is change of momentum over time, F = dp/dt = m dv/dt. * Then substituting: * dW = m (dv/dt) * dx = m * v * dv * * Summing along the path, we get: * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv) * Since the mass stays constant, the equation for final velocity is: * vfinal = sqrt(2*sum(v * dv)) * * Here, * dv : change of velocity = (v[i+1]-v[i]) * dx : change of distance = (x[i+1]-x[i]) * dt : change of time = (t[i+1]-t[i]) * v : instantaneous velocity = dx/dt * * The final formula is: * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i * The absolute value is needed to properly account for the sign. If the velocity over a * particular segment descreases, then this indicates braking, which means that negative * work was done. So for two positive, but decreasing, velocities, this contribution would be * negative and will cause a smaller final velocity. * * Initial condition * There are two ways to deal with initial condition: * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest. * This is not entirely accurate. We are only taking the past X ms of touch data, where X is * currently equal to 100. However, a touch event that created a fling probably lasted for longer * than that, which would mean that the user has already been interacting with the touchscreen * and it has probably already been moving. * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this * initial velocity and the equivalent energy, and start with this initial energy. * Consider an example where we have the following data, consisting of 3 points: * time: t0, t1, t2 * x : x0, x1, x2 * v : 0 , v1, v2 * Here is what will happen in each of these scenarios: * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1))) * since velocity is a real number * 2) If we treat the screen as already moving, then it must already have an energy (per mass) * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment * will contribute to the total kinetic energy (since we can effectively consider that v0=v1). * This will give the following expression for the final velocity: * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1))) * This analysis can be generalized to an arbitrary number of samples. * * * Comparing the two equations above, we see that the only mathematical difference * is the factor of 1/2 in front of the first velocity term. * This boundary condition would allow for the "proper" calculation of the case when all of the * samples are equally spaced in time and distance, which should suggest a constant velocity. * * Note that approach 2) is sensitive to the proper ordering of the data in time, since * the boundary condition must be applied to the oldest sample to be accurate. */ static float kineticEnergyToVelocity(float work) { static constexpr float sqrt2 = 1.41421356237; return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2; } std::optional ImpulseVelocityTrackerStrategy::getVelocity(int32_t pointerId) const { const auto movementIt = mMovements.find(pointerId); if (movementIt == mMovements.end()) { return std::nullopt; // no data } const RingBuffer& movements = movementIt->second; const size_t size = movements.size(); if (size == 0) { return std::nullopt; // no data } float work = 0; for (size_t i = 0; i < size - 1; i++) { const Movement& mvt = movements[i]; const Movement& nextMvt = movements[i + 1]; float vprev = kineticEnergyToVelocity(work); float delta = mDeltaValues ? nextMvt.position : nextMvt.position - mvt.position; float vcurr = delta / (SECONDS_PER_NANO * (nextMvt.eventTime - mvt.eventTime)); work += (vcurr - vprev) * fabsf(vcurr); if (i == 0) { work *= 0.5; // initial condition, case 2) above } } const float velocity = kineticEnergyToVelocity(work); ALOGD_IF(DEBUG_STRATEGY, "velocity: %.1f", velocity); if (DEBUG_IMPULSE) { // TODO(b/134179997): delete this block once the switch to 'impulse' is complete. // Calculate the lsq2 velocity for the same inputs to allow runtime comparisons. // X axis chosen arbitrarily for velocity comparisons. VelocityTracker lsq2(VelocityTracker::Strategy::LSQ2); for (size_t i = 0; i < size; i++) { const Movement& mvt = movements[i]; lsq2.addMovement(mvt.eventTime, pointerId, AMOTION_EVENT_AXIS_X, mvt.position); } std::optional v = lsq2.getVelocity(AMOTION_EVENT_AXIS_X, pointerId); if (v) { ALOGD("lsq2 velocity: %.1f", *v); } else { ALOGD("lsq2 velocity: could not compute velocity"); } } return velocity; } } // namespace android