/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include using android::base::Result; namespace android { namespace { static constexpr float EPSILON = MotionEvent::ROUNDING_PRECISION; static constexpr int32_t POINTER_1_DOWN = AMOTION_EVENT_ACTION_POINTER_DOWN | (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); static constexpr int32_t POINTER_2_DOWN = AMOTION_EVENT_ACTION_POINTER_DOWN | (2 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); struct Pointer { int32_t id; float x; float y; bool isResampled = false; }; // A collection of arguments to be sent as publishMotionEvent(). The saved members of this struct // allow to check the expectations against the event acquired from the InputReceiver. To help // simplify expectation checking it carries members not present in MotionEvent, like |rawXScale|. struct PublishMotionArgs { const int32_t action; const nsecs_t downTime; const uint32_t seq; const int32_t eventId; const int32_t deviceId = 1; const uint32_t source = AINPUT_SOURCE_TOUCHSCREEN; const ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT; const int32_t actionButton = 0; const int32_t edgeFlags = AMOTION_EVENT_EDGE_FLAG_TOP; const int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON; const int32_t buttonState = AMOTION_EVENT_BUTTON_PRIMARY; const MotionClassification classification = MotionClassification::AMBIGUOUS_GESTURE; const float xScale = 2; const float yScale = 3; const float xOffset = -10; const float yOffset = -20; const float rawXScale = 4; const float rawYScale = -5; const float rawXOffset = -11; const float rawYOffset = 42; const float xPrecision = 0.25; const float yPrecision = 0.5; const float xCursorPosition = 1.3; const float yCursorPosition = 50.6; std::array hmac; int32_t flags; ui::Transform transform; ui::Transform rawTransform; const nsecs_t eventTime; size_t pointerCount; std::vector pointerProperties; std::vector pointerCoords; PublishMotionArgs(int32_t action, nsecs_t downTime, const std::vector& pointers, const uint32_t seq); }; PublishMotionArgs::PublishMotionArgs(int32_t inAction, nsecs_t inDownTime, const std::vector& pointers, const uint32_t inSeq) : action(inAction), downTime(inDownTime), seq(inSeq), eventId(InputEvent::nextId()), eventTime(systemTime(SYSTEM_TIME_MONOTONIC)) { hmac = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31}; flags = AMOTION_EVENT_FLAG_WINDOW_IS_OBSCURED | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_ORIENTATION | AMOTION_EVENT_PRIVATE_FLAG_SUPPORTS_DIRECTIONAL_ORIENTATION; if (action == AMOTION_EVENT_ACTION_CANCEL) { flags |= AMOTION_EVENT_FLAG_CANCELED; } pointerCount = pointers.size(); for (size_t i = 0; i < pointerCount; i++) { pointerProperties.push_back({}); pointerProperties[i].clear(); pointerProperties[i].id = pointers[i].id; pointerProperties[i].toolType = ToolType::FINGER; pointerCoords.push_back({}); pointerCoords[i].clear(); pointerCoords[i].isResampled = pointers[i].isResampled; pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_X, pointers[i].x); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_Y, pointers[i].y); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_PRESSURE, 0.5 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_SIZE, 0.7 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR, 1.5 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR, 1.7 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.5 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR, 2.7 * i); pointerCoords[i].setAxisValue(AMOTION_EVENT_AXIS_ORIENTATION, 3.5 * i); } transform.set({xScale, 0, xOffset, 0, yScale, yOffset, 0, 0, 1}); rawTransform.set({rawXScale, 0, rawXOffset, 0, rawYScale, rawYOffset, 0, 0, 1}); } // Checks expectations against |motionEvent| acquired from an InputConsumer. Floating point // comparisons limit precision to EPSILON. void verifyArgsEqualToEvent(const PublishMotionArgs& args, const MotionEvent& motionEvent) { EXPECT_EQ(args.eventId, motionEvent.getId()); EXPECT_EQ(args.deviceId, motionEvent.getDeviceId()); EXPECT_EQ(args.source, motionEvent.getSource()); EXPECT_EQ(args.displayId, motionEvent.getDisplayId()); EXPECT_EQ(args.hmac, motionEvent.getHmac()); EXPECT_EQ(args.action, motionEvent.getAction()); EXPECT_EQ(args.downTime, motionEvent.getDownTime()); EXPECT_EQ(args.flags, motionEvent.getFlags()); EXPECT_EQ(args.edgeFlags, motionEvent.getEdgeFlags()); EXPECT_EQ(args.metaState, motionEvent.getMetaState()); EXPECT_EQ(args.buttonState, motionEvent.getButtonState()); EXPECT_EQ(args.classification, motionEvent.getClassification()); EXPECT_EQ(args.transform, motionEvent.getTransform()); EXPECT_NEAR((-args.rawXOffset / args.rawXScale) * args.xScale + args.xOffset, motionEvent.getRawXOffset(), EPSILON); EXPECT_NEAR((-args.rawYOffset / args.rawYScale) * args.yScale + args.yOffset, motionEvent.getRawYOffset(), EPSILON); EXPECT_EQ(args.xPrecision, motionEvent.getXPrecision()); EXPECT_EQ(args.yPrecision, motionEvent.getYPrecision()); EXPECT_NEAR(args.xCursorPosition, motionEvent.getRawXCursorPosition(), EPSILON); EXPECT_NEAR(args.yCursorPosition, motionEvent.getRawYCursorPosition(), EPSILON); EXPECT_NEAR(args.xCursorPosition * args.xScale + args.xOffset, motionEvent.getXCursorPosition(), EPSILON); EXPECT_NEAR(args.yCursorPosition * args.yScale + args.yOffset, motionEvent.getYCursorPosition(), EPSILON); EXPECT_EQ(args.rawTransform, motionEvent.getRawTransform()); EXPECT_EQ(args.eventTime, motionEvent.getEventTime()); EXPECT_EQ(args.pointerCount, motionEvent.getPointerCount()); EXPECT_EQ(0U, motionEvent.getHistorySize()); for (size_t i = 0; i < args.pointerCount; i++) { SCOPED_TRACE(i); EXPECT_EQ(args.pointerProperties[i].id, motionEvent.getPointerId(i)); EXPECT_EQ(args.pointerProperties[i].toolType, motionEvent.getToolType(i)); const auto& pc = args.pointerCoords[i]; EXPECT_EQ(pc, motionEvent.getSamplePointerCoords()[i]); EXPECT_NEAR(pc.getX() * args.rawXScale + args.rawXOffset, motionEvent.getRawX(i), EPSILON); EXPECT_NEAR(pc.getY() * args.rawYScale + args.rawYOffset, motionEvent.getRawY(i), EPSILON); EXPECT_NEAR(pc.getX() * args.xScale + args.xOffset, motionEvent.getX(i), EPSILON); EXPECT_NEAR(pc.getY() * args.yScale + args.yOffset, motionEvent.getY(i), EPSILON); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_PRESSURE), motionEvent.getPressure(i)); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_SIZE), motionEvent.getSize(i)); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MAJOR), motionEvent.getTouchMajor(i)); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOUCH_MINOR), motionEvent.getTouchMinor(i)); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MAJOR), motionEvent.getToolMajor(i)); EXPECT_EQ(pc.getAxisValue(AMOTION_EVENT_AXIS_TOOL_MINOR), motionEvent.getToolMinor(i)); // Calculate the orientation after scaling, keeping in mind that an orientation of 0 is // "up", and the positive y direction is "down". const float unscaledOrientation = pc.getAxisValue(AMOTION_EVENT_AXIS_ORIENTATION); const float x = sinf(unscaledOrientation) * args.xScale; const float y = -cosf(unscaledOrientation) * args.yScale; EXPECT_EQ(atan2f(x, -y), motionEvent.getOrientation(i)); } } void publishMotionEvent(InputPublisher& publisher, const PublishMotionArgs& a) { status_t status = publisher.publishMotionEvent(a.seq, a.eventId, a.deviceId, a.source, a.displayId, a.hmac, a.action, a.actionButton, a.flags, a.edgeFlags, a.metaState, a.buttonState, a.classification, a.transform, a.xPrecision, a.yPrecision, a.xCursorPosition, a.yCursorPosition, a.rawTransform, a.downTime, a.eventTime, a.pointerCount, a.pointerProperties.data(), a.pointerCoords.data()); ASSERT_EQ(OK, status) << "publisher publishMotionEvent should return OK"; } void sendAndVerifyFinishedSignal(InputConsumer& consumer, InputPublisher& publisher, uint32_t seq, nsecs_t publishTime) { status_t status = consumer.sendFinishedSignal(seq, false); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = publisher.receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_FALSE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } void waitUntilInputAvailable(const InputConsumer& inputConsumer) { bool hasInput; do { // The probablyHasInput() can return false positive under rare circumstances uncontrollable // by the tests. Re-request the availability in this case. Returning |false| for a long // time is not intended, and would cause a test timeout. hasInput = inputConsumer.probablyHasInput(); } while (!hasInput); } } // namespace class InputPublisherAndConsumerTest : public testing::Test { protected: std::unique_ptr mPublisher; std::unique_ptr mConsumer; PreallocatedInputEventFactory mEventFactory; void SetUp() override { std::unique_ptr serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel); ASSERT_EQ(OK, result); mPublisher = std::make_unique(std::move(serverChannel)); mConsumer = std::make_unique(std::move(clientChannel)); } void publishAndConsumeKeyEvent(); void publishAndConsumeMotionStream(); void publishAndConsumeMotionDown(nsecs_t downTime); void publishAndConsumeBatchedMotionMove(nsecs_t downTime); void publishAndConsumeFocusEvent(); void publishAndConsumeCaptureEvent(); void publishAndConsumeDragEvent(); void publishAndConsumeTouchModeEvent(); void publishAndConsumeMotionEvent(int32_t action, nsecs_t downTime, const std::vector& pointers); private: // The sequence number to use when publishing the next event uint32_t mSeq = 1; }; TEST_F(InputPublisherAndConsumerTest, GetChannel_ReturnsTheChannel) { ASSERT_EQ(mPublisher->getChannel().getConnectionToken(), mConsumer->getChannel()->getConnectionToken()); } void InputPublisherAndConsumerTest::publishAndConsumeKeyEvent() { status_t status; const uint32_t seq = mSeq++; int32_t eventId = InputEvent::nextId(); constexpr int32_t deviceId = 1; constexpr uint32_t source = AINPUT_SOURCE_KEYBOARD; constexpr ui::LogicalDisplayId displayId = ui::LogicalDisplayId::DEFAULT; constexpr std::array hmac = {31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}; constexpr int32_t action = AKEY_EVENT_ACTION_DOWN; constexpr int32_t flags = AKEY_EVENT_FLAG_FROM_SYSTEM; constexpr int32_t keyCode = AKEYCODE_ENTER; constexpr int32_t scanCode = 13; constexpr int32_t metaState = AMETA_ALT_LEFT_ON | AMETA_ALT_ON; constexpr int32_t repeatCount = 1; constexpr nsecs_t downTime = 3; constexpr nsecs_t eventTime = 4; const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); status = mPublisher->publishKeyEvent(seq, eventId, deviceId, source, displayId, hmac, action, flags, keyCode, scanCode, metaState, repeatCount, downTime, eventTime); ASSERT_EQ(OK, status) << "publisher publishKeyEvent should return OK"; waitUntilInputAvailable(*mConsumer); uint32_t consumeSeq; InputEvent* event; status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; EXPECT_FALSE(mConsumer->probablyHasInput()) << "no events should be waiting after being consumed"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::KEY, event->getType()) << "consumer should have returned a key event"; KeyEvent* keyEvent = static_cast(event); EXPECT_EQ(seq, consumeSeq); EXPECT_EQ(eventId, keyEvent->getId()); EXPECT_EQ(deviceId, keyEvent->getDeviceId()); EXPECT_EQ(source, keyEvent->getSource()); EXPECT_EQ(displayId, keyEvent->getDisplayId()); EXPECT_EQ(hmac, keyEvent->getHmac()); EXPECT_EQ(action, keyEvent->getAction()); EXPECT_EQ(flags, keyEvent->getFlags()); EXPECT_EQ(keyCode, keyEvent->getKeyCode()); EXPECT_EQ(scanCode, keyEvent->getScanCode()); EXPECT_EQ(metaState, keyEvent->getMetaState()); EXPECT_EQ(repeatCount, keyEvent->getRepeatCount()); EXPECT_EQ(downTime, keyEvent->getDownTime()); EXPECT_EQ(eventTime, keyEvent->getEventTime()); status = mConsumer->sendFinishedSignal(seq, true); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_TRUE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } void InputPublisherAndConsumerTest::publishAndConsumeMotionStream() { const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}}); publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}}); publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}, Pointer{.id = 2, .x = 300, .y = 400}}); // Provide a consistent input stream - cancel the gesture that was started above publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}, Pointer{.id = 2, .x = 300, .y = 400}}); } void InputPublisherAndConsumerTest::publishAndConsumeMotionDown(nsecs_t downTime) { publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}}); } void InputPublisherAndConsumerTest::publishAndConsumeBatchedMotionMove(nsecs_t downTime) { uint32_t seq = mSeq++; const std::vector pointers = {Pointer{.id = 0, .x = 20, .y = 30}}; PublishMotionArgs args(AMOTION_EVENT_ACTION_MOVE, downTime, pointers, seq); const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); publishMotionEvent(*mPublisher, args); // Consume leaving a batch behind. uint32_t consumeSeq; InputEvent* event; status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/false, -1, &consumeSeq, &event); ASSERT_EQ(WOULD_BLOCK, status) << "consumer consume should return WOULD_BLOCK when a new batch is started"; ASSERT_TRUE(mConsumer->hasPendingBatch()) << "consume should have created a batch"; EXPECT_TRUE(mConsumer->probablyHasInput()) << "should deterministically have input because there is a batch"; sendAndVerifyFinishedSignal(*mConsumer, *mPublisher, seq, publishTime); } void InputPublisherAndConsumerTest::publishAndConsumeMotionEvent( int32_t action, nsecs_t downTime, const std::vector& pointers) { uint32_t seq = mSeq++; PublishMotionArgs args(action, downTime, pointers, seq); nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); publishMotionEvent(*mPublisher, args); uint32_t consumeSeq; InputEvent* event; status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::MOTION, event->getType()) << "consumer should have returned a motion event"; EXPECT_EQ(seq, consumeSeq); verifyArgsEqualToEvent(args, static_cast(*event)); sendAndVerifyFinishedSignal(*mConsumer, *mPublisher, seq, publishTime); } void InputPublisherAndConsumerTest::publishAndConsumeFocusEvent() { status_t status; constexpr uint32_t seq = 15; int32_t eventId = InputEvent::nextId(); constexpr bool hasFocus = true; const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); status = mPublisher->publishFocusEvent(seq, eventId, hasFocus); ASSERT_EQ(OK, status) << "publisher publishFocusEvent should return OK"; uint32_t consumeSeq; InputEvent* event; status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::FOCUS, event->getType()) << "consumer should have returned a focus event"; FocusEvent* focusEvent = static_cast(event); EXPECT_EQ(seq, consumeSeq); EXPECT_EQ(eventId, focusEvent->getId()); EXPECT_EQ(hasFocus, focusEvent->getHasFocus()); status = mConsumer->sendFinishedSignal(seq, true); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_TRUE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } void InputPublisherAndConsumerTest::publishAndConsumeCaptureEvent() { status_t status; constexpr uint32_t seq = 42; int32_t eventId = InputEvent::nextId(); constexpr bool captureEnabled = true; const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); status = mPublisher->publishCaptureEvent(seq, eventId, captureEnabled); ASSERT_EQ(OK, status) << "publisher publishCaptureEvent should return OK"; uint32_t consumeSeq; InputEvent* event; status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::CAPTURE, event->getType()) << "consumer should have returned a capture event"; const CaptureEvent* captureEvent = static_cast(event); EXPECT_EQ(seq, consumeSeq); EXPECT_EQ(eventId, captureEvent->getId()); EXPECT_EQ(captureEnabled, captureEvent->getPointerCaptureEnabled()); status = mConsumer->sendFinishedSignal(seq, true); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_TRUE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } void InputPublisherAndConsumerTest::publishAndConsumeDragEvent() { status_t status; constexpr uint32_t seq = 15; int32_t eventId = InputEvent::nextId(); constexpr bool isExiting = false; constexpr float x = 10; constexpr float y = 15; const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); status = mPublisher->publishDragEvent(seq, eventId, x, y, isExiting); ASSERT_EQ(OK, status) << "publisher publishDragEvent should return OK"; uint32_t consumeSeq; InputEvent* event; status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::DRAG, event->getType()) << "consumer should have returned a drag event"; const DragEvent& dragEvent = static_cast(*event); EXPECT_EQ(seq, consumeSeq); EXPECT_EQ(eventId, dragEvent.getId()); EXPECT_EQ(isExiting, dragEvent.isExiting()); EXPECT_EQ(x, dragEvent.getX()); EXPECT_EQ(y, dragEvent.getY()); status = mConsumer->sendFinishedSignal(seq, true); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_TRUE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } void InputPublisherAndConsumerTest::publishAndConsumeTouchModeEvent() { status_t status; constexpr uint32_t seq = 15; int32_t eventId = InputEvent::nextId(); constexpr bool touchModeEnabled = true; const nsecs_t publishTime = systemTime(SYSTEM_TIME_MONOTONIC); status = mPublisher->publishTouchModeEvent(seq, eventId, touchModeEnabled); ASSERT_EQ(OK, status) << "publisher publishTouchModeEvent should return OK"; uint32_t consumeSeq; InputEvent* event; status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, -1, &consumeSeq, &event); ASSERT_EQ(OK, status) << "consumer consume should return OK"; ASSERT_TRUE(event != nullptr) << "consumer should have returned non-NULL event"; ASSERT_EQ(InputEventType::TOUCH_MODE, event->getType()) << "consumer should have returned a touch mode event"; const TouchModeEvent& touchModeEvent = static_cast(*event); EXPECT_EQ(seq, consumeSeq); EXPECT_EQ(eventId, touchModeEvent.getId()); EXPECT_EQ(touchModeEnabled, touchModeEvent.isInTouchMode()); status = mConsumer->sendFinishedSignal(seq, true); ASSERT_EQ(OK, status) << "consumer sendFinishedSignal should return OK"; Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Finished& finish = std::get(*result); ASSERT_EQ(seq, finish.seq) << "receiveConsumerResponse should have returned the original sequence number"; ASSERT_TRUE(finish.handled) << "receiveConsumerResponse should have set handled to consumer's reply"; ASSERT_GE(finish.consumeTime, publishTime) << "finished signal's consume time should be greater than publish time"; } TEST_F(InputPublisherAndConsumerTest, SendTimeline) { const int32_t inputEventId = 20; std::array graphicsTimeline; graphicsTimeline[GraphicsTimeline::GPU_COMPLETED_TIME] = 30; graphicsTimeline[GraphicsTimeline::PRESENT_TIME] = 40; status_t status = mConsumer->sendTimeline(inputEventId, graphicsTimeline); ASSERT_EQ(OK, status); Result result = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(result.ok()) << "receiveConsumerResponse should return OK"; ASSERT_TRUE(std::holds_alternative(*result)); const InputPublisher::Timeline& timeline = std::get(*result); ASSERT_EQ(inputEventId, timeline.inputEventId); ASSERT_EQ(graphicsTimeline, timeline.graphicsTimeline); } TEST_F(InputPublisherAndConsumerTest, PublishKeyEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); } TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionStream()); } TEST_F(InputPublisherAndConsumerTest, PublishMotionMoveEvent_EndToEnd) { // Publish a DOWN event before MOVE to pass the InputVerifier checks. const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); ASSERT_NO_FATAL_FAILURE(publishAndConsumeMotionDown(downTime)); // Publish the MOVE event and check expectations. ASSERT_NO_FATAL_FAILURE(publishAndConsumeBatchedMotionMove(downTime)); } TEST_F(InputPublisherAndConsumerTest, PublishFocusEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent()); } TEST_F(InputPublisherAndConsumerTest, PublishCaptureEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent()); } TEST_F(InputPublisherAndConsumerTest, PublishDragEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent()); } TEST_F(InputPublisherAndConsumerTest, PublishTouchModeEvent_EndToEnd) { ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent()); } TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_WhenSequenceNumberIsZero_ReturnsError) { status_t status; const size_t pointerCount = 1; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { pointerProperties[i].clear(); pointerCoords[i].clear(); } ui::Transform identityTransform; status = mPublisher->publishMotionEvent(0, InputEvent::nextId(), 0, 0, ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, 0, 0, MotionClassification::NONE, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, 0, 0, pointerCount, pointerProperties, pointerCoords); ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; } TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_WhenPointerCountLessThan1_ReturnsError) { status_t status; const size_t pointerCount = 0; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; ui::Transform identityTransform; status = mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, 0, 0, MotionClassification::NONE, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, 0, 0, pointerCount, pointerProperties, pointerCoords); ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; } TEST_F(InputPublisherAndConsumerTest, PublishMotionEvent_WhenPointerCountGreaterThanMax_ReturnsError) { status_t status; const size_t pointerCount = MAX_POINTERS + 1; PointerProperties pointerProperties[pointerCount]; PointerCoords pointerCoords[pointerCount]; for (size_t i = 0; i < pointerCount; i++) { pointerProperties[i].clear(); pointerCoords[i].clear(); } ui::Transform identityTransform; status = mPublisher->publishMotionEvent(1, InputEvent::nextId(), 0, 0, ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, 0, 0, 0, 0, 0, 0, MotionClassification::NONE, identityTransform, 0, 0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, 0, 0, pointerCount, pointerProperties, pointerCoords); ASSERT_EQ(BAD_VALUE, status) << "publisher publishMotionEvent should return BAD_VALUE"; } TEST_F(InputPublisherAndConsumerTest, PublishMultipleEvents_EndToEnd) { const nsecs_t downTime = systemTime(SYSTEM_TIME_MONOTONIC); publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}}); ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); publishAndConsumeMotionEvent(POINTER_1_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}}); ASSERT_NO_FATAL_FAILURE(publishAndConsumeFocusEvent()); publishAndConsumeMotionEvent(POINTER_2_DOWN, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}, Pointer{.id = 2, .x = 200, .y = 300}}); ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); ASSERT_NO_FATAL_FAILURE(publishAndConsumeCaptureEvent()); ASSERT_NO_FATAL_FAILURE(publishAndConsumeDragEvent()); // Provide a consistent input stream - cancel the gesture that was started above publishAndConsumeMotionEvent(AMOTION_EVENT_ACTION_CANCEL, downTime, {Pointer{.id = 0, .x = 20, .y = 30}, Pointer{.id = 1, .x = 200, .y = 300}, Pointer{.id = 2, .x = 200, .y = 300}}); ASSERT_NO_FATAL_FAILURE(publishAndConsumeKeyEvent()); ASSERT_NO_FATAL_FAILURE(publishAndConsumeTouchModeEvent()); } } // namespace android