/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include using namespace std::chrono_literals; namespace android { namespace { struct Pointer { int32_t id; float x; float y; ToolType toolType = ToolType::FINGER; bool isResampled = false; }; struct InputEventEntry { std::chrono::nanoseconds eventTime; std::vector pointers; int32_t action; }; } // namespace class TouchResamplingTest : public testing::Test { protected: std::unique_ptr mPublisher; std::unique_ptr mConsumer; PreallocatedInputEventFactory mEventFactory; uint32_t mSeq = 1; void SetUp() override { std::unique_ptr serverChannel, clientChannel; status_t result = InputChannel::openInputChannelPair("channel name", serverChannel, clientChannel); ASSERT_EQ(OK, result); mPublisher = std::make_unique(std::move(serverChannel)); mConsumer = std::make_unique(std::move(clientChannel), /*enableTouchResampling=*/true); } status_t publishSimpleMotionEventWithCoords(int32_t action, nsecs_t eventTime, const std::vector& properties, const std::vector& coords); void publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, const std::vector& pointers); void publishInputEventEntries(const std::vector& entries); void consumeInputEventEntries(const std::vector& entries, std::chrono::nanoseconds frameTime); void receiveResponseUntilSequence(uint32_t seq); }; status_t TouchResamplingTest::publishSimpleMotionEventWithCoords( int32_t action, nsecs_t eventTime, const std::vector& properties, const std::vector& coords) { const ui::Transform identityTransform; const nsecs_t downTime = 0; if (action == AMOTION_EVENT_ACTION_DOWN && eventTime != 0) { ADD_FAILURE() << "Downtime should be equal to 0 (hardcoded for convenience)"; } return mPublisher->publishMotionEvent(mSeq++, InputEvent::nextId(), /*deviceId=*/1, AINPUT_SOURCE_TOUCHSCREEN, ui::LogicalDisplayId::DEFAULT, INVALID_HMAC, action, /*actionButton=*/0, /*flags=*/0, /*edgeFlags=*/0, AMETA_NONE, /*buttonState=*/0, MotionClassification::NONE, identityTransform, /*xPrecision=*/0, /*yPrecision=*/0, AMOTION_EVENT_INVALID_CURSOR_POSITION, AMOTION_EVENT_INVALID_CURSOR_POSITION, identityTransform, downTime, eventTime, properties.size(), properties.data(), coords.data()); } void TouchResamplingTest::publishSimpleMotionEvent(int32_t action, nsecs_t eventTime, const std::vector& pointers) { std::vector properties; std::vector coords; for (const Pointer& pointer : pointers) { properties.push_back({}); properties.back().clear(); properties.back().id = pointer.id; properties.back().toolType = pointer.toolType; coords.push_back({}); coords.back().clear(); coords.back().setAxisValue(AMOTION_EVENT_AXIS_X, pointer.x); coords.back().setAxisValue(AMOTION_EVENT_AXIS_Y, pointer.y); } status_t result = publishSimpleMotionEventWithCoords(action, eventTime, properties, coords); ASSERT_EQ(OK, result); } /** * Each entry is published separately, one entry at a time. As a result, action is used here * on a per-entry basis. */ void TouchResamplingTest::publishInputEventEntries(const std::vector& entries) { for (const InputEventEntry& entry : entries) { publishSimpleMotionEvent(entry.action, entry.eventTime.count(), entry.pointers); } } /** * Inside the publisher, read responses repeatedly until the desired sequence number is returned. * * Sometimes, when you call 'sendFinishedSignal', you would be finishing a batch which is comprised * of several input events. As a result, consumer will generate multiple 'finish' signals on your * behalf. * * In this function, we call 'receiveConsumerResponse' in a loop until the desired sequence number * is returned. */ void TouchResamplingTest::receiveResponseUntilSequence(uint32_t seq) { size_t consumedEvents = 0; while (consumedEvents < 100) { android::base::Result response = mPublisher->receiveConsumerResponse(); ASSERT_TRUE(response.ok()); ASSERT_TRUE(std::holds_alternative(*response)); const InputPublisher::Finished& finish = std::get(*response); ASSERT_TRUE(finish.handled) << "publisher receiveFinishedSignal should have set handled to consumer's reply"; if (finish.seq == seq) { return; } consumedEvents++; } FAIL() << "Got " << consumedEvents << "events, but still no event with seq=" << seq; } /** * All entries are compared against a single MotionEvent, but the same data structure * InputEventEntry is used here for simpler code. As a result, the entire array of InputEventEntry * must contain identical values for the action field. */ void TouchResamplingTest::consumeInputEventEntries(const std::vector& entries, std::chrono::nanoseconds frameTime) { ASSERT_GE(entries.size(), 1U) << "Must have at least 1 InputEventEntry to compare against"; uint32_t consumeSeq; InputEvent* event; status_t status = mConsumer->consume(&mEventFactory, /*consumeBatches=*/true, frameTime.count(), &consumeSeq, &event); ASSERT_EQ(OK, status); MotionEvent* motionEvent = static_cast(event); ASSERT_EQ(entries.size() - 1, motionEvent->getHistorySize()); for (size_t i = 0; i < entries.size(); i++) { // most recent sample is last SCOPED_TRACE(i); const InputEventEntry& entry = entries[i]; ASSERT_EQ(entry.action, motionEvent->getAction()); ASSERT_EQ(entry.eventTime.count(), motionEvent->getHistoricalEventTime(i)); ASSERT_EQ(entry.pointers.size(), motionEvent->getPointerCount()); for (size_t p = 0; p < motionEvent->getPointerCount(); p++) { SCOPED_TRACE(p); // The pointers can be in any order, both in MotionEvent as well as InputEventEntry ssize_t motionEventPointerIndex = motionEvent->findPointerIndex(entry.pointers[p].id); ASSERT_GE(motionEventPointerIndex, 0) << "Pointer must be present in MotionEvent"; ASSERT_EQ(entry.pointers[p].x, motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_X, motionEventPointerIndex, i)); ASSERT_EQ(entry.pointers[p].x, motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_X, motionEventPointerIndex, i)); ASSERT_EQ(entry.pointers[p].y, motionEvent->getHistoricalAxisValue(AMOTION_EVENT_AXIS_Y, motionEventPointerIndex, i)); ASSERT_EQ(entry.pointers[p].y, motionEvent->getHistoricalRawAxisValue(AMOTION_EVENT_AXIS_Y, motionEventPointerIndex, i)); ASSERT_EQ(entry.pointers[p].isResampled, motionEvent->isResampled(motionEventPointerIndex, i)); } } status = mConsumer->sendFinishedSignal(consumeSeq, true); ASSERT_EQ(OK, status); receiveResponseUntilSequence(consumeSeq); } /** * Timeline * ---------+------------------+------------------+--------+-----------------+---------------------- * 0 ms 10 ms 20 ms 25 ms 35 ms * ACTION_DOWN ACTION_MOVE ACTION_MOVE ^ ^ * | | * resampled value | * frameTime * Typically, the prediction is made for time frameTime - RESAMPLE_LATENCY, or 30 ms in this case * However, that would be 10 ms later than the last real sample (which came in at 20 ms). * Therefore, the resampling should happen at 20 ms + RESAMPLE_MAX_PREDICTION = 28 ms. * In this situation, though, resample time is further limited by taking half of the difference * between the last two real events, which would put this time at: * 20 ms + (20 ms - 10 ms) / 2 = 25 ms. */ TEST_F(TouchResamplingTest, EventIsResampled) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Same as above test, but use pointer id=1 instead of 0 to make sure that system does not * have these hardcoded. */ TEST_F(TouchResamplingTest, EventIsResampledWithDifferentId) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{1, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{1, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{1, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{1, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Stylus pointer coordinates are resampled. */ TEST_F(TouchResamplingTest, StylusEventIsResampled) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::STYLUS}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{0, 35, 30, .toolType = ToolType::STYLUS, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Mouse pointer coordinates are resampled. */ TEST_F(TouchResamplingTest, MouseEventIsResampled) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::MOUSE}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{0, 35, 30, .toolType = ToolType::MOUSE, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Motion events with palm tool type are not resampled. */ TEST_F(TouchResamplingTest, PalmEventIsNotResampled) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30, .toolType = ToolType::PALM}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Event should not be resampled when sample time is equal to event time. */ TEST_F(TouchResamplingTest, SampleTimeEqualsEventTime) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; expectedEntries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, // no resampled event because the time of resample falls exactly on the existing event }; consumeInputEventEntries(expectedEntries, frameTime); } /** * Once we send a resampled value to the app, we should continue to "lie" if the pointer * does not move. So, if the pointer keeps the same coordinates, resampled value should continue * to be used. */ TEST_F(TouchResamplingTest, ResampledValueIsUsedForIdenticalCoordinates) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); // Coordinate value 30 has been resampled to 35. When a new event comes in with value 30 again, // the system should still report 35. entries = { // id x y {40ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; expectedEntries = { // id x y {40ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten {45ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten }; consumeInputEventEntries(expectedEntries, frameTime); } TEST_F(TouchResamplingTest, OldEventReceivedAfterResampleOccurs) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 10, 20}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); // Two ACTION_MOVE events 10 ms apart that move in X direction and stay still in Y entries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 35ms; expectedEntries = { // id x y {10ms, {{0, 20, 30}}, AMOTION_EVENT_ACTION_MOVE}, {20ms, {{0, 30, 30}}, AMOTION_EVENT_ACTION_MOVE}, {25ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); // Above, the resampled event is at 25ms rather than at 30 ms = 35ms - RESAMPLE_LATENCY // because we are further bound by how far we can extrapolate by the "last time delta". // That's 50% of (20 ms - 10ms) => 5ms. So we can't predict more than 5 ms into the future // from the event at 20ms, which is why the resampled event is at t = 25 ms. // We resampled the event to 25 ms. Now, an older 'real' event comes in. entries = { // id x y {24ms, {{0, 40, 30}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 50ms; expectedEntries = { // id x y {24ms, {{0, 35, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, // original event, rewritten {26ms, {{0, 45, 30, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, // resampled event, rewritten }; consumeInputEventEntries(expectedEntries, frameTime); } TEST_F(TouchResamplingTest, TwoPointersAreResampledIndependently) { std::chrono::nanoseconds frameTime; std::vector entries, expectedEntries; // full action for when a pointer with id=1 appears (some other pointer must already be present) constexpr int32_t actionPointer1Down = AMOTION_EVENT_ACTION_POINTER_DOWN + (1 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); // full action for when a pointer with id=0 disappears (some other pointer must still remain) constexpr int32_t actionPointer0Up = AMOTION_EVENT_ACTION_POINTER_UP + (0 << AMOTION_EVENT_ACTION_POINTER_INDEX_SHIFT); // Initial ACTION_DOWN should be separate, because the first consume event will only return // InputEvent with a single action. entries = { // id x y {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, }; publishInputEventEntries(entries); frameTime = 5ms; expectedEntries = { // id x y {0ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_DOWN}, }; consumeInputEventEntries(expectedEntries, frameTime); entries = { // id x y {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 10ms + 5ms /*RESAMPLE_LATENCY*/; expectedEntries = { // id x y {10ms, {{0, 100, 100}}, AMOTION_EVENT_ACTION_MOVE}, // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime }; consumeInputEventEntries(expectedEntries, frameTime); // Second pointer id=1 appears entries = { // id x y {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, }; publishInputEventEntries(entries); frameTime = 20ms + 5ms /*RESAMPLE_LATENCY*/; expectedEntries = { // id x y {15ms, {{0, 100, 100}, {1, 500, 500}}, actionPointer1Down}, // no resampled value because frameTime - RESAMPLE_LATENCY == eventTime }; consumeInputEventEntries(expectedEntries, frameTime); // Both pointers move entries = { // id x y {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 45ms + 5ms /*RESAMPLE_LATENCY*/; expectedEntries = { // id x y {30ms, {{0, 100, 100}, {1, 500, 500}}, AMOTION_EVENT_ACTION_MOVE}, {40ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, {45ms, {{0, 130, 130, .isResampled = true}, {1, 650, 650, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); // Both pointers move again entries = { // id x y {60ms, {{0, 120, 120}, {1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 75ms + 5ms /*RESAMPLE_LATENCY*/; /** * The sample at t = 60, pointer id 0 is not equal to 120, because this value of 120 was * received twice, and resampled to 130. So if we already reported it as "130", we continue * to report it as such. Similar with pointer id 1. */ expectedEntries = { {60ms, {{0, 130, 130, .isResampled = true}, // not 120! because it matches previous real event {1, 650, 650, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, {70ms, {{0, 130, 130}, {1, 700, 700}}, AMOTION_EVENT_ACTION_MOVE}, {75ms, {{0, 135, 135, .isResampled = true}, {1, 750, 750, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); // First pointer id=0 leaves the screen entries = { // id x y {80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up}, }; publishInputEventEntries(entries); frameTime = 90ms; expectedEntries = { // id x y {80ms, {{0, 120, 120}, {1, 600, 600}}, actionPointer0Up}, // no resampled event for ACTION_POINTER_UP }; consumeInputEventEntries(expectedEntries, frameTime); // Remaining pointer id=1 is still present, but doesn't move entries = { // id x y {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, }; publishInputEventEntries(entries); frameTime = 100ms; expectedEntries = { // id x y {90ms, {{1, 600, 600}}, AMOTION_EVENT_ACTION_MOVE}, /** * The latest event with ACTION_MOVE was at t = 70, coord = 700. * Use that value for resampling here: (600 - 700) / (90 - 70) * 5 + 600 */ {95ms, {{1, 575, 575, .isResampled = true}}, AMOTION_EVENT_ACTION_MOVE}, }; consumeInputEventEntries(expectedEntries, frameTime); } } // namespace android