/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include "vec.h" #include "BatteryService.h" #include "SensorEventConnection.h" #include "SensorDevice.h" #define UNUSED(x) (void)(x) namespace android { namespace { // Used as the default value for the target SDK until it's obtained via getTargetSdkVersion. constexpr int kTargetSdkUnknown = 0; } // namespace SensorService::SensorEventConnection::SensorEventConnection( const sp& service, uid_t uid, String8 packageName, bool isDataInjectionMode, const String16& opPackageName, const String16& attributionTag) : mService(service), mUid(uid), mWakeLockRefCount(0), mHasLooperCallbacks(false), mDead(false), mDataInjectionMode(isDataInjectionMode), mEventCache(nullptr), mCacheSize(0), mMaxCacheSize(0), mTimeOfLastEventDrop(0), mEventsDropped(0), mPackageName(packageName), mOpPackageName(opPackageName), mAttributionTag(attributionTag), mTargetSdk(kTargetSdkUnknown), mDestroyed(false) { mUserId = multiuser_get_user_id(mUid); mChannel = new BitTube(mService->mSocketBufferSize); #if DEBUG_CONNECTIONS mEventsReceived = mEventsSentFromCache = mEventsSent = 0; mTotalAcksNeeded = mTotalAcksReceived = 0; #endif } SensorService::SensorEventConnection::~SensorEventConnection() { ALOGD_IF(DEBUG_CONNECTIONS, "~SensorEventConnection(%p)", this); destroy(); delete[] mEventCache; } void SensorService::SensorEventConnection::destroy() { if (!mDestroyed.exchange(true)) { mService->cleanupConnection(this); } } void SensorService::SensorEventConnection::onFirstRef() { LooperCallback::onFirstRef(); } bool SensorService::SensorEventConnection::needsWakeLock() { Mutex::Autolock _l(mConnectionLock); return !mDead && mWakeLockRefCount > 0; } void SensorService::SensorEventConnection::resetWakeLockRefCount() { Mutex::Autolock _l(mConnectionLock); mWakeLockRefCount = 0; } void SensorService::SensorEventConnection::dump(String8& result) { Mutex::Autolock _l(mConnectionLock); result.appendFormat("\tOperating Mode: "); if (!mService->isAllowListedPackage(getPackageName())) { result.append("RESTRICTED\n"); } else if (mDataInjectionMode) { result.append("DATA_INJECTION\n"); } else { result.append("NORMAL\n"); } result.appendFormat("\t %s | WakeLockRefCount %d | uid %d | cache size %d | " "max cache size %d\n", mPackageName.c_str(), mWakeLockRefCount, mUid, mCacheSize, mMaxCacheSize); for (auto& it : mSensorInfo) { const FlushInfo& flushInfo = it.second; result.appendFormat("\t %s 0x%08x | status: %s | pending flush events %d \n", mService->getSensorName(it.first).c_str(), it.first, flushInfo.mFirstFlushPending ? "First flush pending" : "active", flushInfo.mPendingFlushEventsToSend); } #if DEBUG_CONNECTIONS result.appendFormat("\t events recvd: %d | sent %d | cache %d | dropped %d |" " total_acks_needed %d | total_acks_recvd %d\n", mEventsReceived, mEventsSent, mEventsSentFromCache, mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize), mTotalAcksNeeded, mTotalAcksReceived); #endif } /** * Dump debugging information as android.service.SensorEventConnectionProto protobuf message using * ProtoOutputStream. * * See proto definition and some notes about ProtoOutputStream in * frameworks/base/core/proto/android/service/sensor_service.proto */ void SensorService::SensorEventConnection::dump(util::ProtoOutputStream* proto) const { using namespace service::SensorEventConnectionProto; Mutex::Autolock _l(mConnectionLock); if (!mService->isAllowListedPackage(getPackageName())) { proto->write(OPERATING_MODE, OP_MODE_RESTRICTED); } else if (mDataInjectionMode) { proto->write(OPERATING_MODE, OP_MODE_DATA_INJECTION); } else { proto->write(OPERATING_MODE, OP_MODE_NORMAL); } proto->write(PACKAGE_NAME, std::string(mPackageName.c_str())); proto->write(WAKE_LOCK_REF_COUNT, int32_t(mWakeLockRefCount)); proto->write(UID, int32_t(mUid)); proto->write(CACHE_SIZE, int32_t(mCacheSize)); proto->write(MAX_CACHE_SIZE, int32_t(mMaxCacheSize)); for (auto& it : mSensorInfo) { const FlushInfo& flushInfo = it.second; const uint64_t token = proto->start(FLUSH_INFOS); proto->write(FlushInfoProto::SENSOR_NAME, std::string(mService->getSensorName(it.first))); proto->write(FlushInfoProto::SENSOR_HANDLE, it.first); proto->write(FlushInfoProto::FIRST_FLUSH_PENDING, flushInfo.mFirstFlushPending); proto->write(FlushInfoProto::PENDING_FLUSH_EVENTS_TO_SEND, flushInfo.mPendingFlushEventsToSend); proto->end(token); } #if DEBUG_CONNECTIONS proto->write(EVENTS_RECEIVED, mEventsReceived); proto->write(EVENTS_SENT, mEventsSent); proto->write(EVENTS_CACHE, mEventsSentFromCache); proto->write(EVENTS_DROPPED, mEventsReceived - (mEventsSentFromCache + mEventsSent + mCacheSize)); proto->write(TOTAL_ACKS_NEEDED, mTotalAcksNeeded); proto->write(TOTAL_ACKS_RECEIVED, mTotalAcksReceived); #endif } bool SensorService::SensorEventConnection::addSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si == nullptr || !mService->canAccessSensor(si->getSensor(), "Add to SensorEventConnection: ", mOpPackageName) || mSensorInfo.count(handle) > 0) { return false; } mSensorInfo[handle] = FlushInfo(); return true; } bool SensorService::SensorEventConnection::removeSensor(int32_t handle) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.erase(handle) >= 0) { return true; } return false; } std::vector SensorService::SensorEventConnection::getActiveSensorHandles() const { Mutex::Autolock _l(mConnectionLock); std::vector list; for (auto& it : mSensorInfo) { list.push_back(it.first); } return list; } bool SensorService::SensorEventConnection::hasSensor(int32_t handle) const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.count(handle) > 0; } bool SensorService::SensorEventConnection::hasAnySensor() const { Mutex::Autolock _l(mConnectionLock); return mSensorInfo.size() ? true : false; } bool SensorService::SensorEventConnection::hasOneShotSensors() const { Mutex::Autolock _l(mConnectionLock); for (auto &it : mSensorInfo) { const int handle = it.first; std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si != nullptr && si->getSensor().getReportingMode() == AREPORTING_MODE_ONE_SHOT) { return true; } } return false; } String8 SensorService::SensorEventConnection::getPackageName() const { return mPackageName; } void SensorService::SensorEventConnection::setFirstFlushPending(int32_t handle, bool value) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.count(handle) > 0) { FlushInfo& flushInfo = mSensorInfo[handle]; flushInfo.mFirstFlushPending = value; } } void SensorService::SensorEventConnection::updateLooperRegistration(const sp& looper) { Mutex::Autolock _l(mConnectionLock); updateLooperRegistrationLocked(looper); } void SensorService::SensorEventConnection::updateLooperRegistrationLocked( const sp& looper) { bool isConnectionActive = (mSensorInfo.size() > 0 && !mDataInjectionMode) || mDataInjectionMode; // If all sensors are unregistered OR Looper has encountered an error, we can remove the Fd from // the Looper if it has been previously added. if (!isConnectionActive || mDead) { if (mHasLooperCallbacks) { ALOGD_IF(DEBUG_CONNECTIONS, "%p removeFd fd=%d", this, mChannel->getSendFd()); looper->removeFd(mChannel->getSendFd()); mHasLooperCallbacks = false; } return; } int looper_flags = 0; if (mCacheSize > 0) looper_flags |= ALOOPER_EVENT_OUTPUT; if (mDataInjectionMode) looper_flags |= ALOOPER_EVENT_INPUT; for (auto& it : mSensorInfo) { const int handle = it.first; std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si != nullptr && si->getSensor().isWakeUpSensor()) { looper_flags |= ALOOPER_EVENT_INPUT; } } // If flags is still set to zero, we don't need to add this fd to the Looper, if the fd has // already been added, remove it. This is likely to happen when ALL the events stored in the // cache have been sent to the corresponding app. if (looper_flags == 0) { if (mHasLooperCallbacks) { ALOGD_IF(DEBUG_CONNECTIONS, "removeFd fd=%d", mChannel->getSendFd()); looper->removeFd(mChannel->getSendFd()); mHasLooperCallbacks = false; } return; } // Add the file descriptor to the Looper for receiving acknowledegments if the app has // registered for wake-up sensors OR for sending events in the cache. int ret = looper->addFd(mChannel->getSendFd(), 0, looper_flags, this, nullptr); if (ret == 1) { ALOGD_IF(DEBUG_CONNECTIONS, "%p addFd fd=%d", this, mChannel->getSendFd()); mHasLooperCallbacks = true; } else { ALOGE("Looper::addFd failed ret=%d fd=%d", ret, mChannel->getSendFd()); } } bool SensorService::SensorEventConnection::incrementPendingFlushCountIfHasAccess(int32_t handle) { if (hasSensorAccess()) { Mutex::Autolock _l(mConnectionLock); if (mSensorInfo.count(handle) > 0) { FlushInfo& flushInfo = mSensorInfo[handle]; flushInfo.mPendingFlushEventsToSend++; } return true; } else { return false; } } status_t SensorService::SensorEventConnection::sendEvents( sensors_event_t const* buffer, size_t numEvents, sensors_event_t* scratch, wp const * mapFlushEventsToConnections) { // filter out events not for this connection std::unique_ptr sanitizedBuffer; int count = 0; Mutex::Autolock _l(mConnectionLock); if (scratch) { size_t i=0; while (i(buffer); count = numEvents; } else { sanitizedBuffer.reset(new sensors_event_t[numEvents]); scratch = sanitizedBuffer.get(); for (size_t i = 0; i < numEvents; i++) { if (buffer[i].type == SENSOR_TYPE_META_DATA) { scratch[count++] = buffer[i++]; } } } } sendPendingFlushEventsLocked(); // Early return if there are no events for this connection. if (count == 0) { return status_t(NO_ERROR); } #if DEBUG_CONNECTIONS mEventsReceived += count; #endif if (mCacheSize != 0) { // There are some events in the cache which need to be sent first. Copy this buffer to // the end of cache. appendEventsToCacheLocked(scratch, count); return status_t(NO_ERROR); } int index_wake_up_event = -1; if (hasSensorAccess()) { index_wake_up_event = findWakeUpSensorEventLocked(scratch, count); if (index_wake_up_event >= 0) { BatteryService::noteWakeupSensorEvent(scratch[index_wake_up_event].timestamp, mUid, scratch[index_wake_up_event].sensor); scratch[index_wake_up_event].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; ++mWakeLockRefCount; #if DEBUG_CONNECTIONS ++mTotalAcksNeeded; #endif } } // NOTE: ASensorEvent and sensors_event_t are the same type. ssize_t size = SensorEventQueue::write(mChannel, reinterpret_cast(scratch), count); if (size < 0) { // Write error, copy events to local cache. if (index_wake_up_event >= 0) { // If there was a wake_up sensor_event, reset the flag. scratch[index_wake_up_event].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; if (mWakeLockRefCount > 0) { --mWakeLockRefCount; } #if DEBUG_CONNECTIONS --mTotalAcksNeeded; #endif } if (mEventCache == nullptr) { mMaxCacheSize = computeMaxCacheSizeLocked(); mEventCache = new sensors_event_t[mMaxCacheSize]; mCacheSize = 0; } // Save the events so that they can be written later appendEventsToCacheLocked(scratch, count); // Add this file descriptor to the looper to get a callback when this fd is available for // writing. updateLooperRegistrationLocked(mService->getLooper()); return size; } #if DEBUG_CONNECTIONS if (size > 0) { mEventsSent += count; } #endif return size < 0 ? status_t(size) : status_t(NO_ERROR); } bool SensorService::SensorEventConnection::hasSensorAccess() { return mService->isUidActive(mUid) && !mService->mSensorPrivacyPolicy->isSensorPrivacyEnabled(); } bool SensorService::SensorEventConnection::noteOpIfRequired(const sensors_event_t& event) { bool success = true; const auto iter = mHandleToAppOp.find(event.sensor); if (iter != mHandleToAppOp.end()) { if (mTargetSdk == kTargetSdkUnknown) { // getTargetSdkVersion returns -1 if it fails so this operation should only be run once // per connection and then cached. Perform this here as opposed to in the constructor to // avoid log spam for NDK/VNDK clients that don't use sensors guarded with permissions // and pass in invalid op package names. mTargetSdk = SensorService::getTargetSdkVersion(mOpPackageName); } // Special handling for step count/detect backwards compatibility: if the app's target SDK // is pre-Q, still permit delivering events to the app even if permission isn't granted // (since this permission was only introduced in Q) if ((event.type == SENSOR_TYPE_STEP_COUNTER || event.type == SENSOR_TYPE_STEP_DETECTOR) && mTargetSdk > 0 && mTargetSdk <= __ANDROID_API_P__) { success = true; } else if (mUid == AID_SYSTEM) { // Allow access if it is requested from system. success = true; } else { int32_t sensorHandle = event.sensor; String16 noteMsg("Sensor event ("); noteMsg.append(String16(mService->getSensorStringType(sensorHandle))); noteMsg.append(String16(")")); int32_t appOpMode = mService->sAppOpsManager.noteOp(iter->second, mUid, mOpPackageName, mAttributionTag, noteMsg); success = (appOpMode == AppOpsManager::MODE_ALLOWED); } } return success; } void SensorService::SensorEventConnection::reAllocateCacheLocked(sensors_event_t const* scratch, int count) { sensors_event_t *eventCache_new; const int new_cache_size = computeMaxCacheSizeLocked(); // Allocate new cache, copy over events from the old cache & scratch, free up memory. eventCache_new = new sensors_event_t[new_cache_size]; memcpy(eventCache_new, mEventCache, mCacheSize * sizeof(sensors_event_t)); memcpy(&eventCache_new[mCacheSize], scratch, count * sizeof(sensors_event_t)); ALOGD_IF(DEBUG_CONNECTIONS, "reAllocateCacheLocked maxCacheSize=%d %d", mMaxCacheSize, new_cache_size); delete[] mEventCache; mEventCache = eventCache_new; mCacheSize += count; mMaxCacheSize = new_cache_size; } void SensorService::SensorEventConnection::appendEventsToCacheLocked(sensors_event_t const* events, int count) { if (count <= 0) { return; } else if (mCacheSize + count <= mMaxCacheSize) { // The events fit within the current cache: add them memcpy(&mEventCache[mCacheSize], events, count * sizeof(sensors_event_t)); mCacheSize += count; } else if (mCacheSize + count <= computeMaxCacheSizeLocked()) { // The events fit within a resized cache: resize the cache and add the events reAllocateCacheLocked(events, count); } else { // The events do not fit within the cache: drop the oldest events. int freeSpace = mMaxCacheSize - mCacheSize; // Drop up to the currently cached number of events to make room for new events int cachedEventsToDrop = std::min(mCacheSize, count - freeSpace); // New events need to be dropped if there are more new events than the size of the cache int newEventsToDrop = std::max(0, count - mMaxCacheSize); // Determine the number of new events to copy into the cache int eventsToCopy = std::min(mMaxCacheSize, count); constexpr nsecs_t kMinimumTimeBetweenDropLogNs = 2 * 1000 * 1000 * 1000; // 2 sec if (events[0].timestamp - mTimeOfLastEventDrop > kMinimumTimeBetweenDropLogNs) { ALOGW("Dropping %d cached events (%d/%d) to save %d/%d new events. %d events previously" " dropped", cachedEventsToDrop, mCacheSize, mMaxCacheSize, eventsToCopy, count, mEventsDropped); mEventsDropped = 0; mTimeOfLastEventDrop = events[0].timestamp; } else { // Record the number dropped mEventsDropped += cachedEventsToDrop + newEventsToDrop; } // Check for any flush complete events in the events that will be dropped countFlushCompleteEventsLocked(mEventCache, cachedEventsToDrop); countFlushCompleteEventsLocked(events, newEventsToDrop); // Only shift the events if they will not all be overwritten if (eventsToCopy != mMaxCacheSize) { memmove(mEventCache, &mEventCache[cachedEventsToDrop], (mCacheSize - cachedEventsToDrop) * sizeof(sensors_event_t)); } mCacheSize -= cachedEventsToDrop; // Copy the events into the cache memcpy(&mEventCache[mCacheSize], &events[newEventsToDrop], eventsToCopy * sizeof(sensors_event_t)); mCacheSize += eventsToCopy; } } void SensorService::SensorEventConnection::sendPendingFlushEventsLocked() { ASensorEvent flushCompleteEvent; memset(&flushCompleteEvent, 0, sizeof(flushCompleteEvent)); flushCompleteEvent.type = SENSOR_TYPE_META_DATA; // Loop through all the sensors for this connection and check if there are any pending // flush complete events to be sent. for (auto& it : mSensorInfo) { const int handle = it.first; std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si == nullptr) { continue; } FlushInfo& flushInfo = it.second; while (flushInfo.mPendingFlushEventsToSend > 0) { flushCompleteEvent.meta_data.sensor = handle; bool wakeUpSensor = si->getSensor().isWakeUpSensor(); if (wakeUpSensor) { ++mWakeLockRefCount; flushCompleteEvent.flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; } ssize_t size = SensorEventQueue::write(mChannel, &flushCompleteEvent, 1); if (size < 0) { if (wakeUpSensor) --mWakeLockRefCount; return; } ALOGD_IF(DEBUG_CONNECTIONS, "sent dropped flush complete event==%d ", flushCompleteEvent.meta_data.sensor); flushInfo.mPendingFlushEventsToSend--; } } } void SensorService::SensorEventConnection::writeToSocketFromCache() { // At a time write at most half the size of the receiver buffer in SensorEventQueue OR // half the size of the socket buffer allocated in BitTube whichever is smaller. const int maxWriteSize = helpers::min(SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT/2, int(mService->mSocketBufferSize/(sizeof(sensors_event_t)*2))); Mutex::Autolock _l(mConnectionLock); // Send pending flush complete events (if any) sendPendingFlushEventsLocked(); for (int numEventsSent = 0; numEventsSent < mCacheSize;) { const int numEventsToWrite = helpers::min(mCacheSize - numEventsSent, maxWriteSize); int index_wake_up_event = -1; if (hasSensorAccess()) { index_wake_up_event = findWakeUpSensorEventLocked(mEventCache + numEventsSent, numEventsToWrite); if (index_wake_up_event >= 0) { mEventCache[index_wake_up_event + numEventsSent].flags |= WAKE_UP_SENSOR_EVENT_NEEDS_ACK; ++mWakeLockRefCount; #if DEBUG_CONNECTIONS ++mTotalAcksNeeded; #endif } } ssize_t size = SensorEventQueue::write(mChannel, reinterpret_cast(mEventCache + numEventsSent), numEventsToWrite); if (size < 0) { if (index_wake_up_event >= 0) { // If there was a wake_up sensor_event, reset the flag. mEventCache[index_wake_up_event + numEventsSent].flags &= ~WAKE_UP_SENSOR_EVENT_NEEDS_ACK; if (mWakeLockRefCount > 0) { --mWakeLockRefCount; } #if DEBUG_CONNECTIONS --mTotalAcksNeeded; #endif } memmove(mEventCache, &mEventCache[numEventsSent], (mCacheSize - numEventsSent) * sizeof(sensors_event_t)); ALOGD_IF(DEBUG_CONNECTIONS, "wrote %d events from cache size==%d ", numEventsSent, mCacheSize); mCacheSize -= numEventsSent; return; } numEventsSent += numEventsToWrite; #if DEBUG_CONNECTIONS mEventsSentFromCache += numEventsToWrite; #endif } ALOGD_IF(DEBUG_CONNECTIONS, "wrote all events from cache size=%d ", mCacheSize); // All events from the cache have been sent. Reset cache size to zero. mCacheSize = 0; // There are no more events in the cache. We don't need to poll for write on the fd. // Update Looper registration. updateLooperRegistrationLocked(mService->getLooper()); } void SensorService::SensorEventConnection::countFlushCompleteEventsLocked( sensors_event_t const* scratch, const int numEventsDropped) { ALOGD_IF(DEBUG_CONNECTIONS, "dropping %d events ", numEventsDropped); // Count flushComplete events in the events that are about to the dropped. These will be sent // separately before the next batch of events. for (int j = 0; j < numEventsDropped; ++j) { if (scratch[j].type == SENSOR_TYPE_META_DATA) { if (mSensorInfo.count(scratch[j].meta_data.sensor) == 0) { ALOGW("%s: sensor 0x%x is not found in connection", __func__, scratch[j].meta_data.sensor); continue; } FlushInfo& flushInfo = mSensorInfo[scratch[j].meta_data.sensor]; flushInfo.mPendingFlushEventsToSend++; ALOGD_IF(DEBUG_CONNECTIONS, "increment pendingFlushCount %d", flushInfo.mPendingFlushEventsToSend); } } return; } int SensorService::SensorEventConnection::findWakeUpSensorEventLocked( sensors_event_t const* scratch, const int count) { for (int i = 0; i < count; ++i) { if (mService->isWakeUpSensorEvent(scratch[i])) { return i; } } return -1; } sp SensorService::SensorEventConnection::getSensorChannel() const { return mChannel; } status_t SensorService::SensorEventConnection::enableDisable( int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags) { if (mDestroyed) { android_errorWriteLog(0x534e4554, "168211968"); return DEAD_OBJECT; } status_t err; if (enabled) { nsecs_t requestedSamplingPeriodNs = samplingPeriodNs; bool isSensorCapped = false; std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si != nullptr) { const Sensor& s = si->getSensor(); if (mService->isSensorInCappedSet(s.getType())) { isSensorCapped = true; } } if (isSensorCapped) { err = mService->adjustSamplingPeriodBasedOnMicAndPermission(&samplingPeriodNs, String16(mOpPackageName)); if (err != OK) { return err; } } err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs, reservedFlags, mOpPackageName); if (err == OK && isSensorCapped) { if ((requestedSamplingPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) || !isRateCappedBasedOnPermission()) { mMicSamplingPeriodBackup[handle] = requestedSamplingPeriodNs; } else { mMicSamplingPeriodBackup[handle] = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS; } } } else { err = mService->disable(this, handle); mMicSamplingPeriodBackup.erase(handle); } return err; } status_t SensorService::SensorEventConnection::setEventRate(int handle, nsecs_t samplingPeriodNs) { if (mDestroyed) { android_errorWriteLog(0x534e4554, "168211968"); return DEAD_OBJECT; } nsecs_t requestedSamplingPeriodNs = samplingPeriodNs; bool isSensorCapped = false; std::shared_ptr si = mService->getSensorInterfaceFromHandle(handle); if (si != nullptr) { const Sensor& s = si->getSensor(); if (mService->isSensorInCappedSet(s.getType())) { isSensorCapped = true; } } if (isSensorCapped) { status_t err = mService->adjustSamplingPeriodBasedOnMicAndPermission(&samplingPeriodNs, String16(mOpPackageName)); if (err != OK) { return err; } } status_t ret = mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName); if (ret == OK && isSensorCapped) { if ((requestedSamplingPeriodNs >= SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) || !isRateCappedBasedOnPermission()) { mMicSamplingPeriodBackup[handle] = requestedSamplingPeriodNs; } else { mMicSamplingPeriodBackup[handle] = SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS; } } return ret; } void SensorService::SensorEventConnection::onMicSensorAccessChanged(bool isMicToggleOn) { if (isMicToggleOn) { capRates(); } else { uncapRates(); } } void SensorService::SensorEventConnection::capRates() { Mutex::Autolock _l(mConnectionLock); SensorDevice& dev(SensorDevice::getInstance()); for (auto &i : mMicSamplingPeriodBackup) { int handle = i.first; nsecs_t samplingPeriodNs = i.second; if (samplingPeriodNs < SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) { if (hasSensorAccess()) { mService->setEventRate(this, handle, SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS, mOpPackageName); } else { // Update SensorDevice with the capped rate so that when sensor access is restored, // the correct event rate is used. dev.onMicSensorAccessChanged(this, handle, SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS); } } } } void SensorService::SensorEventConnection::uncapRates() { Mutex::Autolock _l(mConnectionLock); SensorDevice& dev(SensorDevice::getInstance()); for (auto &i : mMicSamplingPeriodBackup) { int handle = i.first; nsecs_t samplingPeriodNs = i.second; if (samplingPeriodNs < SENSOR_SERVICE_CAPPED_SAMPLING_PERIOD_NS) { if (hasSensorAccess()) { mService->setEventRate(this, handle, samplingPeriodNs, mOpPackageName); } else { // Update SensorDevice with the uncapped rate so that when sensor access is // restored, the correct event rate is used. dev.onMicSensorAccessChanged(this, handle, samplingPeriodNs); } } } } status_t SensorService::SensorEventConnection::flush() { if (mDestroyed) { return DEAD_OBJECT; } return mService->flushSensor(this, mOpPackageName); } int32_t SensorService::SensorEventConnection::configureChannel(int handle, int rateLevel) { // SensorEventConnection does not support configureChannel, parameters not used UNUSED(handle); UNUSED(rateLevel); return INVALID_OPERATION; } int SensorService::SensorEventConnection::handleEvent(int fd, int events, void* /*data*/) { if (events & ALOOPER_EVENT_HANGUP || events & ALOOPER_EVENT_ERROR) { { // If the Looper encounters some error, set the flag mDead, reset mWakeLockRefCount, // and remove the fd from Looper. Call checkWakeLockState to know if SensorService // can release the wake-lock. ALOGD_IF(DEBUG_CONNECTIONS, "%p Looper error %d", this, fd); Mutex::Autolock _l(mConnectionLock); mDead = true; mWakeLockRefCount = 0; updateLooperRegistrationLocked(mService->getLooper()); } mService->checkWakeLockState(); if (mDataInjectionMode) { // If the Looper has encountered some error in data injection mode, reset SensorService // back to normal mode. mService->resetToNormalMode(); mDataInjectionMode = false; } return 1; } if (events & ALOOPER_EVENT_INPUT) { unsigned char buf[sizeof(sensors_event_t)]; ssize_t numBytesRead = ::recv(fd, buf, sizeof(buf), MSG_DONTWAIT); { Mutex::Autolock _l(mConnectionLock); if (numBytesRead == sizeof(sensors_event_t)) { if (!mDataInjectionMode) { ALOGE("Data injected in normal mode, dropping event" "package=%s uid=%d", mPackageName.c_str(), mUid); // Unregister call backs. return 0; } if (!mService->isAllowListedPackage(mPackageName)) { ALOGE("App not allowed to inject data, dropping event" "package=%s uid=%d", mPackageName.c_str(), mUid); return 0; } sensors_event_t sensor_event; memcpy(&sensor_event, buf, sizeof(sensors_event_t)); std::shared_ptr si = mService->getSensorInterfaceFromHandle(sensor_event.sensor); if (si == nullptr) { return 1; } SensorDevice& dev(SensorDevice::getInstance()); sensor_event.type = si->getSensor().getType(); dev.injectSensorData(&sensor_event); #if DEBUG_CONNECTIONS ++mEventsReceived; #endif } else if (numBytesRead == sizeof(uint32_t)) { uint32_t numAcks = 0; memcpy(&numAcks, buf, numBytesRead); // Check to ensure there are no read errors in recv, numAcks is always // within the range and not zero. If any of the above don't hold reset // mWakeLockRefCount to zero. if (numAcks > 0 && numAcks < mWakeLockRefCount) { mWakeLockRefCount -= numAcks; } else { mWakeLockRefCount = 0; } #if DEBUG_CONNECTIONS mTotalAcksReceived += numAcks; #endif } else { // Read error, reset wakelock refcount. mWakeLockRefCount = 0; } } // Check if wakelock can be released by sensorservice. mConnectionLock needs to be released // here as checkWakeLockState() will need it. if (mWakeLockRefCount == 0) { mService->checkWakeLockState(); } // continue getting callbacks. return 1; } if (events & ALOOPER_EVENT_OUTPUT) { // send sensor data that is stored in mEventCache for this connection. mService->sendEventsFromCache(this); } return 1; } int SensorService::SensorEventConnection::computeMaxCacheSizeLocked() const { size_t fifoWakeUpSensors = 0; size_t fifoNonWakeUpSensors = 0; for (auto& it : mSensorInfo) { std::shared_ptr si = mService->getSensorInterfaceFromHandle(it.first); if (si == nullptr) { continue; } const Sensor& sensor = si->getSensor(); if (sensor.getFifoReservedEventCount() == sensor.getFifoMaxEventCount()) { // Each sensor has a reserved fifo. Sum up the fifo sizes for all wake up sensors and // non wake_up sensors. if (sensor.isWakeUpSensor()) { fifoWakeUpSensors += sensor.getFifoReservedEventCount(); } else { fifoNonWakeUpSensors += sensor.getFifoReservedEventCount(); } } else { // Shared fifo. Compute the max of the fifo sizes for wake_up and non_wake up sensors. if (sensor.isWakeUpSensor()) { fifoWakeUpSensors = fifoWakeUpSensors > sensor.getFifoMaxEventCount() ? fifoWakeUpSensors : sensor.getFifoMaxEventCount(); } else { fifoNonWakeUpSensors = fifoNonWakeUpSensors > sensor.getFifoMaxEventCount() ? fifoNonWakeUpSensors : sensor.getFifoMaxEventCount(); } } } if (fifoWakeUpSensors + fifoNonWakeUpSensors == 0) { // It is extremely unlikely that there is a write failure in non batch mode. Return a cache // size that is equal to that of the batch mode. // ALOGW("Write failure in non-batch mode"); return MAX_SOCKET_BUFFER_SIZE_BATCHED/sizeof(sensors_event_t); } return fifoWakeUpSensors + fifoNonWakeUpSensors; } } // namespace android