/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include "system/graphics-base-v1.0.h" #include // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wconversion" #include "DisplayHardware/HWComposer.h" // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wconversion" using aidl::android::hardware::graphics::composer3::Composition; namespace android::compositionengine { OutputLayer::~OutputLayer() = default; namespace impl { namespace { FloatRect reduce(const FloatRect& win, const Region& exclude) { if (CC_LIKELY(exclude.isEmpty())) { return win; } // Convert through Rect (by rounding) for lack of FloatRegion return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); } } // namespace std::unique_ptr createOutputLayer(const compositionengine::Output& output, const sp& layerFE) { return createOutputLayerTemplated(output, layerFE); } OutputLayer::~OutputLayer() = default; void OutputLayer::setHwcLayer(std::shared_ptr hwcLayer) { auto& state = editState(); if (hwcLayer) { state.hwc.emplace(std::move(hwcLayer)); } else { state.hwc.reset(); } } Rect OutputLayer::calculateInitialCrop() const { const auto& layerState = *getLayerFE().getCompositionState(); // apply the projection's clipping to the window crop in // layerstack space, and convert-back to layer space. // if there are no window scaling involved, this operation will map to full // pixels in the buffer. FloatRect activeCropFloat = reduce(layerState.geomLayerBounds, layerState.transparentRegionHint); const Rect& viewport = getOutput().getState().layerStackSpace.getContent(); const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; // Transform to screen space. activeCropFloat = layerTransform.transform(activeCropFloat); activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); // Back to layer space to work with the content crop. activeCropFloat = inverseLayerTransform.transform(activeCropFloat); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. Rect activeCrop{activeCropFloat}; if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { activeCrop.clear(); } return activeCrop; } FloatRect OutputLayer::calculateOutputSourceCrop(uint32_t internalDisplayRotationFlags) const { const auto& layerState = *getLayerFE().getCompositionState(); if (!layerState.geomUsesSourceCrop) { return {}; } // the content crop is the area of the content that gets scaled to the // layer's size. This is in buffer space. FloatRect crop = layerState.geomContentCrop.toFloatRect(); // In addition there is a WM-specified crop we pull from our drawing state. Rect activeCrop = calculateInitialCrop(); const Rect& bufferSize = layerState.geomBufferSize; int winWidth = bufferSize.getWidth(); int winHeight = bufferSize.getHeight(); // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) // if display frame hasn't been set and the parent is an unbounded layer. if (winWidth < 0 && winHeight < 0) { return crop; } // Transform the window crop to match the buffer coordinate system, // which means using the inverse of the current transform set on the // SurfaceFlingerConsumer. uint32_t invTransform = layerState.geomBufferTransform; if (layerState.geomBufferUsesDisplayInverseTransform) { /* * the code below applies the primary display's inverse transform to the * buffer */ uint32_t invTransformOrient = internalDisplayRotationFlags; // calculate the inverse transform if (invTransformOrient & HAL_TRANSFORM_ROT_90) { invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } // and apply to the current transform invTransform = (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); } if (invTransform & HAL_TRANSFORM_ROT_90) { // If the activeCrop has been rotate the ends are rotated but not // the space itself so when transforming ends back we can't rely on // a modification of the axes of rotation. To account for this we // need to reorient the inverse rotation in terms of the current // axes of rotation. bool isHFlipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; bool isVFlipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; if (isHFlipped == isVFlipped) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } std::swap(winWidth, winHeight); } const Rect winCrop = activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); // below, crop is intersected with winCrop expressed in crop's coordinate space const float xScale = crop.getWidth() / float(winWidth); const float yScale = crop.getHeight() / float(winHeight); const float insetLeft = winCrop.left * xScale; const float insetTop = winCrop.top * yScale; const float insetRight = (winWidth - winCrop.right) * xScale; const float insetBottom = (winHeight - winCrop.bottom) * yScale; crop.left += insetLeft; crop.top += insetTop; crop.right -= insetRight; crop.bottom -= insetBottom; return crop; } Rect OutputLayer::calculateOutputDisplayFrame() const { const auto& layerState = *getLayerFE().getCompositionState(); const auto& outputState = getOutput().getState(); // apply the layer's transform, followed by the display's global transform // here we're guaranteed that the layer's transform preserves rects Region activeTransparentRegion = layerState.transparentRegionHint; const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; const Rect& bufferSize = layerState.geomBufferSize; Rect activeCrop = layerState.geomCrop; if (!activeCrop.isEmpty() && bufferSize.isValid()) { activeCrop = layerTransform.transform(activeCrop); if (!activeCrop.intersect(outputState.layerStackSpace.getContent(), &activeCrop)) { activeCrop.clear(); } activeCrop = inverseLayerTransform.transform(activeCrop, true); // This needs to be here as transform.transform(Rect) computes the // transformed rect and then takes the bounding box of the result before // returning. This means // transform.inverse().transform(transform.transform(Rect)) != Rect // in which case we need to make sure the final rect is clipped to the // display bounds. if (!activeCrop.intersect(bufferSize, &activeCrop)) { activeCrop.clear(); } // mark regions outside the crop as transparent activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); activeTransparentRegion.orSelf( Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); activeTransparentRegion.orSelf( Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); } // reduce uses a FloatRect to provide more accuracy during the // transformation. We then round upon constructing 'frame'. FloatRect geomLayerBounds = layerState.geomLayerBounds; // Some HWCs may clip client composited input to its displayFrame. Make sure // that this does not cut off the shadow. if (layerState.forceClientComposition && layerState.shadowSettings.length > 0.0f) { const auto outset = layerState.shadowSettings.length; geomLayerBounds.left -= outset; geomLayerBounds.top -= outset; geomLayerBounds.right += outset; geomLayerBounds.bottom += outset; } Rect frame{layerTransform.transform(reduce(geomLayerBounds, activeTransparentRegion))}; if (!frame.intersect(outputState.layerStackSpace.getContent(), &frame)) { frame.clear(); } const ui::Transform displayTransform{outputState.transform}; return displayTransform.transform(frame); } uint32_t OutputLayer::calculateOutputRelativeBufferTransform( uint32_t internalDisplayRotationFlags) const { const auto& layerState = *getLayerFE().getCompositionState(); const auto& outputState = getOutput().getState(); /* * Transformations are applied in this order: * 1) buffer orientation/flip/mirror * 2) state transformation (window manager) * 3) layer orientation (screen orientation) * (NOTE: the matrices are multiplied in reverse order) */ const ui::Transform& layerTransform = layerState.geomLayerTransform; const ui::Transform displayTransform{outputState.transform}; const ui::Transform bufferTransform{layerState.geomBufferTransform}; ui::Transform transform(displayTransform * layerTransform * bufferTransform); if (layerState.geomBufferUsesDisplayInverseTransform) { /* * We must apply the internal display's inverse transform to the buffer * transform, and not the one for the output this layer is on. */ uint32_t invTransform = internalDisplayRotationFlags; // calculate the inverse transform if (invTransform & HAL_TRANSFORM_ROT_90) { invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; } /* * Here we cancel out the orientation component of the WM transform. * The scaling and translate components are already included in our bounds * computation so it's enough to just omit it in the composition. * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. */ transform = ui::Transform(invTransform) * displayTransform * bufferTransform; } // this gives us only the "orientation" component of the transform return transform.getOrientation(); } void OutputLayer::updateCompositionState( bool includeGeometry, bool forceClientComposition, ui::Transform::RotationFlags internalDisplayRotationFlags) { const auto* layerFEState = getLayerFE().getCompositionState(); if (!layerFEState) { return; } const auto& outputState = getOutput().getState(); const auto& profile = *getOutput().getDisplayColorProfile(); auto& state = editState(); if (includeGeometry) { // Clear the forceClientComposition flag before it is set for any // reason. Note that since it can be set by some checks below when // updating the geometry state, we only clear it when updating the // geometry since those conditions for forcing client composition won't // go away otherwise. state.forceClientComposition = false; state.displayFrame = calculateOutputDisplayFrame(); state.sourceCrop = calculateOutputSourceCrop(internalDisplayRotationFlags); state.bufferTransform = static_cast( calculateOutputRelativeBufferTransform(internalDisplayRotationFlags)); if ((layerFEState->isSecure && !outputState.isSecure) || (state.bufferTransform & ui::Transform::ROT_INVALID)) { state.forceClientComposition = true; } } auto pixelFormat = layerFEState->buffer ? std::make_optional(static_cast( layerFEState->buffer->getPixelFormat())) : std::nullopt; auto hdrRenderType = getHdrRenderType(outputState.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio); // Determine the output dependent dataspace for this layer. If it is // colorspace agnostic, it just uses the dataspace chosen for the output to // avoid the need for color conversion. // For now, also respect the colorspace agnostic flag if we're drawing to HDR, to avoid drastic // luminance shift. TODO(b/292162273): we should check if that's true though. state.dataspace = layerFEState->isColorspaceAgnostic && hdrRenderType == HdrRenderType::SDR ? outputState.dataspace : layerFEState->dataspace; // Override the dataspace transfer from 170M to sRGB if the device configuration requests this. // We do this here instead of in buffer info so that dumpsys can still report layers that are // using the 170M transfer. Also we only do this if the colorspace is not agnostic for the // layer, in case the color profile uses a 170M transfer function. if (outputState.treat170mAsSrgb && !layerFEState->isColorspaceAgnostic && (state.dataspace & HAL_DATASPACE_TRANSFER_MASK) == HAL_DATASPACE_TRANSFER_SMPTE_170M) { state.dataspace = static_cast( (state.dataspace & HAL_DATASPACE_STANDARD_MASK) | (state.dataspace & HAL_DATASPACE_RANGE_MASK) | HAL_DATASPACE_TRANSFER_SRGB); } // re-get HdrRenderType after the dataspace gets changed. hdrRenderType = getHdrRenderType(state.dataspace, pixelFormat, layerFEState->desiredHdrSdrRatio); // For hdr content, treat the white point as the display brightness - HDR content should not be // boosted or dimmed. // If the layer explicitly requests to disable dimming, then don't dim either. if (hdrRenderType == HdrRenderType::GENERIC_HDR || getOutput().getState().displayBrightnessNits == getOutput().getState().sdrWhitePointNits || getOutput().getState().displayBrightnessNits == 0.f || !layerFEState->dimmingEnabled) { state.dimmingRatio = 1.f; state.whitePointNits = getOutput().getState().displayBrightnessNits; } else { float layerBrightnessNits = getOutput().getState().sdrWhitePointNits; // RANGE_EXTENDED can "self-promote" to HDR, but is still rendered for a particular // range that we may need to re-adjust to the current display conditions if (hdrRenderType == HdrRenderType::DISPLAY_HDR) { layerBrightnessNits *= layerFEState->currentHdrSdrRatio; } state.dimmingRatio = std::clamp(layerBrightnessNits / getOutput().getState().displayBrightnessNits, 0.f, 1.f); state.whitePointNits = layerBrightnessNits; } // These are evaluated every frame as they can potentially change at any // time. if (layerFEState->forceClientComposition || !profile.isDataspaceSupported(state.dataspace) || forceClientComposition) { state.forceClientComposition = true; } } void OutputLayer::writeStateToHWC(bool includeGeometry, bool skipLayer, uint32_t z, bool zIsOverridden, bool isPeekingThrough) { const auto& state = getState(); // Skip doing this if there is no HWC interface if (!state.hwc) { return; } auto& hwcLayer = (*state.hwc).hwcLayer; if (!hwcLayer) { ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", getLayerFE().getDebugName(), getOutput().getName().c_str()); return; } const auto* outputIndependentState = getLayerFE().getCompositionState(); if (!outputIndependentState) { return; } auto requestedCompositionType = outputIndependentState->compositionType; if (requestedCompositionType == Composition::SOLID_COLOR && state.overrideInfo.buffer) { requestedCompositionType = Composition::DEVICE; } // TODO(b/181172795): We now update geometry for all flattened layers. We should update it // only when the geometry actually changes const bool isOverridden = state.overrideInfo.buffer != nullptr || isPeekingThrough || zIsOverridden; const bool prevOverridden = state.hwc->stateOverridden; if (isOverridden || prevOverridden || skipLayer || includeGeometry) { writeOutputDependentGeometryStateToHWC(hwcLayer.get(), requestedCompositionType, z); writeOutputIndependentGeometryStateToHWC(hwcLayer.get(), *outputIndependentState, skipLayer); } writeOutputDependentPerFrameStateToHWC(hwcLayer.get()); writeOutputIndependentPerFrameStateToHWC(hwcLayer.get(), *outputIndependentState, requestedCompositionType, skipLayer); writeCompositionTypeToHWC(hwcLayer.get(), requestedCompositionType, isPeekingThrough, skipLayer); if (requestedCompositionType == Composition::SOLID_COLOR) { writeSolidColorStateToHWC(hwcLayer.get(), *outputIndependentState); } editState().hwc->stateOverridden = isOverridden; editState().hwc->layerSkipped = skipLayer; } void OutputLayer::writeOutputDependentGeometryStateToHWC(HWC2::Layer* hwcLayer, Composition requestedCompositionType, uint32_t z) { const auto& outputDependentState = getState(); Rect displayFrame = outputDependentState.displayFrame; FloatRect sourceCrop = outputDependentState.sourceCrop; if (outputDependentState.overrideInfo.buffer != nullptr) { displayFrame = outputDependentState.overrideInfo.displayFrame; sourceCrop = FloatRect(0.f, 0.f, static_cast(outputDependentState.overrideInfo.buffer->getBuffer() ->getWidth()), static_cast(outputDependentState.overrideInfo.buffer->getBuffer() ->getHeight())); } ALOGV("Writing display frame [%d, %d, %d, %d]", displayFrame.left, displayFrame.top, displayFrame.right, displayFrame.bottom); if (auto error = hwcLayer->setDisplayFrame(displayFrame); error != hal::Error::NONE) { ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", getLayerFE().getDebugName(), displayFrame.left, displayFrame.top, displayFrame.right, displayFrame.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setSourceCrop(sourceCrop); error != hal::Error::NONE) { ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " "%s (%d)", getLayerFE().getDebugName(), sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom, to_string(error).c_str(), static_cast(error)); } if (auto error = hwcLayer->setZOrder(z); error != hal::Error::NONE) { ALOGE("[%s] Failed to set Z %u: %s (%d)", getLayerFE().getDebugName(), z, to_string(error).c_str(), static_cast(error)); } // Solid-color layers and overridden buffers should always use an identity transform. const auto bufferTransform = (requestedCompositionType != Composition::SOLID_COLOR && getState().overrideInfo.buffer == nullptr) ? outputDependentState.bufferTransform : static_cast(0); if (auto error = hwcLayer->setTransform(static_cast(bufferTransform)); error != hal::Error::NONE) { ALOGE("[%s] Failed to set transform %s: %s (%d)", getLayerFE().getDebugName(), toString(outputDependentState.bufferTransform).c_str(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeOutputIndependentGeometryStateToHWC( HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState, bool skipLayer) { // If there is a peekThroughLayer, then this layer has a hole in it. We need to use // PREMULTIPLIED so it will peek through. const auto& overrideInfo = getState().overrideInfo; const auto blendMode = overrideInfo.buffer || overrideInfo.peekThroughLayer ? hardware::graphics::composer::hal::BlendMode::PREMULTIPLIED : outputIndependentState.blendMode; if (auto error = hwcLayer->setBlendMode(blendMode); error != hal::Error::NONE) { ALOGE("[%s] Failed to set blend mode %s: %s (%d)", getLayerFE().getDebugName(), toString(blendMode).c_str(), to_string(error).c_str(), static_cast(error)); } const float alpha = skipLayer ? 0.0f : (getState().overrideInfo.buffer ? 1.0f : outputIndependentState.alpha); ALOGV("Writing alpha %f", alpha); if (auto error = hwcLayer->setPlaneAlpha(alpha); error != hal::Error::NONE) { ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", getLayerFE().getDebugName(), alpha, to_string(error).c_str(), static_cast(error)); } for (const auto& [name, entry] : outputIndependentState.metadata) { if (auto error = hwcLayer->setLayerGenericMetadata(name, entry.mandatory, entry.value); error != hal::Error::NONE) { ALOGE("[%s] Failed to set generic metadata %s %s (%d)", getLayerFE().getDebugName(), name.c_str(), to_string(error).c_str(), static_cast(error)); } } } void OutputLayer::writeOutputDependentPerFrameStateToHWC(HWC2::Layer* hwcLayer) { const auto& outputDependentState = getState(); // TODO(lpique): b/121291683 outputSpaceVisibleRegion is output-dependent geometry // state and should not change every frame. Region visibleRegion = outputDependentState.overrideInfo.buffer ? Region(outputDependentState.overrideInfo.visibleRegion) : outputDependentState.outputSpaceVisibleRegion; if (auto error = hwcLayer->setVisibleRegion(visibleRegion); error != hal::Error::NONE) { ALOGE("[%s] Failed to set visible region: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); visibleRegion.dump(LOG_TAG); } if (auto error = hwcLayer->setBlockingRegion(outputDependentState.outputSpaceBlockingRegionHint); error != hal::Error::NONE) { ALOGE("[%s] Failed to set blocking region: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); outputDependentState.outputSpaceBlockingRegionHint.dump(LOG_TAG); } const auto dataspace = outputDependentState.overrideInfo.buffer ? outputDependentState.overrideInfo.dataspace : outputDependentState.dataspace; if (auto error = hwcLayer->setDataspace(dataspace); error != hal::Error::NONE) { ALOGE("[%s] Failed to set dataspace %d: %s (%d)", getLayerFE().getDebugName(), dataspace, to_string(error).c_str(), static_cast(error)); } // Cached layers are not dimmed, which means that composer should attempt to dim. // Note that if the dimming ratio is large, then this may cause the cached layer // to kick back into GPU composition :( // Also note that this assumes that there are no HDR layers that are able to be cached. // Otherwise, this could cause HDR layers to be dimmed twice. const auto dimmingRatio = outputDependentState.overrideInfo.buffer ? (getOutput().getState().displayBrightnessNits != 0.f ? std::clamp(getOutput().getState().sdrWhitePointNits / getOutput().getState().displayBrightnessNits, 0.f, 1.f) : 1.f) : outputDependentState.dimmingRatio; if (auto error = hwcLayer->setBrightness(dimmingRatio); error != hal::Error::NONE) { ALOGE("[%s] Failed to set brightness %f: %s (%d)", getLayerFE().getDebugName(), dimmingRatio, to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeOutputIndependentPerFrameStateToHWC( HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState, Composition compositionType, bool skipLayer) { switch (auto error = hwcLayer->setColorTransform(outputIndependentState.colorTransform)) { case hal::Error::NONE: break; case hal::Error::UNSUPPORTED: editState().forceClientComposition = true; break; default: ALOGE("[%s] Failed to set color transform: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } const Region& surfaceDamage = getState().overrideInfo.buffer ? getState().overrideInfo.damageRegion : (getState().hwc->stateOverridden ? Region::INVALID_REGION : outputIndependentState.surfaceDamage); if (auto error = hwcLayer->setSurfaceDamage(surfaceDamage); error != hal::Error::NONE) { ALOGE("[%s] Failed to set surface damage: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); outputIndependentState.surfaceDamage.dump(LOG_TAG); } // Content-specific per-frame state switch (compositionType) { case Composition::SOLID_COLOR: // For compatibility, should be written AFTER the composition type. break; case Composition::SIDEBAND: writeSidebandStateToHWC(hwcLayer, outputIndependentState); break; case Composition::CURSOR: case Composition::DEVICE: case Composition::DISPLAY_DECORATION: case Composition::REFRESH_RATE_INDICATOR: writeBufferStateToHWC(hwcLayer, outputIndependentState, skipLayer); break; case Composition::INVALID: case Composition::CLIENT: // Ignored break; } } void OutputLayer::writeSolidColorStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { aidl::android::hardware::graphics::composer3::Color color = {outputIndependentState.color.r, outputIndependentState.color.g, outputIndependentState.color.b, 1.0f}; if (auto error = hwcLayer->setColor(color); error != hal::Error::NONE) { ALOGE("[%s] Failed to set color: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeSidebandStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState) { if (auto error = hwcLayer->setSidebandStream(outputIndependentState.sidebandStream->handle()); error != hal::Error::NONE) { ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", getLayerFE().getDebugName(), outputIndependentState.sidebandStream->handle(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::uncacheBuffers(const std::vector& bufferIdsToUncache) { auto& state = editState(); // Skip doing this if there is no HWC interface if (!state.hwc) { return; } // Uncache the active buffer last so that it's the first buffer to be purged from the cache // next time a buffer is sent to this layer. bool uncacheActiveBuffer = false; std::vector slotsToClear; for (uint64_t bufferId : bufferIdsToUncache) { if (bufferId == state.hwc->activeBufferId) { uncacheActiveBuffer = true; } else { uint32_t slot = state.hwc->hwcBufferCache.uncache(bufferId); if (slot != UINT32_MAX) { slotsToClear.push_back(slot); } } } if (uncacheActiveBuffer) { slotsToClear.push_back(state.hwc->hwcBufferCache.uncache(state.hwc->activeBufferId)); } hal::Error error = state.hwc->hwcLayer->setBufferSlotsToClear(slotsToClear, state.hwc->activeBufferSlot); if (error != hal::Error::NONE) { ALOGE("[%s] Failed to clear buffer slots: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeBufferStateToHWC(HWC2::Layer* hwcLayer, const LayerFECompositionState& outputIndependentState, bool skipLayer) { if (skipLayer && outputIndependentState.buffer == nullptr) { return; } auto supportedPerFrameMetadata = getOutput().getDisplayColorProfile()->getSupportedPerFrameMetadata(); if (auto error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, outputIndependentState.hdrMetadata); error != hal::Error::NONE && error != hal::Error::UNSUPPORTED) { ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", getLayerFE().getDebugName(), to_string(error).c_str(), static_cast(error)); } HwcSlotAndBuffer hwcSlotAndBuffer; sp hwcFence; { // Editing the state only because we update the HWC buffer cache and active buffer. auto& state = editState(); // Override buffers use a special cache slot so that they don't evict client buffers. if (state.overrideInfo.buffer != nullptr && !skipLayer) { hwcSlotAndBuffer = state.hwc->hwcBufferCache.getOverrideHwcSlotAndBuffer( state.overrideInfo.buffer->getBuffer()); hwcFence = state.overrideInfo.acquireFence; // Keep track of the active buffer ID so when it's discarded we uncache it last so its // slot will be used first, allowing the memory to be freed as soon as possible. state.hwc->activeBufferId = state.overrideInfo.buffer->getBuffer()->getId(); } else { hwcSlotAndBuffer = state.hwc->hwcBufferCache.getHwcSlotAndBuffer(outputIndependentState.buffer); hwcFence = outputIndependentState.acquireFence; // Keep track of the active buffer ID so when it's discarded we uncache it last so its // slot will be used first, allowing the memory to be freed as soon as possible. state.hwc->activeBufferId = outputIndependentState.buffer->getId(); } // Keep track of the active buffer slot, so we can restore it after clearing other buffer // slots. state.hwc->activeBufferSlot = hwcSlotAndBuffer.slot; } if (auto error = hwcLayer->setBuffer(hwcSlotAndBuffer.slot, hwcSlotAndBuffer.buffer, hwcFence); error != hal::Error::NONE) { ALOGE("[%s] Failed to set buffer %p: %s (%d)", getLayerFE().getDebugName(), hwcSlotAndBuffer.buffer->handle, to_string(error).c_str(), static_cast(error)); } } void OutputLayer::writeCompositionTypeToHWC(HWC2::Layer* hwcLayer, Composition requestedCompositionType, bool isPeekingThrough, bool skipLayer) { auto& outputDependentState = editState(); if (isClientCompositionForced(isPeekingThrough)) { // If we are forcing client composition, we need to tell the HWC requestedCompositionType = Composition::CLIENT; } // Set the requested composition type with the HWC whenever it changes // We also resend the composition type when this layer was previously skipped, to ensure that // the composition type is up-to-date. if (outputDependentState.hwc->hwcCompositionType != requestedCompositionType || (outputDependentState.hwc->layerSkipped && !skipLayer)) { outputDependentState.hwc->hwcCompositionType = requestedCompositionType; if (auto error = hwcLayer->setCompositionType(requestedCompositionType); error != hal::Error::NONE) { ALOGE("[%s] Failed to set composition type %s: %s (%d)", getLayerFE().getDebugName(), to_string(requestedCompositionType).c_str(), to_string(error).c_str(), static_cast(error)); } } } void OutputLayer::writeCursorPositionToHWC() const { // Skip doing this if there is no HWC interface auto hwcLayer = getHwcLayer(); if (!hwcLayer) { return; } const auto* layerFEState = getLayerFE().getCompositionState(); if (!layerFEState) { return; } const auto& outputState = getOutput().getState(); Rect frame = layerFEState->cursorFrame; frame.intersect(outputState.layerStackSpace.getContent(), &frame); Rect position = outputState.transform.transform(frame); if (auto error = hwcLayer->setCursorPosition(position.left, position.top); error != hal::Error::NONE) { ALOGE("[%s] Failed to set cursor position to (%d, %d): %s (%d)", getLayerFE().getDebugName(), position.left, position.top, to_string(error).c_str(), static_cast(error)); } } HWC2::Layer* OutputLayer::getHwcLayer() const { const auto& state = getState(); return state.hwc ? state.hwc->hwcLayer.get() : nullptr; } bool OutputLayer::requiresClientComposition() const { const auto& state = getState(); return !state.hwc || state.hwc->hwcCompositionType == Composition::CLIENT; } bool OutputLayer::isHardwareCursor() const { const auto& state = getState(); return state.hwc && state.hwc->hwcCompositionType == Composition::CURSOR; } void OutputLayer::detectDisallowedCompositionTypeChange(Composition from, Composition to) const { bool result = false; switch (from) { case Composition::INVALID: case Composition::CLIENT: result = false; break; case Composition::DEVICE: case Composition::SOLID_COLOR: result = (to == Composition::CLIENT); break; case Composition::CURSOR: case Composition::SIDEBAND: case Composition::DISPLAY_DECORATION: case Composition::REFRESH_RATE_INDICATOR: result = (to == Composition::CLIENT || to == Composition::DEVICE); break; } if (!result) { ALOGE("[%s] Invalid device requested composition type change: %s (%d) --> %s (%d)", getLayerFE().getDebugName(), to_string(from).c_str(), static_cast(from), to_string(to).c_str(), static_cast(to)); } } bool OutputLayer::isClientCompositionForced(bool isPeekingThrough) const { return getState().forceClientComposition || (!isPeekingThrough && getLayerFE().hasRoundedCorners()); } void OutputLayer::applyDeviceCompositionTypeChange(Composition compositionType) { auto& state = editState(); LOG_FATAL_IF(!state.hwc); auto& hwcState = *state.hwc; // Only detected disallowed changes if this was not a skip layer, because the // validated composition type may be arbitrary (usually DEVICE, to reflect that there were // fewer GPU layers) if (!hwcState.layerSkipped) { detectDisallowedCompositionTypeChange(hwcState.hwcCompositionType, compositionType); } hwcState.hwcCompositionType = compositionType; } void OutputLayer::prepareForDeviceLayerRequests() { auto& state = editState(); state.clearClientTarget = false; } void OutputLayer::applyDeviceLayerRequest(hal::LayerRequest request) { auto& state = editState(); switch (request) { case hal::LayerRequest::CLEAR_CLIENT_TARGET: state.clearClientTarget = true; break; default: ALOGE("[%s] Unknown device layer request %s (%d)", getLayerFE().getDebugName(), toString(request).c_str(), static_cast(request)); break; } } bool OutputLayer::needsFiltering() const { const auto& state = getState(); const auto& sourceCrop = state.sourceCrop; auto displayFrameWidth = static_cast(state.displayFrame.getWidth()); auto displayFrameHeight = static_cast(state.displayFrame.getHeight()); if (state.bufferTransform & HAL_TRANSFORM_ROT_90) { std::swap(displayFrameWidth, displayFrameHeight); } return sourceCrop.getHeight() != displayFrameHeight || sourceCrop.getWidth() != displayFrameWidth; } std::optional OutputLayer::getOverrideCompositionSettings() const { if (getState().overrideInfo.buffer == nullptr) { return {}; } // Compute the geometry boundaries in layer stack space: we need to transform from the // framebuffer space of the override buffer to layer space. const ProjectionSpace& layerSpace = getOutput().getState().layerStackSpace; const ui::Transform transform = getState().overrideInfo.displaySpace.getTransform(layerSpace); const Rect boundaries = transform.transform(getState().overrideInfo.displayFrame); LayerFE::LayerSettings settings; settings.geometry = renderengine::Geometry{ .boundaries = boundaries.toFloatRect(), }; settings.bufferId = getState().overrideInfo.buffer->getBuffer()->getId(); settings.source = renderengine::PixelSource{ .buffer = renderengine::Buffer{ .buffer = getState().overrideInfo.buffer, .fence = getState().overrideInfo.acquireFence, // If the transform from layer space to display space contains a rotation, we // need to undo the rotation in the texture transform .textureTransform = ui::Transform(transform.inverse().getOrientation(), 1, 1).asMatrix4(), }}; settings.sourceDataspace = getState().overrideInfo.dataspace; settings.alpha = 1.0f; settings.whitePointNits = getOutput().getState().sdrWhitePointNits; return settings; } void OutputLayer::dump(std::string& out) const { using android::base::StringAppendF; StringAppendF(&out, " - Output Layer %p(%s)\n", this, getLayerFE().getDebugName()); dumpState(out); } } // namespace impl } // namespace android::compositionengine