/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Client.h" #include "DisplayHardware/HWComposer.h" #include "FrameTracker.h" #include "LayerFE.h" #include "LayerVector.h" #include "Scheduler/LayerInfo.h" #include "SurfaceFlinger.h" #include "Tracing/LayerTracing.h" #include "TransactionCallbackInvoker.h" using namespace android::surfaceflinger; namespace android { class Client; class Colorizer; class DisplayDevice; class GraphicBuffer; class SurfaceFlinger; namespace compositionengine { class OutputLayer; struct LayerFECompositionState; } namespace frametimeline { class SurfaceFrame; } // namespace frametimeline class Layer : public virtual RefBase { public: // The following constants represent priority of the window. SF uses this information when // deciding which window has a priority when deciding about the refresh rate of the screen. // Priority 0 is considered the highest priority. -1 means that the priority is unset. static constexpr int32_t PRIORITY_UNSET = -1; // Windows that are in focus and voted for the preferred mode ID static constexpr int32_t PRIORITY_FOCUSED_WITH_MODE = 0; // // Windows that are in focus, but have not requested a specific mode ID. static constexpr int32_t PRIORITY_FOCUSED_WITHOUT_MODE = 1; // Windows that are not in focus, but voted for a specific mode ID. static constexpr int32_t PRIORITY_NOT_FOCUSED_WITH_MODE = 2; enum { // flags for doTransaction() eDontUpdateGeometryState = 0x00000001, eVisibleRegion = 0x00000002, eInputInfoChanged = 0x00000004 }; struct Geometry { uint32_t w; uint32_t h; ui::Transform transform; inline bool operator==(const Geometry& rhs) const { return (w == rhs.w && h == rhs.h) && (transform.tx() == rhs.transform.tx()) && (transform.ty() == rhs.transform.ty()); } inline bool operator!=(const Geometry& rhs) const { return !operator==(rhs); } }; using FrameRate = scheduler::LayerInfo::FrameRate; using FrameRateCompatibility = scheduler::FrameRateCompatibility; using FrameRateSelectionStrategy = scheduler::LayerInfo::FrameRateSelectionStrategy; struct State { int32_t z; ui::LayerStack layerStack; uint32_t flags; int32_t sequence; // changes when visible regions can change bool modified; // Crop is expressed in layer space coordinate. Rect crop; LayerMetadata metadata; // If non-null, a Surface this Surface's Z-order is interpreted relative to. wp zOrderRelativeOf; bool isRelativeOf{false}; // A list of surfaces whose Z-order is interpreted relative to ours. SortedVector> zOrderRelatives; half4 color; float cornerRadius; int backgroundBlurRadius; gui::WindowInfo inputInfo; wp touchableRegionCrop; ui::Dataspace dataspace; uint64_t frameNumber; uint64_t previousFrameNumber; // high watermark framenumber to use to check for barriers to protect ourselves // from out of order transactions uint64_t barrierFrameNumber; ui::Transform transform; uint32_t producerId = 0; // high watermark producerId to use to check for barriers to protect ourselves // from out of order transactions uint32_t barrierProducerId = 0; uint32_t bufferTransform; bool transformToDisplayInverse; Region transparentRegionHint; std::shared_ptr buffer; sp acquireFence; std::shared_ptr acquireFenceTime; HdrMetadata hdrMetadata; Region surfaceDamageRegion; int32_t api; sp sidebandStream; mat4 colorTransform; bool hasColorTransform; // pointer to background color layer that, if set, appears below the buffer state layer // and the buffer state layer's children. Z order will be set to // INT_MIN sp bgColorLayer; // The deque of callback handles for this frame. The back of the deque contains the most // recent callback handle. std::deque> callbackHandles; bool colorSpaceAgnostic; nsecs_t desiredPresentTime = 0; bool isAutoTimestamp = true; // Length of the cast shadow. If the radius is > 0, a shadow of length shadowRadius will // be rendered around the layer. float shadowRadius; // Layer regions that are made of custom materials, like frosted glass std::vector blurRegions; // Priority of the layer assigned by Window Manager. int32_t frameRateSelectionPriority; // Default frame rate compatibility used to set the layer refresh rate votetype. FrameRateCompatibility defaultFrameRateCompatibility; FrameRate frameRate; // The combined frame rate of parents / children of this layer FrameRate frameRateForLayerTree; FrameRateSelectionStrategy frameRateSelectionStrategy; // Set by window manager indicating the layer and all its children are // in a different orientation than the display. The hint suggests that // the graphic producers should receive a transform hint as if the // display was in this orientation. When the display changes to match // the layer orientation, the graphic producer may not need to allocate // a buffer of a different size. ui::Transform::ROT_INVALID means the // a fixed transform hint is not set. ui::Transform::RotationFlags fixedTransformHint; // The vsync info that was used to start the transaction FrameTimelineInfo frameTimelineInfo; // When the transaction was posted nsecs_t postTime; sp releaseBufferListener; // SurfaceFrame that tracks the timeline of Transactions that contain a Buffer. Only one // such SurfaceFrame exists because only one buffer can be presented on the layer per vsync. // If multiple buffers are queued, the prior ones will be dropped, along with the // SurfaceFrame that's tracking them. std::shared_ptr bufferSurfaceFrameTX; // A map of token(frametimelineVsyncId) to the SurfaceFrame that's tracking a transaction // that contains the token. Only one SurfaceFrame exisits for transactions that share the // same token, unless they are presented in different vsyncs. std::unordered_map> bufferlessSurfaceFramesTX; // An arbitrary threshold for the number of BufferlessSurfaceFrames in the state. Used to // trigger a warning if the number of SurfaceFrames crosses the threshold. static constexpr uint32_t kStateSurfaceFramesThreshold = 25; // Stretch effect to apply to this layer StretchEffect stretchEffect; // Whether or not this layer is a trusted overlay for input bool isTrustedOverlay; Rect bufferCrop; Rect destinationFrame; sp releaseBufferEndpoint; gui::DropInputMode dropInputMode; bool autoRefresh = false; bool dimmingEnabled = true; float currentHdrSdrRatio = 1.f; float desiredHdrSdrRatio = -1.f; gui::CachingHint cachingHint = gui::CachingHint::Enabled; int64_t latchedVsyncId = 0; bool useVsyncIdForRefreshRateSelection = false; }; explicit Layer(const surfaceflinger::LayerCreationArgs& args); virtual ~Layer(); static bool isLayerFocusedBasedOnPriority(int32_t priority); static void miniDumpHeader(std::string& result); // Provide unique string for each class type in the Layer hierarchy virtual const char* getType() const { return "Layer"; } // true if this layer is visible, false otherwise virtual bool isVisible() const; virtual sp createClone(); // Set a 2x2 transformation matrix on the layer. This transform // will be applied after parent transforms, but before any final // producer specified transform. bool setMatrix(const layer_state_t::matrix22_t& matrix); // This second set of geometry attributes are controlled by // setGeometryAppliesWithResize, and their default mode is to be // immediate. If setGeometryAppliesWithResize is specified // while a resize is pending, then update of these attributes will // be delayed until the resize completes. // setPosition operates in parent buffer space (pre parent-transform) or display // space for top-level layers. bool setPosition(float x, float y); // Buffer space bool setCrop(const Rect& crop); // TODO(b/38182121): Could we eliminate the various latching modes by // using the layer hierarchy? // ----------------------------------------------------------------------- virtual bool setLayer(int32_t z); virtual bool setRelativeLayer(const sp& relativeToHandle, int32_t relativeZ); virtual bool setAlpha(float alpha); bool setColor(const half3& /*color*/); // Set rounded corner radius for this layer and its children. // // We only support 1 radius per layer in the hierarchy, where parent layers have precedence. // The shape of the rounded corner rectangle is specified by the crop rectangle of the layer // from which we inferred the rounded corner radius. virtual bool setCornerRadius(float cornerRadius); // When non-zero, everything below this layer will be blurred by backgroundBlurRadius, which // is specified in pixels. virtual bool setBackgroundBlurRadius(int backgroundBlurRadius); virtual bool setBlurRegions(const std::vector& effectRegions); bool setTransparentRegionHint(const Region& transparent); virtual bool setTrustedOverlay(bool); virtual bool setFlags(uint32_t flags, uint32_t mask); virtual bool setLayerStack(ui::LayerStack); virtual ui::LayerStack getLayerStack( LayerVector::StateSet state = LayerVector::StateSet::Drawing) const; virtual bool setMetadata(const LayerMetadata& data); virtual void setChildrenDrawingParent(const sp&); virtual bool reparent(const sp& newParentHandle) REQUIRES(mFlinger->mStateLock); virtual bool setColorTransform(const mat4& matrix); virtual mat4 getColorTransform() const; virtual bool hasColorTransform() const; virtual bool isColorSpaceAgnostic() const { return mDrawingState.colorSpaceAgnostic; } virtual bool isDimmingEnabled() const { return getDrawingState().dimmingEnabled; } float getDesiredHdrSdrRatio() const { return getDrawingState().desiredHdrSdrRatio; } float getCurrentHdrSdrRatio() const { return getDrawingState().currentHdrSdrRatio; } gui::CachingHint getCachingHint() const { return getDrawingState().cachingHint; } bool setTransform(uint32_t /*transform*/); bool setTransformToDisplayInverse(bool /*transformToDisplayInverse*/); bool setBuffer(std::shared_ptr& /* buffer */, const BufferData& /* bufferData */, nsecs_t /* postTime */, nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/, const FrameTimelineInfo& /*info*/); void setDesiredPresentTime(nsecs_t /*desiredPresentTime*/, bool /*isAutoTimestamp*/); bool setDataspace(ui::Dataspace /*dataspace*/); bool setExtendedRangeBrightness(float currentBufferRatio, float desiredRatio); bool setDesiredHdrHeadroom(float desiredRatio); bool setCachingHint(gui::CachingHint cachingHint); bool setHdrMetadata(const HdrMetadata& /*hdrMetadata*/); bool setSurfaceDamageRegion(const Region& /*surfaceDamage*/); bool setApi(int32_t /*api*/); bool setSidebandStream(const sp& /*sidebandStream*/, const FrameTimelineInfo& /* info*/, nsecs_t /* postTime */); bool setTransactionCompletedListeners(const std::vector>& /*handles*/, bool willPresent); virtual bool setBackgroundColor(const half3& color, float alpha, ui::Dataspace dataspace) REQUIRES(mFlinger->mStateLock); virtual bool setColorSpaceAgnostic(const bool agnostic); virtual bool setDimmingEnabled(const bool dimmingEnabled); virtual bool setDefaultFrameRateCompatibility(FrameRateCompatibility compatibility); virtual bool setFrameRateSelectionPriority(int32_t priority); virtual bool setFixedTransformHint(ui::Transform::RotationFlags fixedTransformHint); void setAutoRefresh(bool /* autoRefresh */); bool setDropInputMode(gui::DropInputMode); // If the variable is not set on the layer, it traverses up the tree to inherit the frame // rate priority from its parent. virtual int32_t getFrameRateSelectionPriority() const; // virtual FrameRateCompatibility getDefaultFrameRateCompatibility() const; // ui::Dataspace getDataSpace() const; virtual bool isFrontBuffered() const; virtual sp getCompositionEngineLayerFE() const; virtual sp copyCompositionEngineLayerFE() const; sp getCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&); sp getOrCreateCompositionEngineLayerFE(const frontend::LayerHierarchy::TraversalPath&); const frontend::LayerSnapshot* getLayerSnapshot() const; frontend::LayerSnapshot* editLayerSnapshot(); std::unique_ptr stealLayerSnapshot(); void updateLayerSnapshot(std::unique_ptr snapshot); // If we have received a new buffer this frame, we will pass its surface // damage down to hardware composer. Otherwise, we must send a region with // one empty rect. void useSurfaceDamage(); void useEmptyDamage(); Region getVisibleRegion(const DisplayDevice*) const; void updateLastLatchTime(nsecs_t latchtime); /* * isOpaque - true if this surface is opaque * * This takes into account the buffer format (i.e. whether or not the * pixel format includes an alpha channel) and the "opaque" flag set * on the layer. It does not examine the current plane alpha value. */ bool isOpaque(const Layer::State&) const; /* * Returns whether this layer can receive input. */ bool canReceiveInput() const; /* * Whether or not the layer should be considered visible for input calculations. */ virtual bool isVisibleForInput() const { // For compatibility reasons we let layers which can receive input // receive input before they have actually submitted a buffer. Because // of this we use canReceiveInput instead of isVisible to check the // policy-visibility, ignoring the buffer state. However for layers with // hasInputInfo()==false we can use the real visibility state. // We are just using these layers for occlusion detection in // InputDispatcher, and obviously if they aren't visible they can't occlude // anything. return hasInputInfo() ? canReceiveInput() : isVisible(); } /* * isProtected - true if the layer may contain protected contents in the * GRALLOC_USAGE_PROTECTED sense. */ bool isProtected() const; /* * isFixedSize - true if content has a fixed size */ virtual bool isFixedSize() const { return true; } /* * usesSourceCrop - true if content should use a source crop */ bool usesSourceCrop() const { return hasBufferOrSidebandStream(); } // Most layers aren't created from the main thread, and therefore need to // grab the SF state lock to access HWC, but ContainerLayer does, so we need // to avoid grabbing the lock again to avoid deadlock virtual bool isCreatedFromMainThread() const { return false; } ui::Transform getActiveTransform(const Layer::State& s) const { return s.transform; } Region getActiveTransparentRegion(const Layer::State& s) const { return s.transparentRegionHint; } Rect getCrop(const Layer::State& s) const { return s.crop; } bool needsFiltering(const DisplayDevice*) const; // True if this layer requires filtering // This method is distinct from needsFiltering() in how the filter // requirement is computed. needsFiltering() compares displayFrame and crop, // where as this method transforms the displayFrame to layer-stack space // first. This method should be used if there is no physical display to // project onto when taking screenshots, as the filtering requirements are // different. // If the parent transform needs to be undone when capturing the layer, then // the inverse parent transform is also required. bool needsFilteringForScreenshots(const DisplayDevice*, const ui::Transform&) const; // from graphics API static ui::Dataspace translateDataspace(ui::Dataspace dataspace); void updateCloneBufferInfo(); uint64_t mPreviousFrameNumber = 0; void onCompositionPresented(const DisplayDevice*, const std::shared_ptr& /*glDoneFence*/, const std::shared_ptr& /*presentFence*/, const CompositorTiming&); // If a buffer was replaced this frame, release the former buffer void releasePendingBuffer(nsecs_t /*dequeueReadyTime*/); /* * latchBuffer - called each time the screen is redrawn and returns whether * the visible regions need to be recomputed (this is a fairly heavy * operation, so this should be set only if needed). Typically this is used * to figure out if the content or size of a surface has changed. */ bool latchBuffer(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/); bool latchBufferImpl(bool& /*recomputeVisibleRegions*/, nsecs_t /*latchTime*/, bool bgColorOnly); /* * Returns true if the currently presented buffer will be released when this layer state * is latched. This will return false if there is no buffer currently presented. */ bool willReleaseBufferOnLatch() const; /* * Calls latchBuffer if the buffer has a frame queued and then releases the buffer. * This is used if the buffer is just latched and releases to free up the buffer * and will not be shown on screen. * Should only be called on the main thread. */ void latchAndReleaseBuffer(); /* * returns the rectangle that crops the content of the layer and scales it * to the layer's size. */ Rect getBufferCrop() const; /* * Returns the transform applied to the buffer. */ uint32_t getBufferTransform() const; sp getBuffer() const; const std::shared_ptr& getExternalTexture() const; /* * Returns if a frame is ready */ bool hasReadyFrame() const; virtual int32_t getQueuedFrameCount() const { return 0; } /** * Returns active buffer size in the correct orientation. Buffer size is determined by undoing * any buffer transformations. Returns Rect::INVALID_RECT if the layer has no buffer or the * layer does not have a display frame and its parent is not bounded. */ Rect getBufferSize(const Layer::State&) const; /** * Returns the source bounds. If the bounds are not defined, it is inferred from the * buffer size. Failing that, the bounds are determined from the passed in parent bounds. * For the root layer, this is the display viewport size. */ FloatRect computeSourceBounds(const FloatRect& parentBounds) const; virtual FrameRate getFrameRateForLayerTree() const; bool getTransformToDisplayInverse() const; // Returns how rounded corners should be drawn for this layer. // A layer can override its parent's rounded corner settings if the parent's rounded // corner crop does not intersect with its own rounded corner crop. virtual frontend::RoundedCornerState getRoundedCornerState() const; bool hasRoundedCorners() const { return getRoundedCornerState().hasRoundedCorners(); } PixelFormat getPixelFormat() const; /** * Return whether this layer needs an input info. We generate InputWindowHandles for all * non-cursor buffered layers regardless of whether they have an InputChannel. This is to enable * the InputDispatcher to do PID based occlusion detection. */ bool needsInputInfo() const { return (hasInputInfo() || hasBufferOrSidebandStream()) && !mPotentialCursor; } // Implements RefBase. void onFirstRef() override; struct BufferInfo { nsecs_t mDesiredPresentTime; std::shared_ptr mFenceTime; sp mFence; uint32_t mTransform{0}; ui::Dataspace mDataspace{ui::Dataspace::UNKNOWN}; Rect mCrop; uint32_t mScaleMode{NATIVE_WINDOW_SCALING_MODE_FREEZE}; Region mSurfaceDamage; HdrMetadata mHdrMetadata; int mApi; PixelFormat mPixelFormat{PIXEL_FORMAT_NONE}; bool mTransformToDisplayInverse{false}; std::shared_ptr mBuffer; uint64_t mFrameNumber; sp mReleaseBufferEndpoint; bool mFrameLatencyNeeded{false}; float mDesiredHdrSdrRatio = -1.f; }; BufferInfo mBufferInfo; // implements compositionengine::LayerFE const compositionengine::LayerFECompositionState* getCompositionState() const; bool fenceHasSignaled() const; void onPreComposition(nsecs_t refreshStartTime); void onLayerDisplayed(ftl::SharedFuture, ui::LayerStack layerStack, std::function&& continuation = nullptr); // Tracks mLastClientCompositionFence and gets the callback handle for this layer. sp findCallbackHandle(); // Adds the future release fence to a list of fences that are used to release the // last presented buffer. Also keeps track of the layerstack in a list of previous // layerstacks that have been presented. void prepareReleaseCallbacks(ftl::Future, ui::LayerStack layerStack); void setWasClientComposed(const sp& fence) { mLastClientCompositionFence = fence; mClearClientCompositionFenceOnLayerDisplayed = false; } const char* getDebugName() const; bool setShadowRadius(float shadowRadius); // Before color management is introduced, contents on Android have to be // desaturated in order to match what they appears like visually. // With color management, these contents will appear desaturated, thus // needed to be saturated so that they match what they are designed for // visually. bool isLegacyDataSpace() const; uint32_t getTransactionFlags() const { return mTransactionFlags; } static bool computeTrustedPresentationState(const FloatRect& bounds, const FloatRect& sourceBounds, const Region& coveredRegion, const FloatRect& screenBounds, float, const ui::Transform&, const TrustedPresentationThresholds&); void updateTrustedPresentationState(const DisplayDevice* display, const frontend::LayerSnapshot* snapshot, int64_t time_in_ms, bool leaveState); inline bool hasTrustedPresentationListener() { return mTrustedPresentationListener.callbackInterface != nullptr; } // Sets the masked bits. void setTransactionFlags(uint32_t mask); // Clears and returns the masked bits. uint32_t clearTransactionFlags(uint32_t mask); FloatRect getBounds(const Region& activeTransparentRegion) const; FloatRect getBounds() const; Rect getInputBoundsInDisplaySpace(const FloatRect& insetBounds, const ui::Transform& displayTransform); // Compute bounds for the layer and cache the results. void computeBounds(FloatRect parentBounds, ui::Transform parentTransform, float shadowRadius); int32_t getSequence() const { return sequence; } // For tracing. // TODO: Replace with raw buffer id from buffer metadata when that becomes available. // GraphicBuffer::getId() does not provide a reliable global identifier. Since the traces // creates its tracks by buffer id and has no way of associating a buffer back to the process // that created it, the current implementation is only sufficient for cases where a buffer is // only used within a single layer. uint64_t getCurrentBufferId() const { return getBuffer() ? getBuffer()->getId() : 0; } /* * isSecure - true if this surface is secure, that is if it prevents * screenshots or VNC servers. A surface can be set to be secure by the * application, being secure doesn't mean the surface has DRM contents. */ bool isSecure() const; /* * isHiddenByPolicy - true if this layer has been forced invisible. * just because this is false, doesn't mean isVisible() is true. * For example if this layer has no active buffer, it may not be hidden by * policy, but it still can not be visible. */ bool isHiddenByPolicy() const; // True if the layer should be skipped in screenshots, screen recordings, // and mirroring to external or virtual displays. bool isInternalDisplayOverlay() const; ui::LayerFilter getOutputFilter() const { return {getLayerStack(), isInternalDisplayOverlay()}; } bool isRemovedFromCurrentState() const; perfetto::protos::LayerProto* writeToProto(perfetto::protos::LayersProto& layersProto, uint32_t traceFlags); void writeCompositionStateToProto(perfetto::protos::LayerProto* layerProto, ui::LayerStack layerStack); // Write states that are modified by the main thread. This includes drawing // state as well as buffer data. This should be called in the main or tracing // thread. void writeToProtoDrawingState(perfetto::protos::LayerProto* layerInfo); // Write drawing or current state. If writing current state, the caller should hold the // external mStateLock. If writing drawing state, this function should be called on the // main or tracing thread. void writeToProtoCommonState(perfetto::protos::LayerProto* layerInfo, LayerVector::StateSet, uint32_t traceFlags = LayerTracing::TRACE_ALL); gui::WindowInfo::Type getWindowType() const { return mWindowType; } bool updateMirrorInfo(const std::deque& cloneRootsPendingUpdates); /* * doTransaction - process the transaction. This is a good place to figure * out which attributes of the surface have changed. */ virtual uint32_t doTransaction(uint32_t transactionFlags); /* * Remove relative z for the layer if its relative parent is not part of the * provided layer tree. */ void removeRelativeZ(const std::vector& layersInTree); /* * Remove from current state and mark for removal. */ void removeFromCurrentState() REQUIRES(mFlinger->mStateLock); /* * called with the state lock from a binder thread when the layer is * removed from the current list to the pending removal list */ void onRemovedFromCurrentState() REQUIRES(mFlinger->mStateLock); /* * Called when the layer is added back to the current state list. */ void addToCurrentState(); /* * Sets display transform hint on BufferLayerConsumer. */ void updateTransformHint(ui::Transform::RotationFlags); inline const State& getDrawingState() const { return mDrawingState; } inline State& getDrawingState() { return mDrawingState; } void miniDumpLegacy(std::string& result, const DisplayDevice&) const; void miniDump(std::string& result, const frontend::LayerSnapshot&, const DisplayDevice&) const; void dumpFrameStats(std::string& result) const; void dumpOffscreenDebugInfo(std::string& result) const; void clearFrameStats(); void logFrameStats(); void getFrameStats(FrameStats* outStats) const; void onDisconnect(); ui::Transform getTransform() const; bool isTransformValid() const; // Returns the Alpha of the Surface, accounting for the Alpha // of parent Surfaces in the hierarchy (alpha's will be multiplied // down the hierarchy). half getAlpha() const; half4 getColor() const; int32_t getBackgroundBlurRadius() const; bool drawShadows() const { return mEffectiveShadowRadius > 0.f; }; // Returns the transform hint set by Window Manager on the layer or one of its parents. // This traverses the current state because the data is needed when creating // the layer(off drawing thread) and the hint should be available before the producer // is ready to acquire a buffer. ui::Transform::RotationFlags getFixedTransformHint() const; /** * Traverse this layer and it's hierarchy of children directly. Unlike traverseInZOrder * which will not emit children who have relativeZOrder to another layer, this method * just directly emits all children. It also emits them in no particular order. * So this method is not suitable for graphical operations, as it doesn't represent * the scene state, but it's also more efficient than traverseInZOrder and so useful for * book-keeping. */ void traverse(LayerVector::StateSet, const LayerVector::Visitor&); void traverseInReverseZOrder(LayerVector::StateSet, const LayerVector::Visitor&); void traverseInZOrder(LayerVector::StateSet, const LayerVector::Visitor&); void traverseChildren(const LayerVector::Visitor&); /** * Traverse only children in z order, ignoring relative layers that are not children of the * parent. */ void traverseChildrenInZOrder(LayerVector::StateSet, const LayerVector::Visitor&); size_t getDescendantCount() const; size_t getChildrenCount() const { return mDrawingChildren.size(); } bool isHandleAlive() const { return mHandleAlive; } bool onHandleDestroyed() { return mHandleAlive = false; } // ONLY CALL THIS FROM THE LAYER DTOR! // See b/141111965. We need to add current children to offscreen layers in // the layer dtor so as not to dangle layers. Since the layer has not // committed its transaction when the layer is destroyed, we must add // current children. This is safe in the dtor as we will no longer update // the current state, but should not be called anywhere else! LayerVector& getCurrentChildren() { return mCurrentChildren; } void addChild(const sp&); // Returns index if removed, or negative value otherwise // for symmetry with Vector::remove ssize_t removeChild(const sp& layer); sp getParent() const { return mCurrentParent.promote(); } // Should be called with the surfaceflinger statelock held bool isAtRoot() const { return mIsAtRoot; } void setIsAtRoot(bool isAtRoot) { mIsAtRoot = isAtRoot; } bool hasParent() const { return getParent() != nullptr; } Rect getScreenBounds(bool reduceTransparentRegion = true) const; bool setChildLayer(const sp& childLayer, int32_t z); bool setChildRelativeLayer(const sp& childLayer, const sp& relativeToHandle, int32_t relativeZ); // Copy the current list of children to the drawing state. Called by // SurfaceFlinger to complete a transaction. void commitChildList(); int32_t getZ(LayerVector::StateSet) const; /** * Returns the cropped buffer size or the layer crop if the layer has no buffer. Return * INVALID_RECT if the layer has no buffer and no crop. * A layer with an invalid buffer size and no crop is considered to be boundless. The layer * bounds are constrained by its parent bounds. */ Rect getCroppedBufferSize(const Layer::State& s) const; bool setFrameRate(FrameRate::FrameRateVote); bool setFrameRateCategory(FrameRateCategory, bool smoothSwitchOnly); bool setFrameRateSelectionStrategy(FrameRateSelectionStrategy); virtual void setFrameTimelineInfoForBuffer(const FrameTimelineInfo& /*info*/) {} void setFrameTimelineVsyncForBufferTransaction(const FrameTimelineInfo& info, nsecs_t postTime); void setFrameTimelineVsyncForBufferlessTransaction(const FrameTimelineInfo& info, nsecs_t postTime); void addSurfaceFrameDroppedForBuffer(std::shared_ptr& surfaceFrame, nsecs_t dropTime); void addSurfaceFramePresentedForBuffer( std::shared_ptr& surfaceFrame, nsecs_t acquireFenceTime, nsecs_t currentLatchTime); std::shared_ptr createSurfaceFrameForTransaction( const FrameTimelineInfo& info, nsecs_t postTime); std::shared_ptr createSurfaceFrameForBuffer( const FrameTimelineInfo& info, nsecs_t queueTime, std::string debugName); void setFrameTimelineVsyncForSkippedFrames(const FrameTimelineInfo& info, nsecs_t postTime, std::string debugName); bool setTrustedPresentationInfo(TrustedPresentationThresholds const& thresholds, TrustedPresentationListener const& listener); // Creates a new handle each time, so we only expect // this to be called once. sp getHandle(); const std::string& getName() const { return mName; } bool getPremultipledAlpha() const; void setInputInfo(const gui::WindowInfo& info); struct InputDisplayArgs { const ui::Transform* transform = nullptr; bool isSecure = false; }; gui::WindowInfo fillInputInfo(const InputDisplayArgs& displayArgs); /** * Returns whether this layer has an explicitly set input-info. */ bool hasInputInfo() const; // Sets the gui::GameMode for the tree rooted at this layer. A layer in the tree inherits this // gui::GameMode unless it (or an ancestor) has GAME_MODE_METADATA. void setGameModeForTree(gui::GameMode); void setGameMode(gui::GameMode gameMode) { mGameMode = gameMode; } gui::GameMode getGameMode() const { return mGameMode; } virtual uid_t getOwnerUid() const { return mOwnerUid; } pid_t getOwnerPid() { return mOwnerPid; } int32_t getOwnerAppId() { return mOwnerAppId; } // This layer is not a clone, but it's the parent to the cloned hierarchy. The // variable mClonedChild represents the top layer that will be cloned so this // layer will be the parent of mClonedChild. // The layers in the cloned hierarchy will match the lifetime of the real layers. That is // if the real layer is destroyed, then the clone layer will also be destroyed. sp mClonedChild; bool mHadClonedChild = false; void setClonedChild(const sp& mClonedChild); mutable bool contentDirty{false}; Region surfaceDamageRegion; // True when the surfaceDamageRegion is recognized as a small area update. bool mSmallDirty{false}; // Used to check if mUsedVsyncIdForRefreshRateSelection should be expired when it stop updating. nsecs_t mMaxTimeForUseVsyncId = 0; // True when DrawState.useVsyncIdForRefreshRateSelection previously set to true during updating // buffer. bool mUsedVsyncIdForRefreshRateSelection{false}; // Layer serial number. This gives layers an explicit ordering, so we // have a stable sort order when their layer stack and Z-order are // the same. const int32_t sequence; bool mPendingHWCDestroy{false}; bool backpressureEnabled() const { return mDrawingState.flags & layer_state_t::eEnableBackpressure; } bool setStretchEffect(const StretchEffect& effect); StretchEffect getStretchEffect() const; bool setBufferCrop(const Rect& /* bufferCrop */); bool setDestinationFrame(const Rect& /* destinationFrame */); // See mPendingBufferTransactions void decrementPendingBufferCount(); std::atomic* getPendingBufferCounter() { return &mPendingBufferTransactions; } std::string getPendingBufferCounterName() { return mBlastTransactionName; } bool updateGeometry(); bool isSimpleBufferUpdate(const layer_state_t& s) const; static bool isOpaqueFormat(PixelFormat format); // Updates the LayerSnapshot. This must be called prior to sending layer data to // CompositionEngine or RenderEngine (i.e. before calling CompositionEngine::present or // LayerFE::prepareClientComposition). // // TODO(b/238781169) Remove direct calls to RenderEngine::drawLayers that don't go through // CompositionEngine to create a single path for composing layers. void updateSnapshot(bool updateGeometry); void updateChildrenSnapshots(bool updateGeometry); void updateMetadataSnapshot(const LayerMetadata& parentMetadata); void updateRelativeMetadataSnapshot(const LayerMetadata& relativeLayerMetadata, std::unordered_set& visited); sp getClonedFrom() const { return mClonedFrom != nullptr ? mClonedFrom.promote() : nullptr; } bool isClone() { return mClonedFrom != nullptr; } bool willPresentCurrentTransaction() const; void callReleaseBufferCallback(const sp& listener, const sp& buffer, uint64_t framenumber, const sp& releaseFence); bool setFrameRateForLayerTreeLegacy(FrameRate, nsecs_t now); bool setFrameRateForLayerTree(FrameRate, const scheduler::LayerProps&, nsecs_t now); void recordLayerHistoryBufferUpdate(const scheduler::LayerProps&, nsecs_t now); void recordLayerHistoryAnimationTx(const scheduler::LayerProps&, nsecs_t now); auto getLayerProps() const { return scheduler::LayerProps{.visible = isVisible(), .bounds = getBounds(), .transform = getTransform(), .setFrameRateVote = getFrameRateForLayerTree(), .frameRateSelectionPriority = getFrameRateSelectionPriority(), .isSmallDirty = mSmallDirty, .isFrontBuffered = isFrontBuffered()}; }; bool hasBuffer() const { return mBufferInfo.mBuffer != nullptr; } void setTransformHint(std::optional transformHint) { mTransformHint = transformHint; } void commitTransaction(); // Keeps track of the previously presented layer stacks. This is used to get // the release fences from the correct displays when we release the last buffer // from the layer. std::vector mPreviouslyPresentedLayerStacks; struct FenceAndContinuation { ftl::SharedFuture future; std::function continuation; ftl::SharedFuture chain() const { if (continuation) { return ftl::Future(future).then(continuation).share(); } else { return future; } } }; std::vector mPreviousReleaseFenceAndContinuations; // Release fences for buffers that have not yet received a release // callback. A release callback may not be given when capturing // screenshots asynchronously. There may be no buffer update for the // layer, but the layer will still be composited on the screen in every // frame. Kepping track of these fences ensures that they are not dropped // and can be dispatched to the client at a later time. Older fences are // dropped when a layer stack receives a new fence. // TODO(b/300533018): Track fence per multi-instance RenderEngine ftl::SmallMap, ui::kDisplayCapacity> mAdditionalPreviousReleaseFences; // Exposed so SurfaceFlinger can assert that it's held const sp mFlinger; // Check if the damage region is a small dirty. void setIsSmallDirty(const Region& damageRegion, const ui::Transform& layerToDisplayTransform); void setIsSmallDirty(frontend::LayerSnapshot* snapshot); protected: // For unit tests friend class TestableSurfaceFlinger; friend class FpsReporterTest; friend class RefreshRateSelectionTest; friend class SetFrameRateTest; friend class TransactionFrameTracerTest; friend class TransactionSurfaceFrameTest; void preparePerFrameCompositionState(); void preparePerFrameBufferCompositionState(); void preparePerFrameEffectsCompositionState(); void gatherBufferInfo(); void onSurfaceFrameCreated(const std::shared_ptr&); bool isClonedFromAlive() { return getClonedFrom() != nullptr; } void cloneDrawingState(const Layer* from); void updateClonedDrawingState(std::map, sp>& clonedLayersMap); void updateClonedChildren(const sp& mirrorRoot, std::map, sp>& clonedLayersMap); void updateClonedRelatives(const std::map, sp>& clonedLayersMap); void addChildToDrawing(const sp&); void updateClonedInputInfo(const std::map, sp>& clonedLayersMap); void prepareBasicGeometryCompositionState(); void prepareGeometryCompositionState(); void prepareCursorCompositionState(); uint32_t getEffectiveUsage(uint32_t usage) const; /** * Setup rounded corners coordinates of this layer, taking into account the layer bounds and * crop coordinates, transforming them into layer space. */ void setupRoundedCornersCropCoordinates(Rect win, const FloatRect& roundedCornersCrop) const; void setParent(const sp&); LayerVector makeTraversalList(LayerVector::StateSet, bool* outSkipRelativeZUsers); void addZOrderRelative(const wp& relative); void removeZOrderRelative(const wp& relative); compositionengine::OutputLayer* findOutputLayerForDisplay(const DisplayDevice*) const; compositionengine::OutputLayer* findOutputLayerForDisplay( const DisplayDevice*, const frontend::LayerHierarchy::TraversalPath& path) const; bool usingRelativeZ(LayerVector::StateSet) const; virtual ui::Transform getInputTransform() const; /** * Get the bounds in layer space within which this layer can receive input. * * These bounds are used to: * - Determine the input frame for the layer to be used for occlusion detection; and * - Determine the coordinate space within which the layer will receive input. The top-left of * this rect will be the origin of the coordinate space that the input events sent to the * layer will be in (prior to accounting for surface insets). * * The layer can still receive touch input if these bounds are invalid if * "replaceTouchableRegionWithCrop" is specified. In this case, the layer will receive input * in this layer's space, regardless of the specified crop layer. */ std::pair getInputBounds(bool fillParentBounds) const; bool mPremultipliedAlpha{true}; const std::string mName; const std::string mTransactionName{"TX - " + mName}; // These are only accessed by the main thread or the tracing thread. State mDrawingState; TrustedPresentationThresholds mTrustedPresentationThresholds; TrustedPresentationListener mTrustedPresentationListener; bool mLastComputedTrustedPresentationState = false; bool mLastReportedTrustedPresentationState = false; int64_t mEnteredTrustedPresentationStateTime = -1; uint32_t mTransactionFlags{0}; // Updated in doTransaction, used to track the last sequence number we // committed. Currently this is really only used for updating visible // regions. int32_t mLastCommittedTxSequence = -1; // Timestamp history for UIAutomation. Thread safe. FrameTracker mFrameTracker; // main thread sp mSidebandStream; // False if the buffer and its contents have been previously used for GPU // composition, true otherwise. bool mIsActiveBufferUpdatedForGpu = true; // We encode unset as -1. std::atomic mCurrentFrameNumber{0}; // Whether filtering is needed b/c of the drawingstate bool mNeedsFiltering{false}; std::atomic mRemovedFromDrawingState{false}; // page-flip thread (currently main thread) bool mProtectedByApp{false}; // application requires protected path to external sink // protected by mLock mutable Mutex mLock; const wp mClientRef; // This layer can be a cursor on some displays. bool mPotentialCursor{false}; LayerVector mCurrentChildren{LayerVector::StateSet::Current}; LayerVector mDrawingChildren{LayerVector::StateSet::Drawing}; wp mCurrentParent; wp mDrawingParent; // Window types from WindowManager.LayoutParams const gui::WindowInfo::Type mWindowType; // The owner of the layer. If created from a non system process, it will be the calling uid. // If created from a system process, the value can be passed in. uid_t mOwnerUid; // The owner pid of the layer. If created from a non system process, it will be the calling pid. // If created from a system process, the value can be passed in. pid_t mOwnerPid; int32_t mOwnerAppId; // Keeps track of the time SF latched the last buffer from this layer. // Used in buffer stuffing analysis in FrameTimeline. nsecs_t mLastLatchTime = 0; mutable bool mDrawingStateModified = false; sp mLastClientCompositionFence; bool mClearClientCompositionFenceOnLayerDisplayed = false; private: // Range of uids allocated for a user. // This value is taken from android.os.UserHandle#PER_USER_RANGE. static constexpr int32_t PER_USER_RANGE = 100000; friend class SlotGenerationTest; friend class TransactionFrameTracerTest; friend class TransactionSurfaceFrameTest; bool getAutoRefresh() const { return mDrawingState.autoRefresh; } bool getSidebandStreamChanged() const { return mSidebandStreamChanged; } std::atomic mSidebandStreamChanged{false}; // Returns true if the layer can draw shadows on its border. virtual bool canDrawShadows() const { return true; } aidl::android::hardware::graphics::composer3::Composition getCompositionType( const DisplayDevice&) const; aidl::android::hardware::graphics::composer3::Composition getCompositionType( const compositionengine::OutputLayer*) const; /** * Returns an unsorted vector of all layers that are part of this tree. * That includes the current layer and all its descendants. */ std::vector getLayersInTree(LayerVector::StateSet); /** * Traverses layers that are part of this tree in the correct z order. * layersInTree must be sorted before calling this method. */ void traverseChildrenInZOrderInner(const std::vector& layersInTree, LayerVector::StateSet, const LayerVector::Visitor&); LayerVector makeChildrenTraversalList(LayerVector::StateSet, const std::vector& layersInTree); void updateTreeHasFrameRateVote(); bool propagateFrameRateForLayerTree(FrameRate parentFrameRate, bool overrideChildren, bool* transactionNeeded); void setZOrderRelativeOf(const wp& relativeOf); bool isTrustedOverlay() const; gui::DropInputMode getDropInputMode() const; void handleDropInputMode(gui::WindowInfo& info) const; // Find the root of the cloned hierarchy, this means the first non cloned parent. // This will return null if first non cloned parent is not found. sp getClonedRoot(); // Finds the top most layer in the hierarchy. This will find the root Layer where the parent is // null. sp getRootLayer(); // Fills in the touch occlusion mode of the first parent (including this layer) that // hasInputInfo() or no-op if no such parent is found. void fillTouchOcclusionMode(gui::WindowInfo& info); // Fills in the frame and transform info for the gui::WindowInfo. void fillInputFrameInfo(gui::WindowInfo&, const ui::Transform& screenToDisplay); inline void tracePendingBufferCount(int32_t pendingBuffers); // Latch sideband stream and returns true if the dirty region should be updated. bool latchSidebandStream(bool& recomputeVisibleRegions); bool hasFrameUpdate() const; void updateTexImage(nsecs_t latchTime, bool bgColorOnly = false); // Crop that applies to the buffer Rect computeBufferCrop(const State& s); void callReleaseBufferCallback(const sp& listener, const sp& buffer, uint64_t framenumber, const sp& releaseFence, uint32_t currentMaxAcquiredBufferCount); // Returns true if the transformed buffer size does not match the layer size and we need // to apply filtering. bool bufferNeedsFiltering() const; // Returns true if there is a valid color to fill. bool fillsColor() const; // Returns true if this layer has a blur value. bool hasBlur() const; bool hasEffect() const { return fillsColor() || drawShadows() || hasBlur(); } bool hasBufferOrSidebandStream() const { return ((mSidebandStream != nullptr) || (mBufferInfo.mBuffer != nullptr)); } bool hasBufferOrSidebandStreamInDrawing() const { return ((mDrawingState.sidebandStream != nullptr) || (mDrawingState.buffer != nullptr)); } bool hasSomethingToDraw() const { return hasEffect() || hasBufferOrSidebandStream(); } // Fills the provided vector with the currently available JankData and removes the processed // JankData from the pending list. void transferAvailableJankData(const std::deque>& handles, std::vector& jankData); bool shouldOverrideChildrenFrameRate() const { return getDrawingState().frameRateSelectionStrategy == FrameRateSelectionStrategy::OverrideChildren; } bool shouldPropagateFrameRate() const { return getDrawingState().frameRateSelectionStrategy != FrameRateSelectionStrategy::Self; } // Cached properties computed from drawing state // Effective transform taking into account parent transforms and any parent scaling, which is // a transform from the current layer coordinate space to display(screen) coordinate space. ui::Transform mEffectiveTransform; // Bounds of the layer before any transformation is applied and before it has been cropped // by its parents. FloatRect mSourceBounds; // Bounds of the layer in layer space. This is the mSourceBounds cropped by its layer crop and // its parent bounds. FloatRect mBounds; // Layer bounds in screen space. FloatRect mScreenBounds; bool mGetHandleCalled = false; // The current layer is a clone of mClonedFrom. This means that this layer will update it's // properties based on mClonedFrom. When mClonedFrom latches a new buffer for BufferLayers, // this layer will update it's buffer. When mClonedFrom updates it's drawing state, children, // and relatives, this layer will update as well. wp mClonedFrom; // The inherited shadow radius after taking into account the layer hierarchy. This is the // final shadow radius for this layer. If a shadow is specified for a layer, then effective // shadow radius is the set shadow radius, otherwise its the parent's shadow radius. float mEffectiveShadowRadius = 0.f; // Game mode for the layer. Set by WindowManagerShell and recorded by SurfaceFlingerStats. gui::GameMode mGameMode = gui::GameMode::Unsupported; // A list of regions on this layer that should have blurs. const std::vector getBlurRegions() const; bool mIsAtRoot = false; uint32_t mLayerCreationFlags; bool findInHierarchy(const sp&); void setTransformHintLegacy(ui::Transform::RotationFlags); void releasePreviousBuffer(); void resetDrawingStateBufferInfo(); // Transform hint provided to the producer. This must be accessed holding // the mStateLock. ui::Transform::RotationFlags mTransformHintLegacy = ui::Transform::ROT_0; std::optional mTransformHint = std::nullopt; ReleaseCallbackId mPreviousReleaseCallbackId = ReleaseCallbackId::INVALID_ID; sp mPreviousReleaseBufferEndpoint; bool mReleasePreviousBuffer = false; // Stores the last set acquire fence signal time used to populate the callback handle's acquire // time. std::variant> mCallbackHandleAcquireTimeOrFence = -1; std::deque> mPendingJankClassifications; // An upper bound on the number of SurfaceFrames in the pending classifications deque. static constexpr int kPendingClassificationMaxSurfaceFrames = 50; const std::string mBlastTransactionName{"BufferTX - " + mName}; // This integer is incremented everytime a buffer arrives at the server for this layer, // and decremented when a buffer is dropped or latched. When changed the integer is exported // to systrace with ATRACE_INT and mBlastTransactionName. This way when debugging perf it is // possible to see when a buffer arrived at the server, and in which frame it latched. // // You can understand the trace this way: // - If the integer increases, a buffer arrived at the server. // - If the integer decreases in latchBuffer, that buffer was latched // - If the integer decreases in setBuffer or doTransaction, a buffer was dropped std::atomic mPendingBufferTransactions{0}; // Contains requested position and matrix updates. This will be applied if the client does // not specify a destination frame. ui::Transform mRequestedTransform; sp mLegacyLayerFE; std::vector>> mLayerFEs; std::unique_ptr mSnapshot = std::make_unique(); bool mHandleAlive = false; }; std::ostream& operator<<(std::ostream& stream, const Layer::FrameRate& rate); } // namespace android