/* * Copyright 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wextra" #undef LOG_TAG #define LOG_TAG "VSyncPredictor" #define ATRACE_TAG ATRACE_TAG_GRAPHICS #include #include #include #include #include #include #include #include #include #include #include #include "RefreshRateSelector.h" #include "VSyncPredictor.h" namespace android::scheduler { using base::StringAppendF; static auto constexpr kMaxPercent = 100u; namespace { int numVsyncsPerFrame(const ftl::NonNull& displayModePtr) { const auto idealPeakRefreshPeriod = displayModePtr->getPeakFps().getPeriodNsecs(); const auto idealRefreshPeriod = displayModePtr->getVsyncRate().getPeriodNsecs(); return static_cast(std::round(static_cast(idealPeakRefreshPeriod) / static_cast(idealRefreshPeriod))); } } // namespace VSyncPredictor::~VSyncPredictor() = default; VSyncPredictor::VSyncPredictor(std::unique_ptr clock, ftl::NonNull modePtr, size_t historySize, size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent) : mClock(std::move(clock)), mId(modePtr->getPhysicalDisplayId()), mTraceOn(property_get_bool("debug.sf.vsp_trace", false)), kHistorySize(historySize), kMinimumSamplesForPrediction(minimumSamplesForPrediction), kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)), mDisplayModePtr(modePtr), mNumVsyncsForFrame(numVsyncsPerFrame(mDisplayModePtr)) { resetModel(); } inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const { if (CC_UNLIKELY(mTraceOn)) { traceInt64(name, value); } } inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const { ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value); } inline size_t VSyncPredictor::next(size_t i) const { return (i + 1) % mTimestamps.size(); } nsecs_t VSyncPredictor::idealPeriod() const { return mDisplayModePtr->getVsyncRate().getPeriodNsecs(); } bool VSyncPredictor::validate(nsecs_t timestamp) const { if (mLastTimestampIndex < 0 || mTimestamps.empty()) { return true; } const auto aValidTimestamp = mTimestamps[mLastTimestampIndex]; const auto percent = (timestamp - aValidTimestamp) % idealPeriod() * kMaxPercent / idealPeriod(); if (percent >= kOutlierTolerancePercent && percent <= (kMaxPercent - kOutlierTolerancePercent)) { ATRACE_FORMAT_INSTANT("timestamp is not aligned with model"); return false; } const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(), [timestamp](nsecs_t a, nsecs_t b) { return std::abs(timestamp - a) < std::abs(timestamp - b); }); const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / idealPeriod(); if (distancePercent < kOutlierTolerancePercent) { // duplicate timestamp ATRACE_FORMAT_INSTANT("duplicate timestamp"); return false; } return true; } nsecs_t VSyncPredictor::currentPeriod() const { std::lock_guard lock(mMutex); return mRateMap.find(idealPeriod())->second.slope; } Period VSyncPredictor::minFramePeriod() const { if (!FlagManager::getInstance().vrr_config()) { return Period::fromNs(currentPeriod()); } std::lock_guard lock(mMutex); return minFramePeriodLocked(); } Period VSyncPredictor::minFramePeriodLocked() const { const auto slope = mRateMap.find(idealPeriod())->second.slope; return Period::fromNs(slope * mNumVsyncsForFrame); } bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) { ATRACE_CALL(); std::lock_guard lock(mMutex); if (!validate(timestamp)) { // VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored, // don't insert this ts into mTimestamps ringbuffer. If we are still // in the learning phase we should just clear all timestamps and start // over. if (mTimestamps.size() < kMinimumSamplesForPrediction) { // Add the timestamp to mTimestamps before clearing it so we could // update mKnownTimestamp based on the new timestamp. mTimestamps.push_back(timestamp); clearTimestamps(); } else if (!mTimestamps.empty()) { mKnownTimestamp = std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end())); } else { mKnownTimestamp = timestamp; } ATRACE_FORMAT_INSTANT("timestamp rejected. mKnownTimestamp was %.2fms ago", (mClock->now() - *mKnownTimestamp) / 1e6f); return false; } if (mTimestamps.size() != kHistorySize) { mTimestamps.push_back(timestamp); mLastTimestampIndex = next(mLastTimestampIndex); } else { mLastTimestampIndex = next(mLastTimestampIndex); mTimestamps[mLastTimestampIndex] = timestamp; } traceInt64If("VSP-ts", timestamp); const size_t numSamples = mTimestamps.size(); if (numSamples < kMinimumSamplesForPrediction) { mRateMap[idealPeriod()] = {idealPeriod(), 0}; return true; } // This is a 'simple linear regression' calculation of Y over X, with Y being the // vsync timestamps, and X being the ordinal of vsync count. // The calculated slope is the vsync period. // Formula for reference: // Sigma_i: means sum over all timestamps. // mean(variable): statistical mean of variable. // X: snapped ordinal of the timestamp // Y: vsync timestamp // // Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) ) // slope = ------------------------------------------- // Sigma_i ( X_i - mean(X) ) ^ 2 // // intercept = mean(Y) - slope * mean(X) // std::vector vsyncTS(numSamples); std::vector ordinals(numSamples); // Normalizing to the oldest timestamp cuts down on error in calculating the intercept. const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end()); auto it = mRateMap.find(idealPeriod()); auto const currentPeriod = it->second.slope; // The mean of the ordinals must be precise for the intercept calculation, so scale them up for // fixed-point arithmetic. constexpr int64_t kScalingFactor = 1000; nsecs_t meanTS = 0; nsecs_t meanOrdinal = 0; for (size_t i = 0; i < numSamples; i++) { const auto timestamp = mTimestamps[i] - oldestTS; vsyncTS[i] = timestamp; meanTS += timestamp; const auto ordinal = currentPeriod == 0 ? 0 : (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor; ordinals[i] = ordinal; meanOrdinal += ordinal; } meanTS /= numSamples; meanOrdinal /= numSamples; for (size_t i = 0; i < numSamples; i++) { vsyncTS[i] -= meanTS; ordinals[i] -= meanOrdinal; } nsecs_t top = 0; nsecs_t bottom = 0; for (size_t i = 0; i < numSamples; i++) { top += vsyncTS[i] * ordinals[i]; bottom += ordinals[i] * ordinals[i]; } if (CC_UNLIKELY(bottom == 0)) { it->second = {idealPeriod(), 0}; clearTimestamps(); return false; } nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom; nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor); auto const percent = std::abs(anticipatedPeriod - idealPeriod()) * kMaxPercent / idealPeriod(); if (percent >= kOutlierTolerancePercent) { it->second = {idealPeriod(), 0}; clearTimestamps(); return false; } traceInt64If("VSP-period", anticipatedPeriod); traceInt64If("VSP-intercept", intercept); it->second = {anticipatedPeriod, intercept}; ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64, mId.value, timestamp, anticipatedPeriod, intercept); return true; } nsecs_t VSyncPredictor::snapToVsync(nsecs_t timePoint) const { auto const [slope, intercept] = getVSyncPredictionModelLocked(); if (mTimestamps.empty()) { traceInt64("VSP-mode", 1); auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint; auto const numPeriodsOut = ((timePoint - knownTimestamp) / idealPeriod()) + 1; return knownTimestamp + numPeriodsOut * idealPeriod(); } auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end()); // See b/145667109, the ordinal calculation must take into account the intercept. auto const zeroPoint = oldest + intercept; auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope; auto const prediction = (ordinalRequest * slope) + intercept + oldest; traceInt64("VSP-mode", 0); traceInt64If("VSP-timePoint", timePoint); traceInt64If("VSP-prediction", prediction); auto const printer = [&, slope = slope, intercept = intercept] { std::stringstream str; str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+" << prediction - timePoint << ") slope: " << slope << " intercept: " << intercept << "oldestTS: " << oldest << " ordinal: " << ordinalRequest; return str.str(); }; ALOGV("%s", printer().c_str()); LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s", printer().c_str()); return prediction; } nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint, std::optional lastVsyncOpt) { ATRACE_CALL(); std::lock_guard lock(mMutex); const auto now = TimePoint::fromNs(mClock->now()); purgeTimelines(now); if (lastVsyncOpt && *lastVsyncOpt > timePoint) { timePoint = *lastVsyncOpt; } const auto model = getVSyncPredictionModelLocked(); const auto threshold = model.slope / 2; std::optional minFramePeriodOpt; if (mNumVsyncsForFrame > 1) { minFramePeriodOpt = minFramePeriodLocked(); } std::optional vsyncOpt; for (auto& timeline : mTimelines) { vsyncOpt = timeline.nextAnticipatedVSyncTimeFrom(model, minFramePeriodOpt, snapToVsync(timePoint), mMissedVsync, lastVsyncOpt ? snapToVsync(*lastVsyncOpt - threshold) : lastVsyncOpt); if (vsyncOpt) { break; } } LOG_ALWAYS_FATAL_IF(!vsyncOpt); if (*vsyncOpt > mLastCommittedVsync) { mLastCommittedVsync = *vsyncOpt; ATRACE_FORMAT_INSTANT("mLastCommittedVsync in %.2fms", float(mLastCommittedVsync.ns() - mClock->now()) / 1e6f); } return vsyncOpt->ns(); } /* * Returns whether a given vsync timestamp is in phase with a frame rate. * If the frame rate is not a divisor of the refresh rate, it is always considered in phase. * For example, if the vsync timestamps are (16.6,33.3,50.0,66.6): * isVSyncInPhase(16.6, 30) = true * isVSyncInPhase(33.3, 30) = false * isVSyncInPhase(50.0, 30) = true */ bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) { if (timePoint == 0) { return true; } std::lock_guard lock(mMutex); const auto model = getVSyncPredictionModelLocked(); const nsecs_t period = model.slope; const nsecs_t justBeforeTimePoint = timePoint - period / 2; const auto now = TimePoint::fromNs(mClock->now()); const auto vsync = snapToVsync(justBeforeTimePoint); purgeTimelines(now); for (auto& timeline : mTimelines) { if (timeline.validUntil() && timeline.validUntil()->ns() > vsync) { return timeline.isVSyncInPhase(model, vsync, frameRate); } } // The last timeline should always be valid return mTimelines.back().isVSyncInPhase(model, vsync, frameRate); } void VSyncPredictor::setRenderRate(Fps renderRate, bool applyImmediately) { ATRACE_FORMAT("%s %s", __func__, to_string(renderRate).c_str()); ALOGV("%s %s: RenderRate %s ", __func__, to_string(mId).c_str(), to_string(renderRate).c_str()); std::lock_guard lock(mMutex); const auto prevRenderRate = mRenderRateOpt; mRenderRateOpt = renderRate; const auto renderPeriodDelta = prevRenderRate ? prevRenderRate->getPeriodNsecs() - renderRate.getPeriodNsecs() : 0; if (applyImmediately) { ATRACE_FORMAT_INSTANT("applyImmediately"); while (mTimelines.size() > 1) { mTimelines.pop_front(); } mTimelines.front().setRenderRate(renderRate); return; } const bool newRenderRateIsHigher = renderPeriodDelta > renderRate.getPeriodNsecs() && mLastCommittedVsync.ns() - mClock->now() > 2 * renderRate.getPeriodNsecs(); if (newRenderRateIsHigher) { ATRACE_FORMAT_INSTANT("newRenderRateIsHigher"); mTimelines.clear(); mLastCommittedVsync = TimePoint::fromNs(0); } else { mTimelines.back().freeze( TimePoint::fromNs(mLastCommittedVsync.ns() + mIdealPeriod.ns() / 2)); } mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, renderRate); purgeTimelines(TimePoint::fromNs(mClock->now())); } void VSyncPredictor::setDisplayModePtr(ftl::NonNull modePtr) { LOG_ALWAYS_FATAL_IF(mId != modePtr->getPhysicalDisplayId(), "mode does not belong to the display"); ATRACE_FORMAT("%s %s", __func__, to_string(*modePtr).c_str()); const auto timeout = modePtr->getVrrConfig() ? modePtr->getVrrConfig()->notifyExpectedPresentConfig : std::nullopt; ALOGV("%s %s: DisplayMode %s notifyExpectedPresentTimeout %s", __func__, to_string(mId).c_str(), to_string(*modePtr).c_str(), timeout ? std::to_string(timeout->timeoutNs).c_str() : "N/A"); std::lock_guard lock(mMutex); mDisplayModePtr = modePtr; mNumVsyncsForFrame = numVsyncsPerFrame(mDisplayModePtr); traceInt64("VSP-setPeriod", modePtr->getVsyncRate().getPeriodNsecs()); static constexpr size_t kSizeLimit = 30; if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) { mRateMap.erase(mRateMap.begin()); } if (mRateMap.find(idealPeriod()) == mRateMap.end()) { mRateMap[idealPeriod()] = {idealPeriod(), 0}; } mTimelines.clear(); clearTimestamps(); } Duration VSyncPredictor::ensureMinFrameDurationIsKept(TimePoint expectedPresentTime, TimePoint lastConfirmedPresentTime) { ATRACE_CALL(); if (mNumVsyncsForFrame <= 1) { return 0ns; } const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; const auto threshold = currentPeriod / 2; const auto minFramePeriod = minFramePeriodLocked().ns(); auto prev = lastConfirmedPresentTime.ns(); for (auto& current : mPastExpectedPresentTimes) { if (CC_UNLIKELY(mTraceOn)) { ATRACE_FORMAT_INSTANT("current %.2f past last signaled fence", static_cast(current.ns() - lastConfirmedPresentTime.ns()) / 1e6f); } const auto minPeriodViolation = current.ns() - prev + threshold < minFramePeriod; if (minPeriodViolation) { ATRACE_NAME("minPeriodViolation"); current = TimePoint::fromNs(prev + minFramePeriod); prev = current.ns(); } else { break; } } if (!mPastExpectedPresentTimes.empty()) { const auto phase = Duration(mPastExpectedPresentTimes.back() - expectedPresentTime); if (phase > 0ns) { for (auto& timeline : mTimelines) { timeline.shiftVsyncSequence(phase); } mPastExpectedPresentTimes.clear(); return phase; } } return 0ns; } void VSyncPredictor::onFrameBegin(TimePoint expectedPresentTime, TimePoint lastConfirmedPresentTime) { ATRACE_NAME("VSyncPredictor::onFrameBegin"); std::lock_guard lock(mMutex); if (!mDisplayModePtr->getVrrConfig()) return; if (CC_UNLIKELY(mTraceOn)) { ATRACE_FORMAT_INSTANT("vsync is %.2f past last signaled fence", static_cast(expectedPresentTime.ns() - lastConfirmedPresentTime.ns()) / 1e6f); } const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; const auto threshold = currentPeriod / 2; mPastExpectedPresentTimes.push_back(expectedPresentTime); while (!mPastExpectedPresentTimes.empty()) { const auto front = mPastExpectedPresentTimes.front().ns(); const bool frontIsBeforeConfirmed = front < lastConfirmedPresentTime.ns() + threshold; if (frontIsBeforeConfirmed) { if (CC_UNLIKELY(mTraceOn)) { ATRACE_FORMAT_INSTANT("Discarding old vsync - %.2f before last signaled fence", static_cast(lastConfirmedPresentTime.ns() - front) / 1e6f); } mPastExpectedPresentTimes.pop_front(); } else { break; } } const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime); if (phase > 0ns) { mMissedVsync = {expectedPresentTime, minFramePeriodLocked()}; } } void VSyncPredictor::onFrameMissed(TimePoint expectedPresentTime) { ATRACE_NAME("VSyncPredictor::onFrameMissed"); std::lock_guard lock(mMutex); if (!mDisplayModePtr->getVrrConfig()) return; // We don't know when the frame is going to be presented, so we assume it missed one vsync const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope; const auto lastConfirmedPresentTime = TimePoint::fromNs(expectedPresentTime.ns() + currentPeriod); const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime); if (phase > 0ns) { mMissedVsync = {expectedPresentTime, Duration::fromNs(0)}; } } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const { std::lock_guard lock(mMutex); return VSyncPredictor::getVSyncPredictionModelLocked(); } VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const { return mRateMap.find(idealPeriod())->second; } void VSyncPredictor::clearTimestamps() { ATRACE_CALL(); if (!mTimestamps.empty()) { auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end()); if (mKnownTimestamp) { mKnownTimestamp = std::max(*mKnownTimestamp, maxRb); } else { mKnownTimestamp = maxRb; } mTimestamps.clear(); mLastTimestampIndex = 0; } mIdealPeriod = Period::fromNs(idealPeriod()); if (mTimelines.empty()) { mLastCommittedVsync = TimePoint::fromNs(0); mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, mRenderRateOpt); } else { while (mTimelines.size() > 1) { mTimelines.pop_front(); } mTimelines.front().setRenderRate(mRenderRateOpt); // set mLastCommittedVsync to a valid vsync but don't commit too much in the future const auto vsyncOpt = mTimelines.front().nextAnticipatedVSyncTimeFrom( getVSyncPredictionModelLocked(), /* minFramePeriodOpt */ std::nullopt, snapToVsync(mClock->now()), MissedVsync{}, /* lastVsyncOpt */ std::nullopt); mLastCommittedVsync = *vsyncOpt; } } bool VSyncPredictor::needsMoreSamples() const { std::lock_guard lock(mMutex); return mTimestamps.size() < kMinimumSamplesForPrediction; } void VSyncPredictor::resetModel() { std::lock_guard lock(mMutex); mRateMap[idealPeriod()] = {idealPeriod(), 0}; clearTimestamps(); } void VSyncPredictor::dump(std::string& result) const { std::lock_guard lock(mMutex); StringAppendF(&result, "\tmDisplayModePtr=%s\n", to_string(*mDisplayModePtr).c_str()); StringAppendF(&result, "\tRefresh Rate Map:\n"); for (const auto& [period, periodInterceptTuple] : mRateMap) { StringAppendF(&result, "\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n", period / 1e6f, periodInterceptTuple.slope / 1e6f, periodInterceptTuple.intercept); } StringAppendF(&result, "\tmTimelines.size()=%zu\n", mTimelines.size()); } void VSyncPredictor::purgeTimelines(android::TimePoint now) { const auto kEnoughFramesToBreakPhase = 5; if (mRenderRateOpt && mLastCommittedVsync.ns() + mRenderRateOpt->getPeriodNsecs() * kEnoughFramesToBreakPhase < mClock->now()) { ATRACE_FORMAT_INSTANT("kEnoughFramesToBreakPhase"); mTimelines.clear(); mLastCommittedVsync = TimePoint::fromNs(0); mTimelines.emplace_back(mLastCommittedVsync, mIdealPeriod, mRenderRateOpt); return; } while (mTimelines.size() > 1) { const auto validUntilOpt = mTimelines.front().validUntil(); if (validUntilOpt && *validUntilOpt < now) { mTimelines.pop_front(); } else { break; } } LOG_ALWAYS_FATAL_IF(mTimelines.empty()); LOG_ALWAYS_FATAL_IF(mTimelines.back().validUntil().has_value()); } auto VSyncPredictor::VsyncTimeline::makeVsyncSequence(TimePoint knownVsync) -> std::optional { if (knownVsync.ns() == 0) return std::nullopt; return std::make_optional({knownVsync.ns(), 0}); } VSyncPredictor::VsyncTimeline::VsyncTimeline(TimePoint knownVsync, Period idealPeriod, std::optional renderRateOpt) : mIdealPeriod(idealPeriod), mRenderRateOpt(renderRateOpt), mLastVsyncSequence(makeVsyncSequence(knownVsync)) {} void VSyncPredictor::VsyncTimeline::freeze(TimePoint lastVsync) { LOG_ALWAYS_FATAL_IF(mValidUntil.has_value()); ATRACE_FORMAT_INSTANT("renderRate %s valid for %.2f", mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA", float(lastVsync.ns() - TimePoint::now().ns()) / 1e6f); mValidUntil = lastVsync; } std::optional VSyncPredictor::VsyncTimeline::nextAnticipatedVSyncTimeFrom( Model model, std::optional minFramePeriodOpt, nsecs_t vsync, MissedVsync missedVsync, std::optional lastVsyncOpt) { ATRACE_FORMAT("renderRate %s", mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA"); nsecs_t vsyncTime = snapToVsyncAlignedWithRenderRate(model, vsync); const auto threshold = model.slope / 2; const auto lastFrameMissed = lastVsyncOpt && std::abs(*lastVsyncOpt - missedVsync.vsync.ns()) < threshold; const auto mightBackpressure = minFramePeriodOpt && mRenderRateOpt && mRenderRateOpt->getPeriod() < 2 * (*minFramePeriodOpt); if (FlagManager::getInstance().vrr_config()) { if (lastFrameMissed) { // If the last frame missed is the last vsync, we already shifted the timeline. Depends // on whether we skipped the frame (onFrameMissed) or not (onFrameBegin) we apply a // different fixup. There is no need to to shift the vsync timeline again. vsyncTime += missedVsync.fixup.ns(); ATRACE_FORMAT_INSTANT("lastFrameMissed"); } else if (mightBackpressure && lastVsyncOpt) { // lastVsyncOpt is based on the old timeline before we shifted it. we should correct it // first before trying to use it. lastVsyncOpt = snapToVsyncAlignedWithRenderRate(model, *lastVsyncOpt); const auto vsyncDiff = vsyncTime - *lastVsyncOpt; if (vsyncDiff <= minFramePeriodOpt->ns() - threshold) { // avoid a duplicate vsync ATRACE_FORMAT_INSTANT("skipping a vsync to avoid duplicate frame. next in %.2f " "which " "is %.2f " "from " "prev. " "adjust by %.2f", static_cast(vsyncTime - TimePoint::now().ns()) / 1e6f, static_cast(vsyncDiff) / 1e6f, static_cast(mRenderRateOpt->getPeriodNsecs()) / 1e6f); vsyncTime += mRenderRateOpt->getPeriodNsecs(); } } } ATRACE_FORMAT_INSTANT("vsync in %.2fms", float(vsyncTime - TimePoint::now().ns()) / 1e6f); if (mValidUntil && vsyncTime > mValidUntil->ns()) { ATRACE_FORMAT_INSTANT("no longer valid for vsync in %.2f", static_cast(vsyncTime - TimePoint::now().ns()) / 1e6f); return std::nullopt; } return TimePoint::fromNs(vsyncTime); } auto VSyncPredictor::VsyncTimeline::getVsyncSequenceLocked(Model model, nsecs_t vsync) -> VsyncSequence { if (!mLastVsyncSequence) return {vsync, 0}; const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence; const auto vsyncSequence = lastVsyncSequence + static_cast(std::round((vsync - lastVsyncTime) / static_cast(model.slope))); return {vsync, vsyncSequence}; } nsecs_t VSyncPredictor::VsyncTimeline::snapToVsyncAlignedWithRenderRate(Model model, nsecs_t vsync) { // update the mLastVsyncSequence for reference point mLastVsyncSequence = getVsyncSequenceLocked(model, vsync); const auto renderRatePhase = [&]() -> int { if (!mRenderRateOpt) return 0; const auto divisor = RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod.ns()), *mRenderRateOpt); if (divisor <= 1) return 0; int mod = mLastVsyncSequence->seq % divisor; if (mod == 0) return 0; // This is actually a bug fix, but guarded with vrr_config since we found it with this // config if (FlagManager::getInstance().vrr_config()) { if (mod < 0) mod += divisor; } return divisor - mod; }(); if (renderRatePhase == 0) { return mLastVsyncSequence->vsyncTime; } return mLastVsyncSequence->vsyncTime + model.slope * renderRatePhase; } bool VSyncPredictor::VsyncTimeline::isVSyncInPhase(Model model, nsecs_t vsync, Fps frameRate) { const auto getVsyncIn = [](TimePoint now, nsecs_t timePoint) -> float { return ticks(TimePoint::fromNs(timePoint) - now); }; Fps displayFps = Fps::fromPeriodNsecs(mIdealPeriod.ns()); const auto divisor = RefreshRateSelector::getFrameRateDivisor(displayFps, frameRate); const auto now = TimePoint::now(); if (divisor <= 1) { return true; } const auto vsyncSequence = getVsyncSequenceLocked(model, vsync); ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64 " divisor: %zu", getVsyncIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq, divisor); return vsyncSequence.seq % divisor == 0; } void VSyncPredictor::VsyncTimeline::shiftVsyncSequence(Duration phase) { if (mLastVsyncSequence) { ATRACE_FORMAT_INSTANT("adjusting vsync by %.2f", static_cast(phase.ns()) / 1e6f); mLastVsyncSequence->vsyncTime += phase.ns(); } } } // namespace android::scheduler // TODO(b/129481165): remove the #pragma below and fix conversion issues #pragma clang diagnostic pop // ignored "-Wextra"