// Copyright 2022 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "CompressedImageInfo.h" #include "aemu/base/ArraySize.h" #include "vulkan/VkFormatUtils.h" #include "vulkan/emulated_textures/shaders/DecompressionShaders.h" #include "vulkan/VkFormatUtils.h" #include "vulkan/vk_enum_string_helper.h" namespace gfxstream { namespace vk { namespace { using emugl::ABORT_REASON_OTHER; using emugl::FatalError; // Returns x / y, rounded up. E.g. ceil_div(7, 2) == 4 // Note the potential integer overflow for large numbers. inline constexpr uint32_t ceil_div(uint32_t x, uint32_t y) { return (x + y - 1) / y; } VkImageView createDefaultImageView(VulkanDispatch* vk, VkDevice device, VkImage image, VkFormat format, VkImageType imageType, uint32_t mipLevel, uint32_t layerCount) { VkImageViewCreateInfo imageViewInfo = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .image = image, .format = format, .components = {VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY}, .subresourceRange = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = mipLevel, .levelCount = 1, .baseArrayLayer = 0, .layerCount = layerCount, }, }; switch (imageType) { case VK_IMAGE_TYPE_1D: imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_1D_ARRAY; break; case VK_IMAGE_TYPE_2D: imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; break; case VK_IMAGE_TYPE_3D: imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_3D; break; default: imageViewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY; break; } VkImageView imageView; VkResult result = vk->vkCreateImageView(device, &imageViewInfo, nullptr, &imageView); if (result != VK_SUCCESS) { WARN("GPU decompression: createDefaultImageView failed: %d", result); return VK_NULL_HANDLE; } return imageView; } VkExtent2D getBlockSize(VkFormat format) { switch (format) { case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: case VK_FORMAT_EAC_R11_UNORM_BLOCK: case VK_FORMAT_EAC_R11_SNORM_BLOCK: case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: return {4, 4}; case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: return {4, 4}; case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: return {5, 4}; case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: return {5, 5}; case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: return {6, 5}; case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: return {6, 6}; case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: return {8, 5}; case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: return {8, 6}; case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: return {8, 8}; case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: return {10, 5}; case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: return {10, 6}; case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: return {10, 8}; case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: return {10, 10}; case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: return {12, 10}; case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: return {12, 12}; default: return {1, 1}; } } bool isReadableImageLayout(VkImageLayout layout) { switch (layout) { case VK_IMAGE_LAYOUT_GENERAL: case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL: case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL: case VK_IMAGE_LAYOUT_READ_ONLY_OPTIMAL_KHR: return true; default: return false; } } bool isWritableImageLayout(VkImageLayout layout) { switch (layout) { case VK_IMAGE_LAYOUT_GENERAL: case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL: return true; default: return false; } } // Returns whether a given memory barrier puts the image in a layout where it can be read from. bool imageWillBecomeReadable(const VkImageMemoryBarrier& barrier) { bool fromReadable = isReadableImageLayout(barrier.oldLayout); bool toReadable = isReadableImageLayout(barrier.newLayout); bool toWritable = isWritableImageLayout(barrier.newLayout); // TODO(gregschlom) This doesn't take into account that the GENERAL layout is both readable and // writable, so this warning could incorrectly trigger some times. if (fromReadable && toWritable) { WARN( "Compressed image is being transitioned from readable (%s) to writable (%s). This may " "lead to unexpected results.", string_VkImageLayout(barrier.oldLayout), string_VkImageLayout(barrier.newLayout)); } // If we're transitioning from UNDEFINED, the image content is undefined, so don't try to // decompress it. if (barrier.oldLayout == VK_IMAGE_LAYOUT_UNDEFINED) return false; // TODO(gregschlom): Address the corner case of GENERAL, which is both readable and writable. // For example, the image could be transitioned only once, from UNDEFINED to GENERAL. // Currently, there is no way to perform decompression in this case. return toReadable; } bool isCompressedFormat(VkFormat format) { return gfxstream::vk::isAstc(format) || gfxstream::vk::isEtc2(format) || gfxstream::vk::isBc(format); } // Returns the format that the shader uses to write the output image VkFormat getShaderFormat(VkFormat outputFormat) { switch (outputFormat) { case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_SNORM: return outputFormat; case VK_FORMAT_BC3_UNORM_BLOCK: case VK_FORMAT_BC3_SRGB_BLOCK: return VK_FORMAT_R32G32B32A32_UINT; default: return VK_FORMAT_R8G8B8A8_UINT; } } // Returns the next memory offset on a given alignment. // Will divide by zero if alignment is zero. VkDeviceSize nextAlignedOffset(VkDeviceSize offset, VkDeviceSize alignment) { return ceil_div(offset, alignment) * alignment; } // Check that the alignment is valid: // - sets the alignment to 1 if it's 0 // - aborts if it's not a power of 2 void checkValidAlignment(VkDeviceSize& n) { if (n == 0) { n = 1; return; } // Check that the alignment is a power of 2 // http://www.graphics.stanford.edu/~seander/bithacks.html#DetermineIfPowerOf2 if ((n & (n - 1))) { GFXSTREAM_ABORT(FatalError(ABORT_REASON_OTHER)) << "vkGetImageMemoryRequirements returned non-power-of-two alignment: " + std::to_string(n); } } } // namespace CompressedImageInfo::CompressedImageInfo(VkDevice device) : mDevice(device) {} CompressedImageInfo::CompressedImageInfo(VkDevice device, const VkImageCreateInfo& createInfo, GpuDecompressionPipelineManager* pipelineManager) : mCompressedFormat(createInfo.format), mOutputFormat(getOutputFormat(mCompressedFormat)), mCompressedMipmapsFormat(getCompressedMipmapsFormat(mCompressedFormat)), mImageType(createInfo.imageType), mMipLevels(createInfo.mipLevels), mExtent(createInfo.extent), mBlock(getBlockSize(mCompressedFormat)), mLayerCount(createInfo.arrayLayers), mDevice(device), mPipelineManager(pipelineManager) {} // static VkFormat CompressedImageInfo::getOutputFormat(VkFormat compFmt) { switch (compFmt) { case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: return VK_FORMAT_R8G8B8A8_UNORM; case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: return VK_FORMAT_R8G8B8A8_SRGB; case VK_FORMAT_EAC_R11_UNORM_BLOCK: return VK_FORMAT_R16_UNORM; case VK_FORMAT_EAC_R11_SNORM_BLOCK: return VK_FORMAT_R16_SNORM; case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: return VK_FORMAT_R16G16_UNORM; case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: return VK_FORMAT_R16G16_SNORM; case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: return GpuDecompressionPipelineManager::astcDecoder() == AstcDecoder::NewBc3 ? VK_FORMAT_BC3_UNORM_BLOCK : VK_FORMAT_R8G8B8A8_UNORM; case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: return GpuDecompressionPipelineManager::astcDecoder() == AstcDecoder::NewBc3 ? VK_FORMAT_BC3_SRGB_BLOCK : VK_FORMAT_R8G8B8A8_SRGB; default: return compFmt; } } // static VkFormat CompressedImageInfo::getCompressedMipmapsFormat(VkFormat compFmt) { switch (compFmt) { case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A1_SRGB_BLOCK: return VK_FORMAT_R16G16B16A16_UINT; case VK_FORMAT_EAC_R11_UNORM_BLOCK: case VK_FORMAT_EAC_R11_SNORM_BLOCK: return VK_FORMAT_R32G32_UINT; case VK_FORMAT_ETC2_R8G8B8A8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8A8_SRGB_BLOCK: case VK_FORMAT_EAC_R11G11_UNORM_BLOCK: case VK_FORMAT_EAC_R11G11_SNORM_BLOCK: case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x5_UNORM_BLOCK: case VK_FORMAT_ASTC_8x6_UNORM_BLOCK: case VK_FORMAT_ASTC_8x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x5_UNORM_BLOCK: case VK_FORMAT_ASTC_10x6_UNORM_BLOCK: case VK_FORMAT_ASTC_10x8_UNORM_BLOCK: case VK_FORMAT_ASTC_10x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x10_UNORM_BLOCK: case VK_FORMAT_ASTC_12x12_UNORM_BLOCK: case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x5_SRGB_BLOCK: case VK_FORMAT_ASTC_8x6_SRGB_BLOCK: case VK_FORMAT_ASTC_8x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x5_SRGB_BLOCK: case VK_FORMAT_ASTC_10x6_SRGB_BLOCK: case VK_FORMAT_ASTC_10x8_SRGB_BLOCK: case VK_FORMAT_ASTC_10x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x10_SRGB_BLOCK: case VK_FORMAT_ASTC_12x12_SRGB_BLOCK: return VK_FORMAT_R32G32B32A32_UINT; default: return compFmt; } } // static bool CompressedImageInfo::needEmulatedAlpha(VkFormat format) { switch (format) { case VK_FORMAT_ETC2_R8G8B8_UNORM_BLOCK: case VK_FORMAT_ETC2_R8G8B8_SRGB_BLOCK: return true; default: return false; } } bool CompressedImageInfo::isEtc2() const { return gfxstream::vk::isEtc2(mCompressedFormat); } bool CompressedImageInfo::isAstc() const { return gfxstream::vk::isAstc(mCompressedFormat); } VkImageCreateInfo CompressedImageInfo::getOutputCreateInfo( const VkImageCreateInfo& createInfo) const { VkImageCreateInfo result = createInfo; result.format = mOutputFormat; result.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT | // Needed for ASTC->BC3 transcoding so that we can create a BC3 image with // VK_IMAGE_USAGE_STORAGE_BIT VK_IMAGE_CREATE_EXTENDED_USAGE_BIT; if (!isCompressedFormat(mOutputFormat)) { // Need to clear this flag since the application might have specified it, but it's invalid // on non-compressed formats result.flags &= ~VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT; } else { // Need to set this flag so that we can cast the output image into a non-compressed format // so that the decompression shader can write to it. result.flags |= VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT; } result.usage |= VK_IMAGE_USAGE_STORAGE_BIT; return result; } void CompressedImageInfo::createCompressedMipmapImages(VulkanDispatch* vk, const VkImageCreateInfo& createInfo) { if (!mCompressedMipmaps.empty()) { return; } VkImageCreateInfo createInfoCopy = createInfo; createInfoCopy.format = mCompressedMipmapsFormat; // Note: if you change the flags here, you must also change both versions of // on_vkGetPhysicalDeviceImageFormatProperties in VkDecoderGlobalState // TODO(gregschlom): Remove duplicated logic. createInfoCopy.usage |= VK_IMAGE_USAGE_STORAGE_BIT; createInfoCopy.flags &= ~VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT; createInfoCopy.flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT; createInfoCopy.mipLevels = 1; mCompressedMipmaps.resize(mMipLevels); for (uint32_t i = 0; i < mMipLevels; ++i) { createInfoCopy.extent = compressedMipmapExtent(i); vk->vkCreateImage(mDevice, &createInfoCopy, nullptr, &mCompressedMipmaps[i]); } // Compute the memory requirements for all the images (output image + compressed mipmaps) vk->vkGetImageMemoryRequirements(mDevice, mOutputImage, &mMemoryRequirements); checkValidAlignment(mMemoryRequirements.alignment); std::vector mipmapsMemReqs(mMipLevels); for (size_t i = 0; i < mMipLevels; ++i) { vk->vkGetImageMemoryRequirements(mDevice, mCompressedMipmaps[i], &mipmapsMemReqs[i]); checkValidAlignment(mipmapsMemReqs[i].alignment); } for (const auto& r : mipmapsMemReqs) { // What we want here is the least common multiple of all the alignments. However, since // alignments are always powers of 2, the lcm is simply the largest value. if (r.alignment > mMemoryRequirements.alignment) { mMemoryRequirements.alignment = r.alignment; } mMemoryRequirements.memoryTypeBits &= r.memoryTypeBits; } // At this point, we have the following: // - mMemoryRequirements.size is the size of the output image // - mMemoryRequirements.alignment is the least common multiple of all alignments // - mMemoryRequirements.memoryTypeBits is the intersection of all the memoryTypeBits // Now, compute the offsets of each mipmap image as well as the total memory size we need. mMipmapOffsets.resize(mMipLevels); for (size_t i = 0; i < mMipLevels; ++i) { // This works because the alignment we request is the lcm of all alignments mMipmapOffsets[i] = nextAlignedOffset(mMemoryRequirements.size, mipmapsMemReqs[i].alignment); mMemoryRequirements.size = mMipmapOffsets[i] + mipmapsMemReqs[i].size; } } void CompressedImageInfo::initAstcCpuDecompression(VulkanDispatch* vk, VkPhysicalDevice physicalDevice) { mAstcTexture = std::make_unique(vk, mDevice, physicalDevice, mExtent, mBlock.width, mBlock.height, &AstcCpuDecompressor::get()); } bool CompressedImageInfo::decompressIfNeeded(VulkanDispatch* vk, VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask, const VkImageMemoryBarrier& targetBarrier, std::vector& outputBarriers) { std::vector imageBarriers = getImageBarriers(targetBarrier); if (!imageWillBecomeReadable(targetBarrier)) { // We're not going to read from the image, no need to decompress it. // Apply the target barrier to the compressed mipmaps and the decompressed image. outputBarriers.insert(outputBarriers.end(), imageBarriers.begin(), imageBarriers.end()); return false; } VkResult result = initializeDecompressionPipeline(vk, mDevice); if (result != VK_SUCCESS) { WARN("Failed to initialize pipeline for texture decompression"); return false; } // Transition the layout of all the compressed mipmaps so that the shader can read from them. for (auto& barrier : imageBarriers) { barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; barrier.newLayout = VK_IMAGE_LAYOUT_GENERAL; } // Transition the layout of the output image so that we can write to it. imageBarriers.back().srcAccessMask = 0; imageBarriers.back().oldLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageBarriers.back().dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT; imageBarriers.back().newLayout = VK_IMAGE_LAYOUT_GENERAL; // Do the layout transitions vk->vkCmdPipelineBarrier(commandBuffer, srcStageMask, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, nullptr, 0, nullptr, imageBarriers.size(), imageBarriers.data()); // Run the decompression shader decompress(vk, commandBuffer, getImageSubresourceRange(targetBarrier.subresourceRange)); // Finally, transition the layout of all images to match the target barrier. for (auto& barrier : imageBarriers) { barrier.srcAccessMask = VK_ACCESS_SHADER_READ_BIT; barrier.oldLayout = VK_IMAGE_LAYOUT_GENERAL; barrier.dstAccessMask = targetBarrier.dstAccessMask; barrier.newLayout = targetBarrier.newLayout; } // (adjust the last barrier since it's for the output image) imageBarriers.back().srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT; // Do the layout transitions vk->vkCmdPipelineBarrier(commandBuffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, dstStageMask, 0, 0, nullptr, 0, nullptr, imageBarriers.size(), imageBarriers.data()); return true; } void CompressedImageInfo::decompressOnCpu(VkCommandBuffer commandBuffer, uint8_t* srcAstcData, size_t astcDataSize, VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount, const VkBufferImageCopy* pRegions, const VkDecoderContext& context) { mAstcTexture->on_vkCmdCopyBufferToImage(commandBuffer, srcAstcData, astcDataSize, dstImage, dstImageLayout, regionCount, pRegions, context); } void CompressedImageInfo::decompressOnCpu(VkCommandBuffer commandBuffer, uint8_t* srcAstcData, size_t astcDataSize, const VkCopyBufferToImageInfo2* pCopyBufferToImageInfo, const VkDecoderContext& context) { mAstcTexture->on_vkCmdCopyBufferToImage2(commandBuffer, srcAstcData, astcDataSize, pCopyBufferToImageInfo, context); } VkMemoryRequirements CompressedImageInfo::getMemoryRequirements() const { return mMemoryRequirements; } VkResult CompressedImageInfo::bindCompressedMipmapsMemory(VulkanDispatch* vk, VkDeviceMemory memory, VkDeviceSize memoryOffset) { VkResult result = VK_SUCCESS; for (size_t i = 0; i < mCompressedMipmaps.size(); i++) { VkResult res = vk->vkBindImageMemory(mDevice, mCompressedMipmaps[i], memory, memoryOffset + mMipmapOffsets[i]); if (res != VK_SUCCESS) result = res; } return result; } VkBufferImageCopy CompressedImageInfo::getBufferImageCopy( const VkBufferImageCopy& origRegion) const { VkBufferImageCopy region = origRegion; uint32_t mipLevel = region.imageSubresource.mipLevel; region.imageSubresource.mipLevel = 0; region.bufferRowLength /= mBlock.width; region.bufferImageHeight /= mBlock.height; region.imageOffset.x /= mBlock.width; region.imageOffset.y /= mBlock.height; region.imageExtent = compressedMipmapPortion(region.imageExtent, mipLevel); return region; } VkBufferImageCopy2 CompressedImageInfo::getBufferImageCopy( const VkBufferImageCopy2& origRegion) const { VkBufferImageCopy2 region = origRegion; uint32_t mipLevel = region.imageSubresource.mipLevel; region.imageSubresource.mipLevel = 0; region.bufferRowLength /= mBlock.width; region.bufferImageHeight /= mBlock.height; region.imageOffset.x /= mBlock.width; region.imageOffset.y /= mBlock.height; region.imageExtent = compressedMipmapPortion(region.imageExtent, mipLevel); return region; } // static VkImageCopy CompressedImageInfo::getCompressedMipmapsImageCopy(const VkImageCopy& origRegion, const CompressedImageInfo& srcImg, const CompressedImageInfo& dstImg, bool needEmulatedSrc, bool needEmulatedDst) { VkImageCopy region = origRegion; if (needEmulatedSrc) { uint32_t mipLevel = region.srcSubresource.mipLevel; region.srcSubresource.mipLevel = 0; region.srcOffset.x /= srcImg.mBlock.width; region.srcOffset.y /= srcImg.mBlock.height; region.extent = srcImg.compressedMipmapPortion(region.extent, mipLevel); } if (needEmulatedDst) { region.dstSubresource.mipLevel = 0; region.dstOffset.x /= dstImg.mBlock.width; region.dstOffset.y /= dstImg.mBlock.height; } return region; } VkImageCopy2 CompressedImageInfo::getCompressedMipmapsImageCopy(const VkImageCopy2& origRegion, const CompressedImageInfo& srcImg, const CompressedImageInfo& dstImg, bool needEmulatedSrc, bool needEmulatedDst) { VkImageCopy2 region = origRegion; if (needEmulatedSrc) { uint32_t mipLevel = region.srcSubresource.mipLevel; region.srcSubresource.mipLevel = 0; region.srcOffset.x /= srcImg.mBlock.width; region.srcOffset.y /= srcImg.mBlock.height; region.extent = srcImg.compressedMipmapPortion(region.extent, mipLevel); } if (needEmulatedDst) { region.dstSubresource.mipLevel = 0; region.dstOffset.x /= dstImg.mBlock.width; region.dstOffset.y /= dstImg.mBlock.height; } return region; } void CompressedImageInfo::destroy(VulkanDispatch* vk) { for (const auto& image : mCompressedMipmaps) { vk->vkDestroyImage(mDevice, image, nullptr); } vk->vkDestroyDescriptorPool(mDevice, mDecompDescriptorPool, nullptr); for (const auto& imageView : mCompressedMipmapsImageViews) { vk->vkDestroyImageView(mDevice, imageView, nullptr); } for (const auto& imageView : mOutputImageViews) { vk->vkDestroyImageView(mDevice, imageView, nullptr); } vk->vkDestroyImage(mDevice, mOutputImage, nullptr); } std::vector CompressedImageInfo::getImageBarriers( const VkImageMemoryBarrier& srcBarrier) { const VkImageSubresourceRange range = getImageSubresourceRange(srcBarrier.subresourceRange); std::vector imageBarriers; imageBarriers.reserve(range.levelCount + 1); // Add the barriers for the compressed mipmaps VkImageMemoryBarrier mipmapBarrier = srcBarrier; mipmapBarrier.subresourceRange.baseMipLevel = 0; mipmapBarrier.subresourceRange.levelCount = 1; imageBarriers.insert(imageBarriers.begin(), range.levelCount, mipmapBarrier); for (uint32_t j = 0; j < range.levelCount; j++) { imageBarriers[j].image = mCompressedMipmaps[range.baseMipLevel + j]; } // Add a barrier for the output image imageBarriers.push_back(srcBarrier); imageBarriers.back().image = mOutputImage; return imageBarriers; } VkImageSubresourceRange CompressedImageInfo::getImageSubresourceRange( const VkImageSubresourceRange& range) const { VkImageSubresourceRange result = range; if (result.levelCount == VK_REMAINING_MIP_LEVELS) { result.levelCount = mMipLevels - range.baseMipLevel; } if (result.layerCount == VK_REMAINING_ARRAY_LAYERS) { result.layerCount = mLayerCount - range.baseArrayLayer; } return result; } VkResult CompressedImageInfo::initializeDecompressionPipeline(VulkanDispatch* vk, VkDevice device) { if (mDecompPipelineInitialized) { return VK_SUCCESS; } mDecompPipeline = mPipelineManager->get(mCompressedFormat, mImageType); if (mDecompPipeline == nullptr) { ERR("Failed to initialize GPU decompression pipeline"); return VK_ERROR_INITIALIZATION_FAILED; } VkDescriptorPoolSize poolSize = { .type = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 2 * mMipLevels, }; VkDescriptorPoolCreateInfo dsPoolInfo = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, .maxSets = mMipLevels, .poolSizeCount = 1, .pPoolSizes = &poolSize, }; VkResult result = vk->vkCreateDescriptorPool(device, &dsPoolInfo, nullptr, &mDecompDescriptorPool); if (result != VK_SUCCESS) { ERR("GPU decompression error. vkCreateDescriptorPool failed: %d", result); return result; } std::vector layouts(mMipLevels, mDecompPipeline->descriptorSetLayout()); VkDescriptorSetAllocateInfo dsInfo = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .descriptorPool = mDecompDescriptorPool, .descriptorSetCount = mMipLevels, .pSetLayouts = layouts.data(), }; mDecompDescriptorSets.resize(mMipLevels); result = vk->vkAllocateDescriptorSets(device, &dsInfo, mDecompDescriptorSets.data()); if (result != VK_SUCCESS) { ERR("GPU decompression error. vkAllocateDescriptorSets failed: %d", result); return result; } VkFormat shaderFormat = getShaderFormat(mOutputFormat); mCompressedMipmapsImageViews.resize(mMipLevels); mOutputImageViews.resize(mMipLevels); VkDescriptorImageInfo compressedMipmapsDescriptorImageInfo = {.imageLayout = VK_IMAGE_LAYOUT_GENERAL}; VkDescriptorImageInfo mDecompDescriptorImageInfo = {.imageLayout = VK_IMAGE_LAYOUT_GENERAL}; VkWriteDescriptorSet writeDescriptorSets[2] = { { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 0, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = &compressedMipmapsDescriptorImageInfo, }, { .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET, .dstBinding = 1, .descriptorCount = 1, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .pImageInfo = &mDecompDescriptorImageInfo, }}; for (uint32_t i = 0; i < mMipLevels; i++) { mCompressedMipmapsImageViews[i] = createDefaultImageView(vk, device, mCompressedMipmaps[i], mCompressedMipmapsFormat, mImageType, 0, mLayerCount); mOutputImageViews[i] = createDefaultImageView(vk, device, mOutputImage, shaderFormat, mImageType, i, mLayerCount); compressedMipmapsDescriptorImageInfo.imageView = mCompressedMipmapsImageViews[i]; mDecompDescriptorImageInfo.imageView = mOutputImageViews[i]; writeDescriptorSets[0].dstSet = mDecompDescriptorSets[i]; writeDescriptorSets[1].dstSet = mDecompDescriptorSets[i]; vk->vkUpdateDescriptorSets(device, 2, writeDescriptorSets, 0, nullptr); } mDecompPipelineInitialized = true; return VK_SUCCESS; } void CompressedImageInfo::decompress(VulkanDispatch* vk, VkCommandBuffer commandBuffer, const VkImageSubresourceRange& range) { vk->vkCmdBindPipeline(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, mDecompPipeline->pipeline()); uint32_t dispatchZ = mExtent.depth == 1 ? range.layerCount : mExtent.depth; bool perPixel = false; // Whether the shader operates per compressed block or per pixel if (isEtc2()) { const Etc2PushConstant pushConstant = { .compFormat = (uint32_t)mCompressedFormat, .baseLayer = mExtent.depth == 1 ? range.baseArrayLayer : 0}; vk->vkCmdPushConstants(commandBuffer, mDecompPipeline->pipelineLayout(), VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(pushConstant), &pushConstant); } else if (isAstc()) { uint32_t smallBlock = false; switch (mCompressedFormat) { case VK_FORMAT_ASTC_4x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x4_UNORM_BLOCK: case VK_FORMAT_ASTC_5x5_UNORM_BLOCK: case VK_FORMAT_ASTC_6x5_UNORM_BLOCK: case VK_FORMAT_ASTC_4x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x4_SRGB_BLOCK: case VK_FORMAT_ASTC_5x5_SRGB_BLOCK: case VK_FORMAT_ASTC_6x5_SRGB_BLOCK: smallBlock = true; break; default: break; } const AstcPushConstant pushConstant = { .blockSize = {mBlock.width, mBlock.height}, .baseLayer = mExtent.depth == 1 ? range.baseArrayLayer : 0, .smallBlock = smallBlock}; vk->vkCmdPushConstants(commandBuffer, mDecompPipeline->pipelineLayout(), VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(pushConstant), &pushConstant); // The old shader is per-block, the new shaders are per-pixel perPixel = GpuDecompressionPipelineManager::astcDecoder() != AstcDecoder::Old; } for (uint32_t i = range.baseMipLevel; i < range.baseMipLevel + range.levelCount; i++) { vk->vkCmdBindDescriptorSets(commandBuffer, VK_PIPELINE_BIND_POINT_COMPUTE, mDecompPipeline->pipelineLayout(), 0, 1, mDecompDescriptorSets.data() + i, 0, nullptr); VkExtent3D extent = perPixel ? mipmapExtent(i) : compressedMipmapExtent(i); vk->vkCmdDispatch(commandBuffer, ceil_div(extent.width, 8), ceil_div(extent.height, 8), dispatchZ); } } VkExtent3D CompressedImageInfo::mipmapExtent(uint32_t level) const { return { .width = std::max(mExtent.width >> level, 1), .height = std::max(mExtent.height >> level, 1), .depth = std::max(mExtent.depth >> level, 1), }; } VkExtent3D CompressedImageInfo::compressedMipmapExtent(uint32_t level) const { VkExtent3D result = mipmapExtent(level); result.width = ceil_div(result.width, mBlock.width); result.height = ceil_div(result.height, mBlock.height); return result; } VkExtent3D CompressedImageInfo::compressedMipmapPortion(const VkExtent3D& origExtent, uint32_t level) const { VkExtent3D maxExtent = compressedMipmapExtent(level); return { .width = std::min(ceil_div(origExtent.width, mBlock.width), maxExtent.width), .height = std::min(ceil_div(origExtent.height, mBlock.height), maxExtent.height), // TODO(gregschlom): this is correct for 2DArrays, but incorrect for 3D images. We should // take the image type into account to do the right thing here. See also // https://android-review.git.corp.google.com/c/device/generic/vulkan-cereal/+/2458549/comment/cfc7480f_912dd378/ .depth = origExtent.depth, }; } } // namespace vk } // namespace gfxstream