/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "ExtCamDevSsn" // #define LOG_NDEBUG 0 #include #include "ExternalCameraDeviceSession.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs #include #include namespace android { namespace hardware { namespace camera { namespace device { namespace implementation { namespace { // Size of request/result metadata fast message queue. Change to 0 to always use hwbinder buffer. static constexpr size_t kMetadataMsgQueueSize = 1 << 18 /* 256kB */; const int kBadFramesAfterStreamOn = 1; // drop x frames after streamOn to get rid of some initial // bad frames. TODO: develop a better bad frame detection // method constexpr int MAX_RETRY = 15; // Allow retry some ioctl failures a few times to account for some // webcam showing temporarily ioctl failures. constexpr int IOCTL_RETRY_SLEEP_US = 33000; // 33ms * MAX_RETRY = 0.5 seconds // Constants for tryLock during dumpstate static constexpr int kDumpLockRetries = 50; static constexpr int kDumpLockSleep = 60000; bool tryLock(Mutex& mutex) { bool locked = false; for (int i = 0; i < kDumpLockRetries; ++i) { if (mutex.tryLock() == NO_ERROR) { locked = true; break; } usleep(kDumpLockSleep); } return locked; } bool tryLock(std::mutex& mutex) { bool locked = false; for (int i = 0; i < kDumpLockRetries; ++i) { if (mutex.try_lock()) { locked = true; break; } usleep(kDumpLockSleep); } return locked; } } // anonymous namespace using ::aidl::android::hardware::camera::device::BufferRequestStatus; using ::aidl::android::hardware::camera::device::CameraBlob; using ::aidl::android::hardware::camera::device::CameraBlobId; using ::aidl::android::hardware::camera::device::ErrorMsg; using ::aidl::android::hardware::camera::device::ShutterMsg; using ::aidl::android::hardware::camera::device::StreamBuffer; using ::aidl::android::hardware::camera::device::StreamBufferRet; using ::aidl::android::hardware::camera::device::StreamBuffersVal; using ::aidl::android::hardware::camera::device::StreamConfigurationMode; using ::aidl::android::hardware::camera::device::StreamRotation; using ::aidl::android::hardware::camera::device::StreamType; using ::aidl::android::hardware::graphics::common::Dataspace; using ::android::hardware::camera::common::V1_0::helper::ExifUtils; // Static instances const int ExternalCameraDeviceSession::kMaxProcessedStream; const int ExternalCameraDeviceSession::kMaxStallStream; HandleImporter ExternalCameraDeviceSession::sHandleImporter; ExternalCameraDeviceSession::ExternalCameraDeviceSession( const std::shared_ptr& callback, const ExternalCameraConfig& cfg, const std::vector& sortedFormats, const CroppingType& croppingType, const common::V1_0::helper::CameraMetadata& chars, const std::string& cameraId, unique_fd v4l2Fd) : mCallback(callback), mCfg(cfg), mCameraCharacteristics(chars), mSupportedFormats(sortedFormats), mCroppingType(croppingType), mCameraId(cameraId), mV4l2Fd(std::move(v4l2Fd)), mMaxThumbResolution(getMaxThumbResolution()), mMaxJpegResolution(getMaxJpegResolution()) {} Size ExternalCameraDeviceSession::getMaxThumbResolution() const { return getMaxThumbnailResolution(mCameraCharacteristics); } Size ExternalCameraDeviceSession::getMaxJpegResolution() const { Size ret{0, 0}; for (auto& fmt : mSupportedFormats) { if (fmt.width * fmt.height > ret.width * ret.height) { ret = Size{fmt.width, fmt.height}; } } return ret; } bool ExternalCameraDeviceSession::initialize() { if (mV4l2Fd.get() < 0) { ALOGE("%s: invalid v4l2 device fd %d!", __FUNCTION__, mV4l2Fd.get()); return true; } struct v4l2_capability capability; int ret = ioctl(mV4l2Fd.get(), VIDIOC_QUERYCAP, &capability); std::string make, model; if (ret < 0) { ALOGW("%s v4l2 QUERYCAP failed", __FUNCTION__); mExifMake = "Generic UVC webcam"; mExifModel = "Generic UVC webcam"; } else { // capability.card is UTF-8 encoded char card[32]; int j = 0; for (int i = 0; i < 32; i++) { if (capability.card[i] < 128) { card[j++] = capability.card[i]; } if (capability.card[i] == '\0') { break; } } if (j == 0 || card[j - 1] != '\0') { mExifMake = "Generic UVC webcam"; mExifModel = "Generic UVC webcam"; } else { mExifMake = card; mExifModel = card; } } initOutputThread(); if (mOutputThread == nullptr) { ALOGE("%s: init OutputThread failed!", __FUNCTION__); return true; } mOutputThread->setExifMakeModel(mExifMake, mExifModel); status_t status = initDefaultRequests(); if (status != OK) { ALOGE("%s: init default requests failed!", __FUNCTION__); return true; } mRequestMetadataQueue = std::make_unique(kMetadataMsgQueueSize, false /* non blocking */); if (!mRequestMetadataQueue->isValid()) { ALOGE("%s: invalid request fmq", __FUNCTION__); return true; } mResultMetadataQueue = std::make_shared(kMetadataMsgQueueSize, false /* non blocking */); if (!mResultMetadataQueue->isValid()) { ALOGE("%s: invalid result fmq", __FUNCTION__); return true; } mOutputThread->run(); return false; } bool ExternalCameraDeviceSession::isInitFailed() { Mutex::Autolock _l(mLock); if (!mInitialized) { mInitFail = initialize(); mInitialized = true; } return mInitFail; } void ExternalCameraDeviceSession::initOutputThread() { // Grab a shared_ptr to 'this' from ndk::SharedRefBase::ref() std::shared_ptr thiz = ref(); mBufferRequestThread = std::make_shared(/*parent=*/thiz, mCallback); mBufferRequestThread->run(); mOutputThread = std::make_shared(/*parent=*/thiz, mCroppingType, mCameraCharacteristics, mBufferRequestThread); } void ExternalCameraDeviceSession::closeOutputThread() { if (mOutputThread != nullptr) { mOutputThread->flush(); mOutputThread->requestExitAndWait(); mOutputThread.reset(); } } void ExternalCameraDeviceSession::closeBufferRequestThread() { if (mBufferRequestThread != nullptr) { mBufferRequestThread->requestExitAndWait(); mBufferRequestThread.reset(); } } Status ExternalCameraDeviceSession::initStatus() const { Mutex::Autolock _l(mLock); Status status = Status::OK; if (mInitFail || mClosed) { ALOGI("%s: session initFailed %d closed %d", __FUNCTION__, mInitFail, mClosed); status = Status::INTERNAL_ERROR; } return status; } ExternalCameraDeviceSession::~ExternalCameraDeviceSession() { if (!isClosed()) { ALOGE("ExternalCameraDeviceSession deleted before close!"); closeImpl(); } } ScopedAStatus ExternalCameraDeviceSession::constructDefaultRequestSettings( RequestTemplate in_type, CameraMetadata* _aidl_return) { CameraMetadata emptyMetadata; Status status = initStatus(); if (status != Status::OK) { return fromStatus(status); } switch (in_type) { case RequestTemplate::PREVIEW: case RequestTemplate::STILL_CAPTURE: case RequestTemplate::VIDEO_RECORD: case RequestTemplate::VIDEO_SNAPSHOT: { *_aidl_return = mDefaultRequests[in_type]; break; } case RequestTemplate::MANUAL: case RequestTemplate::ZERO_SHUTTER_LAG: // Don't support MANUAL, ZSL templates status = Status::ILLEGAL_ARGUMENT; break; default: ALOGE("%s: unknown request template type %d", __FUNCTION__, static_cast(in_type)); status = Status::ILLEGAL_ARGUMENT; break; } return fromStatus(status); } ScopedAStatus ExternalCameraDeviceSession::configureStreams( const StreamConfiguration& in_requestedConfiguration, std::vector* _aidl_return) { uint32_t blobBufferSize = 0; _aidl_return->clear(); Mutex::Autolock _il(mInterfaceLock); Status status = isStreamCombinationSupported(in_requestedConfiguration, mSupportedFormats, mCfg); if (status != Status::OK) { return fromStatus(status); } status = initStatus(); if (status != Status::OK) { return fromStatus(status); } { std::lock_guard lk(mInflightFramesLock); if (!mInflightFrames.empty()) { ALOGE("%s: trying to configureStreams while there are still %zu inflight frames!", __FUNCTION__, mInflightFrames.size()); return fromStatus(Status::INTERNAL_ERROR); } } Mutex::Autolock _l(mLock); { Mutex::Autolock _cl(mCbsLock); // Add new streams for (const auto& stream : in_requestedConfiguration.streams) { if (mStreamMap.count(stream.id) == 0) { mStreamMap[stream.id] = stream; mCirculatingBuffers.emplace(stream.id, CirculatingBuffers{}); } } // Cleanup removed streams for (auto it = mStreamMap.begin(); it != mStreamMap.end();) { int id = it->first; bool found = false; for (const auto& stream : in_requestedConfiguration.streams) { if (id == stream.id) { found = true; break; } } if (!found) { // Unmap all buffers of deleted stream cleanupBuffersLocked(id); it = mStreamMap.erase(it); } else { ++it; } } } // Now select a V4L2 format to produce all output streams float desiredAr = (mCroppingType == VERTICAL) ? kMaxAspectRatio : kMinAspectRatio; uint32_t maxDim = 0; for (const auto& stream : in_requestedConfiguration.streams) { float aspectRatio = ASPECT_RATIO(stream); ALOGI("%s: request stream %dx%d", __FUNCTION__, stream.width, stream.height); if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) || (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) { desiredAr = aspectRatio; } // The dimension that's not cropped uint32_t dim = (mCroppingType == VERTICAL) ? stream.width : stream.height; if (dim > maxDim) { maxDim = dim; } } // Find the smallest format that matches the desired aspect ratio and is wide/high enough SupportedV4L2Format v4l2Fmt{.width = 0, .height = 0}; for (const auto& fmt : mSupportedFormats) { uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height; if (dim >= maxDim) { float aspectRatio = ASPECT_RATIO(fmt); if (isAspectRatioClose(aspectRatio, desiredAr)) { v4l2Fmt = fmt; // since mSupportedFormats is sorted by width then height, the first matching fmt // will be the smallest one with matching aspect ratio break; } } } if (v4l2Fmt.width == 0) { // Cannot find exact good aspect ratio candidate, try to find a close one for (const auto& fmt : mSupportedFormats) { uint32_t dim = (mCroppingType == VERTICAL) ? fmt.width : fmt.height; if (dim >= maxDim) { float aspectRatio = ASPECT_RATIO(fmt); if ((mCroppingType == VERTICAL && aspectRatio < desiredAr) || (mCroppingType == HORIZONTAL && aspectRatio > desiredAr)) { v4l2Fmt = fmt; break; } } } } if (v4l2Fmt.width == 0) { ALOGE("%s: unable to find a resolution matching (%s at least %d, aspect ratio %f)", __FUNCTION__, (mCroppingType == VERTICAL) ? "width" : "height", maxDim, desiredAr); return fromStatus(Status::ILLEGAL_ARGUMENT); } if (configureV4l2StreamLocked(v4l2Fmt) != 0) { ALOGE("V4L configuration failed!, format:%c%c%c%c, w %d, h %d", v4l2Fmt.fourcc & 0xFF, (v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF, (v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height); return fromStatus(Status::INTERNAL_ERROR); } Size v4lSize = {v4l2Fmt.width, v4l2Fmt.height}; Size thumbSize{0, 0}; camera_metadata_ro_entry entry = mCameraCharacteristics.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES); for (uint32_t i = 0; i < entry.count; i += 2) { Size sz{entry.data.i32[i], entry.data.i32[i + 1]}; if (sz.width * sz.height > thumbSize.width * thumbSize.height) { thumbSize = sz; } } if (thumbSize.width * thumbSize.height == 0) { ALOGE("%s: non-zero thumbnail size not available", __FUNCTION__); return fromStatus(Status::INTERNAL_ERROR); } mBlobBufferSize = blobBufferSize; status = mOutputThread->allocateIntermediateBuffers( v4lSize, mMaxThumbResolution, in_requestedConfiguration.streams, blobBufferSize); if (status != Status::OK) { ALOGE("%s: allocating intermediate buffers failed!", __FUNCTION__); return fromStatus(status); } std::vector& out = *_aidl_return; out.resize(in_requestedConfiguration.streams.size()); for (size_t i = 0; i < in_requestedConfiguration.streams.size(); i++) { out[i].overrideDataSpace = in_requestedConfiguration.streams[i].dataSpace; out[i].id = in_requestedConfiguration.streams[i].id; // TODO: double check should we add those CAMERA flags mStreamMap[in_requestedConfiguration.streams[i].id].usage = out[i].producerUsage = static_cast(((int64_t)in_requestedConfiguration.streams[i].usage) | ((int64_t)BufferUsage::CPU_WRITE_OFTEN) | ((int64_t)BufferUsage::CAMERA_OUTPUT)); out[i].consumerUsage = static_cast(0); out[i].maxBuffers = static_cast(mV4L2BufferCount); switch (in_requestedConfiguration.streams[i].format) { case PixelFormat::BLOB: case PixelFormat::YCBCR_420_888: case PixelFormat::YV12: // Used by SurfaceTexture case PixelFormat::Y16: // No override out[i].overrideFormat = in_requestedConfiguration.streams[i].format; break; case PixelFormat::IMPLEMENTATION_DEFINED: // Implementation Defined // This should look at the Stream's dataspace flag to determine the format or leave // it as is if the rest of the system knows how to handle a private format. To keep // this HAL generic, this is being overridden to YUV420 out[i].overrideFormat = PixelFormat::YCBCR_420_888; // Save overridden format in mStreamMap mStreamMap[in_requestedConfiguration.streams[i].id].format = out[i].overrideFormat; break; default: ALOGE("%s: unsupported format 0x%x", __FUNCTION__, in_requestedConfiguration.streams[i].format); return fromStatus(Status::ILLEGAL_ARGUMENT); } } mFirstRequest = true; mLastStreamConfigCounter = in_requestedConfiguration.streamConfigCounter; return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::flush() { ATRACE_CALL(); Mutex::Autolock _il(mInterfaceLock); Status status = initStatus(); if (status != Status::OK) { return fromStatus(status); } mOutputThread->flush(); return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::getCaptureRequestMetadataQueue( MQDescriptor* _aidl_return) { Mutex::Autolock _il(mInterfaceLock); *_aidl_return = mRequestMetadataQueue->dupeDesc(); return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::getCaptureResultMetadataQueue( MQDescriptor* _aidl_return) { Mutex::Autolock _il(mInterfaceLock); *_aidl_return = mResultMetadataQueue->dupeDesc(); return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::isReconfigurationRequired( const CameraMetadata& in_oldSessionParams, const CameraMetadata& in_newSessionParams, bool* _aidl_return) { // reconfiguration required if there is any change in the session params *_aidl_return = in_oldSessionParams != in_newSessionParams; return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::processCaptureRequest( const std::vector& in_requests, const std::vector& in_cachesToRemove, int32_t* _aidl_return) { Mutex::Autolock _il(mInterfaceLock); updateBufferCaches(in_cachesToRemove); int32_t& numRequestProcessed = *_aidl_return; numRequestProcessed = 0; Status s = Status::OK; for (size_t i = 0; i < in_requests.size(); i++, numRequestProcessed++) { s = processOneCaptureRequest(in_requests[i]); if (s != Status::OK) { break; } } return fromStatus(s); } Status ExternalCameraDeviceSession::processOneCaptureRequest(const CaptureRequest& request) { ATRACE_CALL(); Status status = initStatus(); if (status != Status::OK) { return status; } if (request.inputBuffer.streamId != -1) { ALOGE("%s: external camera does not support reprocessing!", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } Mutex::Autolock _l(mLock); if (!mV4l2Streaming) { ALOGE("%s: cannot process request in streamOff state!", __FUNCTION__); return Status::INTERNAL_ERROR; } if (request.outputBuffers.empty()) { ALOGE("%s: No output buffers provided.", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } for (auto& outputBuf : request.outputBuffers) { if (outputBuf.streamId == -1 || mStreamMap.find(outputBuf.streamId) == mStreamMap.end()) { ALOGE("%s: Invalid streamId in CaptureRequest.outputBuffers: %d", __FUNCTION__, outputBuf.streamId); return Status::ILLEGAL_ARGUMENT; } } const camera_metadata_t* rawSettings = nullptr; bool converted; CameraMetadata settingsFmq; // settings from FMQ if (request.fmqSettingsSize > 0) { // non-blocking read; client must write metadata before calling // processOneCaptureRequest settingsFmq.metadata.resize(request.fmqSettingsSize); bool read = mRequestMetadataQueue->read( reinterpret_cast(settingsFmq.metadata.data()), request.fmqSettingsSize); if (read) { converted = convertFromAidl(settingsFmq, &rawSettings); } else { ALOGE("%s: capture request settings metadata couldn't be read from fmq!", __FUNCTION__); converted = false; } } else { converted = convertFromAidl(request.settings, &rawSettings); } if (converted && rawSettings != nullptr) { mLatestReqSetting = rawSettings; } if (!converted) { ALOGE("%s: capture request settings metadata is corrupt!", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } if (mFirstRequest && rawSettings == nullptr) { ALOGE("%s: capture request settings must not be null for first request!", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } size_t numOutputBufs = request.outputBuffers.size(); if (numOutputBufs == 0) { ALOGE("%s: capture request must have at least one output buffer!", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } camera_metadata_entry fpsRange = mLatestReqSetting.find(ANDROID_CONTROL_AE_TARGET_FPS_RANGE); if (fpsRange.count == 2) { double requestFpsMax = fpsRange.data.i32[1]; double closestFps = 0.0; double fpsError = 1000.0; bool fpsSupported = false; for (const auto& fr : mV4l2StreamingFmt.frameRates) { double f = fr.getFramesPerSecond(); if (std::fabs(requestFpsMax - f) < 1.0) { fpsSupported = true; break; } if (std::fabs(requestFpsMax - f) < fpsError) { fpsError = std::fabs(requestFpsMax - f); closestFps = f; } } if (!fpsSupported) { /* This can happen in a few scenarios: * 1. The application is sending an FPS range not supported by the configured outputs. * 2. The application is sending a valid FPS range for all configured outputs, but * the selected V4L2 size can only run at slower speed. This should be very rare * though: for this to happen a sensor needs to support at least 3 different aspect * ratio outputs, and when (at least) two outputs are both not the main aspect ratio * of the webcam, a third size that's larger might be picked and runs into this * issue. */ ALOGW("%s: cannot reach fps %d! Will do %f instead", __FUNCTION__, fpsRange.data.i32[1], closestFps); requestFpsMax = closestFps; } if (requestFpsMax != mV4l2StreamingFps) { { std::unique_lock lk(mV4l2BufferLock); while (mNumDequeuedV4l2Buffers != 0) { // Wait until pipeline is idle before reconfigure stream int waitRet = waitForV4L2BufferReturnLocked(lk); if (waitRet != 0) { ALOGE("%s: wait for pipeline idle failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } } } configureV4l2StreamLocked(mV4l2StreamingFmt, requestFpsMax); } } nsecs_t shutterTs = 0; std::unique_ptr frameIn = dequeueV4l2FrameLocked(&shutterTs); if (frameIn == nullptr) { ALOGE("%s: V4L2 deque frame failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } std::shared_ptr halReq = std::make_shared(); halReq->frameNumber = request.frameNumber; halReq->setting = mLatestReqSetting; halReq->frameIn = std::move(frameIn); halReq->shutterTs = shutterTs; halReq->buffers.resize(numOutputBufs); for (size_t i = 0; i < numOutputBufs; i++) { HalStreamBuffer& halBuf = halReq->buffers[i]; int streamId = halBuf.streamId = request.outputBuffers[i].streamId; halBuf.bufferId = request.outputBuffers[i].bufferId; const Stream& stream = mStreamMap[streamId]; halBuf.width = stream.width; halBuf.height = stream.height; halBuf.format = stream.format; halBuf.usage = stream.usage; halBuf.bufPtr = nullptr; // threadloop will request buffer from cameraservice halBuf.acquireFence = 0; // threadloop will request fence from cameraservice halBuf.fenceTimeout = false; } { std::lock_guard lk(mInflightFramesLock); mInflightFrames.insert(halReq->frameNumber); } // Send request to OutputThread for the rest of processing mOutputThread->submitRequest(halReq); mFirstRequest = false; return Status::OK; } ScopedAStatus ExternalCameraDeviceSession::signalStreamFlush( const std::vector& /*in_streamIds*/, int32_t in_streamConfigCounter) { { Mutex::Autolock _l(mLock); if (in_streamConfigCounter < mLastStreamConfigCounter) { // stale call. new streams have been configured since this call was issued. // Do nothing. return fromStatus(Status::OK); } } // TODO: implement if needed. return fromStatus(Status::OK); } ScopedAStatus ExternalCameraDeviceSession::switchToOffline( const std::vector& in_streamsToKeep, CameraOfflineSessionInfo* out_offlineSessionInfo, std::shared_ptr* _aidl_return) { std::vector msgs; std::vector results; CameraOfflineSessionInfo info; std::shared_ptr session; Status st = switchToOffline(in_streamsToKeep, &msgs, &results, &info, &session); mCallback->notify(msgs); invokeProcessCaptureResultCallback(results, /* tryWriteFmq= */ true); freeReleaseFences(results); // setup return values *out_offlineSessionInfo = info; *_aidl_return = session; return fromStatus(st); } Status ExternalCameraDeviceSession::switchToOffline( const std::vector& offlineStreams, std::vector* msgs, std::vector* results, CameraOfflineSessionInfo* info, std::shared_ptr* session) { ATRACE_CALL(); if (offlineStreams.size() > 1) { ALOGE("%s: more than one offline stream is not supported", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } if (msgs == nullptr || results == nullptr || info == nullptr || session == nullptr) { ALOGE("%s, output arguments (%p, %p, %p, %p) must not be null", __FUNCTION__, msgs, results, info, session); } Mutex::Autolock _il(mInterfaceLock); Status status = initStatus(); if (status != Status::OK) { return status; } Mutex::Autolock _l(mLock); for (auto streamId : offlineStreams) { if (!supportOfflineLocked(streamId)) { return Status::ILLEGAL_ARGUMENT; } } // pause output thread and get all remaining inflight requests auto remainingReqs = mOutputThread->switchToOffline(); std::vector> halReqs; // Send out buffer/request error for remaining requests and filter requests // to be handled in offline mode for (auto& halReq : remainingReqs) { bool dropReq = canDropRequest(offlineStreams, halReq); if (dropReq) { // Request is dropped completely. Just send request error and // there is no need to send the request to offline session processCaptureRequestError(halReq, msgs, results); continue; } // All requests reach here must have at least one offline stream output NotifyMsg shutter; aidl::android::hardware::camera::device::ShutterMsg shutterMsg = { .frameNumber = static_cast(halReq->frameNumber), .timestamp = halReq->shutterTs}; shutter.set(shutterMsg); msgs->push_back(shutter); std::vector offlineBuffers; for (const auto& buffer : halReq->buffers) { bool dropBuffer = true; for (auto offlineStreamId : offlineStreams) { if (buffer.streamId == offlineStreamId) { dropBuffer = false; break; } } if (dropBuffer) { aidl::android::hardware::camera::device::ErrorMsg errorMsg = { .frameNumber = static_cast(halReq->frameNumber), .errorStreamId = buffer.streamId, .errorCode = ErrorCode::ERROR_BUFFER}; NotifyMsg error; error.set(errorMsg); msgs->push_back(error); results->push_back({ .frameNumber = static_cast(halReq->frameNumber), .outputBuffers = {}, .inputBuffer = {.streamId = -1}, .partialResult = 0, // buffer only result }); CaptureResult& result = results->back(); result.outputBuffers.resize(1); StreamBuffer& outputBuffer = result.outputBuffers[0]; outputBuffer.streamId = buffer.streamId; outputBuffer.bufferId = buffer.bufferId; outputBuffer.status = BufferStatus::ERROR; if (buffer.acquireFence >= 0) { native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0); handle->data[0] = buffer.acquireFence; outputBuffer.releaseFence = android::dupToAidl(handle); native_handle_delete(handle); } } else { offlineBuffers.push_back(buffer); } } halReq->buffers = offlineBuffers; halReqs.push_back(halReq); } // convert hal requests to offline request std::deque> offlineReqs(halReqs.size()); size_t i = 0; for (auto& v4lReq : halReqs) { offlineReqs[i] = std::make_shared(); offlineReqs[i]->frameNumber = v4lReq->frameNumber; offlineReqs[i]->setting = v4lReq->setting; offlineReqs[i]->shutterTs = v4lReq->shutterTs; offlineReqs[i]->buffers = v4lReq->buffers; std::shared_ptr v4l2Frame(static_cast(v4lReq->frameIn.get())); offlineReqs[i]->frameIn = std::make_shared(v4l2Frame); i++; // enqueue V4L2 frame enqueueV4l2Frame(v4l2Frame); } // Collect buffer caches/streams std::vector streamInfos(offlineStreams.size()); std::map circulatingBuffers; { Mutex::Autolock _cbsl(mCbsLock); for (auto streamId : offlineStreams) { circulatingBuffers[streamId] = mCirculatingBuffers.at(streamId); mCirculatingBuffers.erase(streamId); streamInfos.push_back(mStreamMap.at(streamId)); mStreamMap.erase(streamId); } } fillOfflineSessionInfo(offlineStreams, offlineReqs, circulatingBuffers, info); // create the offline session object bool afTrigger; { std::lock_guard _lk(mAfTriggerLock); afTrigger = mAfTrigger; } std::shared_ptr sessionImpl = ndk::SharedRefBase::make( mCroppingType, mCameraCharacteristics, mCameraId, mExifMake, mExifModel, mBlobBufferSize, afTrigger, streamInfos, offlineReqs, circulatingBuffers); bool initFailed = sessionImpl->initialize(); if (initFailed) { ALOGE("%s: offline session initialize failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } // cleanup stream and buffer caches { Mutex::Autolock _cbsl(mCbsLock); for (auto pair : mStreamMap) { cleanupBuffersLocked(/*Stream ID*/ pair.first); } mCirculatingBuffers.clear(); } mStreamMap.clear(); // update inflight records { std::lock_guard _lk(mInflightFramesLock); mInflightFrames.clear(); } // stop v4l2 streaming if (v4l2StreamOffLocked() != 0) { ALOGE("%s: stop V4L2 streaming failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } // No need to return session if there is no offline requests left if (!offlineReqs.empty()) { *session = sessionImpl; } else { *session = nullptr; } return Status::OK; } #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #define UPDATE(md, tag, data, size) \ do { \ if ((md).update((tag), (data), (size))) { \ ALOGE("Update " #tag " failed!"); \ return BAD_VALUE; \ } \ } while (0) status_t ExternalCameraDeviceSession::initDefaultRequests() { common::V1_0::helper::CameraMetadata md; const uint8_t aberrationMode = ANDROID_COLOR_CORRECTION_ABERRATION_MODE_OFF; UPDATE(md, ANDROID_COLOR_CORRECTION_ABERRATION_MODE, &aberrationMode, 1); const int32_t exposureCompensation = 0; UPDATE(md, ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &exposureCompensation, 1); const uint8_t videoStabilizationMode = ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF; UPDATE(md, ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &videoStabilizationMode, 1); const uint8_t awbMode = ANDROID_CONTROL_AWB_MODE_AUTO; UPDATE(md, ANDROID_CONTROL_AWB_MODE, &awbMode, 1); const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON; UPDATE(md, ANDROID_CONTROL_AE_MODE, &aeMode, 1); const uint8_t aePrecaptureTrigger = ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_IDLE; UPDATE(md, ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER, &aePrecaptureTrigger, 1); const uint8_t afMode = ANDROID_CONTROL_AF_MODE_AUTO; UPDATE(md, ANDROID_CONTROL_AF_MODE, &afMode, 1); const uint8_t afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE; UPDATE(md, ANDROID_CONTROL_AF_TRIGGER, &afTrigger, 1); const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_DISABLED; UPDATE(md, ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1); const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF; UPDATE(md, ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1); const uint8_t flashMode = ANDROID_FLASH_MODE_OFF; UPDATE(md, ANDROID_FLASH_MODE, &flashMode, 1); const int32_t thumbnailSize[] = {240, 180}; UPDATE(md, ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2); const uint8_t jpegQuality = 90; UPDATE(md, ANDROID_JPEG_QUALITY, &jpegQuality, 1); UPDATE(md, ANDROID_JPEG_THUMBNAIL_QUALITY, &jpegQuality, 1); const int32_t jpegOrientation = 0; UPDATE(md, ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1); const uint8_t oisMode = ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF; UPDATE(md, ANDROID_LENS_OPTICAL_STABILIZATION_MODE, &oisMode, 1); const uint8_t nrMode = ANDROID_NOISE_REDUCTION_MODE_OFF; UPDATE(md, ANDROID_NOISE_REDUCTION_MODE, &nrMode, 1); const int32_t testPatternModes = ANDROID_SENSOR_TEST_PATTERN_MODE_OFF; UPDATE(md, ANDROID_SENSOR_TEST_PATTERN_MODE, &testPatternModes, 1); const uint8_t fdMode = ANDROID_STATISTICS_FACE_DETECT_MODE_OFF; UPDATE(md, ANDROID_STATISTICS_FACE_DETECT_MODE, &fdMode, 1); const uint8_t hotpixelMode = ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE_OFF; UPDATE(md, ANDROID_STATISTICS_HOT_PIXEL_MAP_MODE, &hotpixelMode, 1); bool support30Fps = false; int32_t maxFps = std::numeric_limits::min(); for (const auto& supportedFormat : mSupportedFormats) { for (const auto& fr : supportedFormat.frameRates) { int32_t framerateInt = static_cast(fr.getFramesPerSecond()); if (maxFps < framerateInt) { maxFps = framerateInt; } if (framerateInt == 30) { support30Fps = true; break; } } if (support30Fps) { break; } } int32_t defaultFramerate = support30Fps ? 30 : maxFps; int32_t defaultFpsRange[] = {defaultFramerate / 2, defaultFramerate}; UPDATE(md, ANDROID_CONTROL_AE_TARGET_FPS_RANGE, defaultFpsRange, ARRAY_SIZE(defaultFpsRange)); uint8_t antibandingMode = ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO; UPDATE(md, ANDROID_CONTROL_AE_ANTIBANDING_MODE, &antibandingMode, 1); const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO; UPDATE(md, ANDROID_CONTROL_MODE, &controlMode, 1); for (const auto& type : ndk::enum_range()) { common::V1_0::helper::CameraMetadata mdCopy = md; uint8_t intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW; switch (type) { case RequestTemplate::PREVIEW: intent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW; break; case RequestTemplate::STILL_CAPTURE: intent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE; break; case RequestTemplate::VIDEO_RECORD: intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD; break; case RequestTemplate::VIDEO_SNAPSHOT: intent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT; break; default: ALOGV("%s: unsupported RequestTemplate type %d", __FUNCTION__, type); continue; } UPDATE(mdCopy, ANDROID_CONTROL_CAPTURE_INTENT, &intent, 1); camera_metadata_t* mdPtr = mdCopy.release(); uint8_t* rawMd = reinterpret_cast(mdPtr); CameraMetadata aidlMd; aidlMd.metadata.assign(rawMd, rawMd + get_camera_metadata_size(mdPtr)); mDefaultRequests[type] = aidlMd; free_camera_metadata(mdPtr); } return OK; } status_t ExternalCameraDeviceSession::fillCaptureResult(common::V1_0::helper::CameraMetadata& md, nsecs_t timestamp) { bool afTrigger = false; { std::lock_guard lk(mAfTriggerLock); afTrigger = mAfTrigger; if (md.exists(ANDROID_CONTROL_AF_TRIGGER)) { camera_metadata_entry entry = md.find(ANDROID_CONTROL_AF_TRIGGER); if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_START) { mAfTrigger = afTrigger = true; } else if (entry.data.u8[0] == ANDROID_CONTROL_AF_TRIGGER_CANCEL) { mAfTrigger = afTrigger = false; } } } // For USB camera, the USB camera handles everything and we don't have control // over AF. We only simply fake the AF metadata based on the request // received here. uint8_t afState; if (afTrigger) { afState = ANDROID_CONTROL_AF_STATE_FOCUSED_LOCKED; } else { afState = ANDROID_CONTROL_AF_STATE_INACTIVE; } UPDATE(md, ANDROID_CONTROL_AF_STATE, &afState, 1); camera_metadata_ro_entry activeArraySize = mCameraCharacteristics.find(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE); return fillCaptureResultCommon(md, timestamp, activeArraySize); } int ExternalCameraDeviceSession::configureV4l2StreamLocked(const SupportedV4L2Format& v4l2Fmt, double requestFps) { ATRACE_CALL(); int ret = v4l2StreamOffLocked(); if (ret != OK) { ALOGE("%s: stop v4l2 streaming failed: ret %d", __FUNCTION__, ret); return ret; } // VIDIOC_S_FMT w/h/fmt v4l2_format fmt; fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; fmt.fmt.pix.width = v4l2Fmt.width; fmt.fmt.pix.height = v4l2Fmt.height; fmt.fmt.pix.pixelformat = v4l2Fmt.fourcc; { int numAttempt = 0; do { ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_FMT, &fmt)); if (numAttempt == MAX_RETRY) { break; } numAttempt++; if (ret < 0) { ALOGW("%s: VIDIOC_S_FMT failed, wait 33ms and try again", __FUNCTION__); usleep(IOCTL_RETRY_SLEEP_US); // sleep and try again } } while (ret < 0); if (ret < 0) { ALOGE("%s: S_FMT ioctl failed: %s", __FUNCTION__, strerror(errno)); return -errno; } } if (v4l2Fmt.width != fmt.fmt.pix.width || v4l2Fmt.height != fmt.fmt.pix.height || v4l2Fmt.fourcc != fmt.fmt.pix.pixelformat) { ALOGE("%s: S_FMT expect %c%c%c%c %dx%d, got %c%c%c%c %dx%d instead!", __FUNCTION__, v4l2Fmt.fourcc & 0xFF, (v4l2Fmt.fourcc >> 8) & 0xFF, (v4l2Fmt.fourcc >> 16) & 0xFF, (v4l2Fmt.fourcc >> 24) & 0xFF, v4l2Fmt.width, v4l2Fmt.height, fmt.fmt.pix.pixelformat & 0xFF, (fmt.fmt.pix.pixelformat >> 8) & 0xFF, (fmt.fmt.pix.pixelformat >> 16) & 0xFF, (fmt.fmt.pix.pixelformat >> 24) & 0xFF, fmt.fmt.pix.width, fmt.fmt.pix.height); return -EINVAL; } uint32_t bufferSize = fmt.fmt.pix.sizeimage; ALOGI("%s: V4L2 buffer size is %d", __FUNCTION__, bufferSize); uint32_t expectedMaxBufferSize = kMaxBytesPerPixel * fmt.fmt.pix.width * fmt.fmt.pix.height; if ((bufferSize == 0) || (bufferSize > expectedMaxBufferSize)) { ALOGE("%s: V4L2 buffer size: %u looks invalid. Expected maximum size: %u", __FUNCTION__, bufferSize, expectedMaxBufferSize); return -EINVAL; } mMaxV4L2BufferSize = bufferSize; const double kDefaultFps = 30.0; double fps = std::numeric_limits::max(); if (requestFps != 0.0) { fps = requestFps; } else { double maxFps = -1.0; // Try to pick the slowest fps that is at least 30 for (const auto& fr : v4l2Fmt.frameRates) { double f = fr.getFramesPerSecond(); if (maxFps < f) { maxFps = f; } if (f >= kDefaultFps && f < fps) { fps = f; } } // No fps > 30 found, use the highest fps available within supported formats. if (fps == std::numeric_limits::max()) { fps = maxFps; } } int fpsRet = setV4l2FpsLocked(fps); if (fpsRet != 0 && fpsRet != -EINVAL) { ALOGE("%s: set fps failed: %s", __FUNCTION__, strerror(fpsRet)); return fpsRet; } uint32_t v4lBufferCount = (fps >= kDefaultFps) ? mCfg.numVideoBuffers : mCfg.numStillBuffers; // VIDIOC_REQBUFS: create buffers v4l2_requestbuffers req_buffers{}; req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req_buffers.memory = V4L2_MEMORY_MMAP; req_buffers.count = v4lBufferCount; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) { ALOGE("%s: VIDIOC_REQBUFS failed: %s", __FUNCTION__, strerror(errno)); return -errno; } // Driver can indeed return more buffer if it needs more to operate if (req_buffers.count < v4lBufferCount) { ALOGE("%s: VIDIOC_REQBUFS expected %d buffers, got %d instead", __FUNCTION__, v4lBufferCount, req_buffers.count); return NO_MEMORY; } // VIDIOC_QUERYBUF: get buffer offset in the V4L2 fd // VIDIOC_QBUF: send buffer to driver mV4L2BufferCount = req_buffers.count; for (uint32_t i = 0; i < req_buffers.count; i++) { v4l2_buffer buffer = { .index = i, .type = V4L2_BUF_TYPE_VIDEO_CAPTURE, .memory = V4L2_MEMORY_MMAP}; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QUERYBUF, &buffer)) < 0) { ALOGE("%s: QUERYBUF %d failed: %s", __FUNCTION__, i, strerror(errno)); return -errno; } if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) { ALOGE("%s: QBUF %d failed: %s", __FUNCTION__, i, strerror(errno)); return -errno; } } { // VIDIOC_STREAMON: start streaming v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE; int numAttempt = 0; do { ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMON, &capture_type)); if (numAttempt == MAX_RETRY) { break; } if (ret < 0) { ALOGW("%s: VIDIOC_STREAMON failed, wait 33ms and try again", __FUNCTION__); usleep(IOCTL_RETRY_SLEEP_US); // sleep 100 ms and try again } } while (ret < 0); if (ret < 0) { ALOGE("%s: VIDIOC_STREAMON ioctl failed: %s", __FUNCTION__, strerror(errno)); return -errno; } } // Swallow first few frames after streamOn to account for bad frames from some devices for (int i = 0; i < kBadFramesAfterStreamOn; i++) { v4l2_buffer buffer{}; buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buffer.memory = V4L2_MEMORY_MMAP; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) { ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno)); return -errno; } if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) { ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, buffer.index, strerror(errno)); return -errno; } } ALOGI("%s: start V4L2 streaming %dx%d@%ffps", __FUNCTION__, v4l2Fmt.width, v4l2Fmt.height, fps); mV4l2StreamingFmt = v4l2Fmt; mV4l2Streaming = true; return OK; } std::unique_ptr ExternalCameraDeviceSession::dequeueV4l2FrameLocked(nsecs_t* shutterTs) { ATRACE_CALL(); std::unique_ptr ret = nullptr; if (shutterTs == nullptr) { ALOGE("%s: shutterTs must not be null!", __FUNCTION__); return ret; } { std::unique_lock lk(mV4l2BufferLock); if (mNumDequeuedV4l2Buffers == mV4L2BufferCount) { int waitRet = waitForV4L2BufferReturnLocked(lk); if (waitRet != 0) { return ret; } } } ATRACE_BEGIN("VIDIOC_DQBUF"); v4l2_buffer buffer{}; buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buffer.memory = V4L2_MEMORY_MMAP; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_DQBUF, &buffer)) < 0) { ALOGE("%s: DQBUF fails: %s", __FUNCTION__, strerror(errno)); return ret; } ATRACE_END(); if (buffer.index >= mV4L2BufferCount) { ALOGE("%s: Invalid buffer id: %d", __FUNCTION__, buffer.index); return ret; } if (buffer.flags & V4L2_BUF_FLAG_ERROR) { ALOGE("%s: v4l2 buf error! buf flag 0x%x", __FUNCTION__, buffer.flags); // TODO: try to dequeue again } if (buffer.bytesused > mMaxV4L2BufferSize) { ALOGE("%s: v4l2 buffer bytes used: %u maximum %u", __FUNCTION__, buffer.bytesused, mMaxV4L2BufferSize); return ret; } if (buffer.flags & V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC) { // Ideally we should also check for V4L2_BUF_FLAG_TSTAMP_SRC_SOE, but // even V4L2_BUF_FLAG_TSTAMP_SRC_EOF is better than capture a timestamp now *shutterTs = static_cast(buffer.timestamp.tv_sec) * 1000000000LL + buffer.timestamp.tv_usec * 1000LL; } else { *shutterTs = systemTime(SYSTEM_TIME_MONOTONIC); } { std::lock_guard lk(mV4l2BufferLock); mNumDequeuedV4l2Buffers++; } return std::make_unique(mV4l2StreamingFmt.width, mV4l2StreamingFmt.height, mV4l2StreamingFmt.fourcc, buffer.index, mV4l2Fd.get(), buffer.bytesused, buffer.m.offset); } void ExternalCameraDeviceSession::enqueueV4l2Frame(const std::shared_ptr& frame) { ATRACE_CALL(); frame->unmap(); ATRACE_BEGIN("VIDIOC_QBUF"); v4l2_buffer buffer{}; buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; buffer.memory = V4L2_MEMORY_MMAP; buffer.index = frame->mBufferIndex; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_QBUF, &buffer)) < 0) { ALOGE("%s: QBUF index %d fails: %s", __FUNCTION__, frame->mBufferIndex, strerror(errno)); return; } ATRACE_END(); { std::lock_guard lk(mV4l2BufferLock); mNumDequeuedV4l2Buffers--; } mV4L2BufferReturned.notify_one(); } bool ExternalCameraDeviceSession::isSupported( const Stream& stream, const std::vector& supportedFormats, const ExternalCameraConfig& devCfg) { Dataspace ds = stream.dataSpace; PixelFormat fmt = stream.format; uint32_t width = stream.width; uint32_t height = stream.height; // TODO: check usage flags if (stream.streamType != StreamType::OUTPUT) { ALOGE("%s: does not support non-output stream type", __FUNCTION__); return false; } if (stream.rotation != StreamRotation::ROTATION_0) { ALOGE("%s: does not support stream rotation", __FUNCTION__); return false; } switch (fmt) { case PixelFormat::BLOB: if (ds != Dataspace::JFIF) { ALOGI("%s: BLOB format does not support dataSpace %x", __FUNCTION__, ds); return false; } break; case PixelFormat::IMPLEMENTATION_DEFINED: case PixelFormat::YCBCR_420_888: case PixelFormat::YV12: // TODO: check what dataspace we can support here. // intentional no-ops. break; case PixelFormat::Y16: if (!devCfg.depthEnabled) { ALOGI("%s: Depth is not Enabled", __FUNCTION__); return false; } if (!(static_cast(ds) & static_cast(Dataspace::DEPTH))) { ALOGI("%s: Y16 supports only dataSpace DEPTH", __FUNCTION__); return false; } break; default: ALOGI("%s: does not support format %x", __FUNCTION__, fmt); return false; } // Assume we can convert any V4L2 format to any of supported output format for now, i.e. // ignoring v4l2Fmt.fourcc for now. Might need more subtle check if we support more v4l format // in the futrue. for (const auto& v4l2Fmt : supportedFormats) { if (width == v4l2Fmt.width && height == v4l2Fmt.height) { return true; } } ALOGI("%s: resolution %dx%d is not supported", __FUNCTION__, width, height); return false; } Status ExternalCameraDeviceSession::importBuffer(int32_t streamId, uint64_t bufId, buffer_handle_t buf, /*out*/ buffer_handle_t** outBufPtr) { Mutex::Autolock _l(mCbsLock); return importBufferLocked(streamId, bufId, buf, outBufPtr); } Status ExternalCameraDeviceSession::importBufferLocked(int32_t streamId, uint64_t bufId, buffer_handle_t buf, buffer_handle_t** outBufPtr) { return importBufferImpl(mCirculatingBuffers, sHandleImporter, streamId, bufId, buf, outBufPtr); } ScopedAStatus ExternalCameraDeviceSession::close() { closeImpl(); return fromStatus(Status::OK); } void ExternalCameraDeviceSession::closeImpl() { Mutex::Autolock _il(mInterfaceLock); bool closed = isClosed(); if (!closed) { closeOutputThread(); closeBufferRequestThread(); Mutex::Autolock _l(mLock); // free all buffers { Mutex::Autolock _cbsl(mCbsLock); for (auto pair : mStreamMap) { cleanupBuffersLocked(/*Stream ID*/ pair.first); } } v4l2StreamOffLocked(); ALOGV("%s: closing V4L2 camera FD %d", __FUNCTION__, mV4l2Fd.get()); mV4l2Fd.reset(); mClosed = true; } } bool ExternalCameraDeviceSession::isClosed() { Mutex::Autolock _l(mLock); return mClosed; } ScopedAStatus ExternalCameraDeviceSession::repeatingRequestEnd( int32_t /*in_frameNumber*/, const std::vector& /*in_streamIds*/) { // TODO: Figure this one out. return fromStatus(Status::OK); } int ExternalCameraDeviceSession::v4l2StreamOffLocked() { if (!mV4l2Streaming) { return OK; } { std::lock_guard lk(mV4l2BufferLock); if (mNumDequeuedV4l2Buffers != 0) { ALOGE("%s: there are %zu inflight V4L buffers", __FUNCTION__, mNumDequeuedV4l2Buffers); return -1; } } mV4L2BufferCount = 0; // VIDIOC_STREAMOFF v4l2_buf_type capture_type = V4L2_BUF_TYPE_VIDEO_CAPTURE; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_STREAMOFF, &capture_type)) < 0) { ALOGE("%s: STREAMOFF failed: %s", __FUNCTION__, strerror(errno)); return -errno; } // VIDIOC_REQBUFS: clear buffers v4l2_requestbuffers req_buffers{}; req_buffers.type = V4L2_BUF_TYPE_VIDEO_CAPTURE; req_buffers.memory = V4L2_MEMORY_MMAP; req_buffers.count = 0; if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_REQBUFS, &req_buffers)) < 0) { ALOGE("%s: REQBUFS failed: %s", __FUNCTION__, strerror(errno)); return -errno; } mV4l2Streaming = false; return OK; } int ExternalCameraDeviceSession::setV4l2FpsLocked(double fps) { // VIDIOC_G_PARM/VIDIOC_S_PARM: set fps v4l2_streamparm streamparm = {.type = V4L2_BUF_TYPE_VIDEO_CAPTURE}; // The following line checks that the driver knows about framerate get/set. int ret = TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_G_PARM, &streamparm)); if (ret != 0) { if (errno == -EINVAL) { ALOGW("%s: device does not support VIDIOC_G_PARM", __FUNCTION__); } return -errno; } // Now check if the device is able to accept a capture framerate set. if (!(streamparm.parm.capture.capability & V4L2_CAP_TIMEPERFRAME)) { ALOGW("%s: device does not support V4L2_CAP_TIMEPERFRAME", __FUNCTION__); return -EINVAL; } // fps is float, approximate by a fraction. const int kFrameRatePrecision = 10000; streamparm.parm.capture.timeperframe.numerator = kFrameRatePrecision; streamparm.parm.capture.timeperframe.denominator = (fps * kFrameRatePrecision); if (TEMP_FAILURE_RETRY(ioctl(mV4l2Fd.get(), VIDIOC_S_PARM, &streamparm)) < 0) { ALOGE("%s: failed to set framerate to %f: %s", __FUNCTION__, fps, strerror(errno)); return -1; } double retFps = streamparm.parm.capture.timeperframe.denominator / static_cast(streamparm.parm.capture.timeperframe.numerator); if (std::fabs(fps - retFps) > 1.0) { ALOGE("%s: expect fps %f, got %f instead", __FUNCTION__, fps, retFps); return -1; } mV4l2StreamingFps = fps; return 0; } void ExternalCameraDeviceSession::cleanupInflightFences(std::vector& allFences, size_t numFences) { for (size_t j = 0; j < numFences; j++) { sHandleImporter.closeFence(allFences[j]); } } void ExternalCameraDeviceSession::cleanupBuffersLocked(int id) { for (auto& pair : mCirculatingBuffers.at(id)) { sHandleImporter.freeBuffer(pair.second); } mCirculatingBuffers[id].clear(); mCirculatingBuffers.erase(id); } void ExternalCameraDeviceSession::notifyShutter(int32_t frameNumber, nsecs_t shutterTs) { NotifyMsg msg; msg.set(ShutterMsg{ .frameNumber = frameNumber, .timestamp = shutterTs, }); mCallback->notify({msg}); } void ExternalCameraDeviceSession::notifyError(int32_t frameNumber, int32_t streamId, ErrorCode ec) { NotifyMsg msg; msg.set(ErrorMsg{ .frameNumber = frameNumber, .errorStreamId = streamId, .errorCode = ec, }); mCallback->notify({msg}); } void ExternalCameraDeviceSession::invokeProcessCaptureResultCallback( std::vector& results, bool tryWriteFmq) { if (mProcessCaptureResultLock.tryLock() != OK) { const nsecs_t NS_TO_SECOND = 1000000000; ALOGV("%s: previous call is not finished! waiting 1s...", __FUNCTION__); if (mProcessCaptureResultLock.timedLock(/* 1s */ NS_TO_SECOND) != OK) { ALOGE("%s: cannot acquire lock in 1s, cannot proceed", __FUNCTION__); return; } } if (tryWriteFmq && mResultMetadataQueue->availableToWrite() > 0) { for (CaptureResult& result : results) { CameraMetadata& md = result.result; if (!md.metadata.empty()) { if (mResultMetadataQueue->write(reinterpret_cast(md.metadata.data()), md.metadata.size())) { result.fmqResultSize = md.metadata.size(); md.metadata.resize(0); } else { ALOGW("%s: couldn't utilize fmq, fall back to hwbinder", __FUNCTION__); result.fmqResultSize = 0; } } else { result.fmqResultSize = 0; } } } auto status = mCallback->processCaptureResult(results); if (!status.isOk()) { ALOGE("%s: processCaptureResult ERROR : %d:%d", __FUNCTION__, status.getExceptionCode(), status.getServiceSpecificError()); } mProcessCaptureResultLock.unlock(); } int ExternalCameraDeviceSession::waitForV4L2BufferReturnLocked(std::unique_lock& lk) { ATRACE_CALL(); auto timeout = std::chrono::seconds(kBufferWaitTimeoutSec); mLock.unlock(); auto st = mV4L2BufferReturned.wait_for(lk, timeout); // Here we introduce an order where mV4l2BufferLock is acquired before mLock, while // the normal lock acquisition order is reversed. This is fine because in most of // cases we are protected by mInterfaceLock. The only thread that can cause deadlock // is the OutputThread, where we do need to make sure we don't acquire mLock then // mV4l2BufferLock mLock.lock(); if (st == std::cv_status::timeout) { ALOGE("%s: wait for V4L2 buffer return timeout!", __FUNCTION__); return -1; } return 0; } bool ExternalCameraDeviceSession::supportOfflineLocked(int32_t streamId) { const Stream& stream = mStreamMap[streamId]; if (stream.format == PixelFormat::BLOB && static_cast(stream.dataSpace) == static_cast(Dataspace::JFIF)) { return true; } // TODO: support YUV output stream? return false; } bool ExternalCameraDeviceSession::canDropRequest(const std::vector& offlineStreams, std::shared_ptr halReq) { for (const auto& buffer : halReq->buffers) { for (auto offlineStreamId : offlineStreams) { if (buffer.streamId == offlineStreamId) { return false; } } } // Only drop a request completely if it has no offline output return true; } void ExternalCameraDeviceSession::fillOfflineSessionInfo( const std::vector& offlineStreams, std::deque>& offlineReqs, const std::map& circulatingBuffers, CameraOfflineSessionInfo* info) { if (info == nullptr) { ALOGE("%s: output info must not be null!", __FUNCTION__); return; } info->offlineStreams.resize(offlineStreams.size()); info->offlineRequests.resize(offlineReqs.size()); // Fill in offline reqs and count outstanding buffers for (size_t i = 0; i < offlineReqs.size(); i++) { info->offlineRequests[i].frameNumber = offlineReqs[i]->frameNumber; info->offlineRequests[i].pendingStreams.resize(offlineReqs[i]->buffers.size()); for (size_t bIdx = 0; bIdx < offlineReqs[i]->buffers.size(); bIdx++) { int32_t streamId = offlineReqs[i]->buffers[bIdx].streamId; info->offlineRequests[i].pendingStreams[bIdx] = streamId; } } for (size_t i = 0; i < offlineStreams.size(); i++) { int32_t streamId = offlineStreams[i]; info->offlineStreams[i].id = streamId; // outstanding buffers are 0 since we are doing hal buffer management and // offline session will ask for those buffers later info->offlineStreams[i].numOutstandingBuffers = 0; const CirculatingBuffers& bufIdMap = circulatingBuffers.at(streamId); info->offlineStreams[i].circulatingBufferIds.resize(bufIdMap.size()); size_t bIdx = 0; for (const auto& pair : bufIdMap) { // Fill in bufferId info->offlineStreams[i].circulatingBufferIds[bIdx++] = pair.first; } } } Status ExternalCameraDeviceSession::isStreamCombinationSupported( const StreamConfiguration& config, const std::vector& supportedFormats, const ExternalCameraConfig& devCfg) { if (config.operationMode != StreamConfigurationMode::NORMAL_MODE) { ALOGE("%s: unsupported operation mode: %d", __FUNCTION__, config.operationMode); return Status::ILLEGAL_ARGUMENT; } if (config.streams.size() == 0) { ALOGE("%s: cannot configure zero stream", __FUNCTION__); return Status::ILLEGAL_ARGUMENT; } int numProcessedStream = 0; int numStallStream = 0; for (const auto& stream : config.streams) { // Check if the format/width/height combo is supported if (!isSupported(stream, supportedFormats, devCfg)) { return Status::ILLEGAL_ARGUMENT; } if (stream.format == PixelFormat::BLOB) { numStallStream++; } else { numProcessedStream++; } } if (numProcessedStream > kMaxProcessedStream) { ALOGE("%s: too many processed streams (expect <= %d, got %d)", __FUNCTION__, kMaxProcessedStream, numProcessedStream); return Status::ILLEGAL_ARGUMENT; } if (numStallStream > kMaxStallStream) { ALOGE("%s: too many stall streams (expect <= %d, got %d)", __FUNCTION__, kMaxStallStream, numStallStream); return Status::ILLEGAL_ARGUMENT; } return Status::OK; } void ExternalCameraDeviceSession::updateBufferCaches( const std::vector& cachesToRemove) { Mutex::Autolock _l(mCbsLock); for (auto& cache : cachesToRemove) { auto cbsIt = mCirculatingBuffers.find(cache.streamId); if (cbsIt == mCirculatingBuffers.end()) { // The stream could have been removed continue; } CirculatingBuffers& cbs = cbsIt->second; auto it = cbs.find(cache.bufferId); if (it != cbs.end()) { sHandleImporter.freeBuffer(it->second); cbs.erase(it); } else { ALOGE("%s: stream %d buffer %" PRIu64 " is not cached", __FUNCTION__, cache.streamId, cache.bufferId); } } } Status ExternalCameraDeviceSession::processCaptureRequestError( const std::shared_ptr& req, std::vector* outMsgs, std::vector* outResults) { ATRACE_CALL(); // Return V4L2 buffer to V4L2 buffer queue std::shared_ptr v4l2Frame = std::static_pointer_cast(req->frameIn); enqueueV4l2Frame(v4l2Frame); if (outMsgs == nullptr) { notifyShutter(req->frameNumber, req->shutterTs); notifyError(/*frameNum*/ req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_REQUEST); } else { NotifyMsg shutter; shutter.set( ShutterMsg{.frameNumber = req->frameNumber, .timestamp = req->shutterTs}); NotifyMsg error; error.set(ErrorMsg{.frameNumber = req->frameNumber, .errorStreamId = -1, .errorCode = ErrorCode::ERROR_REQUEST}); outMsgs->push_back(shutter); outMsgs->push_back(error); } // Fill output buffers CaptureResult result; result.frameNumber = req->frameNumber; result.partialResult = 1; result.inputBuffer.streamId = -1; result.outputBuffers.resize(req->buffers.size()); for (size_t i = 0; i < req->buffers.size(); i++) { result.outputBuffers[i].streamId = req->buffers[i].streamId; result.outputBuffers[i].bufferId = req->buffers[i].bufferId; result.outputBuffers[i].status = BufferStatus::ERROR; if (req->buffers[i].acquireFence >= 0) { // numFds = 0 for error native_handle_t* handle = native_handle_create(/*numFds*/ 0, /*numInts*/ 0); result.outputBuffers[i].releaseFence = android::dupToAidl(handle); native_handle_delete(handle); } } // update inflight records { std::lock_guard lk(mInflightFramesLock); mInflightFrames.erase(req->frameNumber); } if (outResults == nullptr) { // Callback into framework std::vector results(1); results[0] = std::move(result); invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true); freeReleaseFences(results); } else { outResults->push_back(std::move(result)); } return Status::OK; } Status ExternalCameraDeviceSession::processCaptureResult(std::shared_ptr& req) { ATRACE_CALL(); // Return V4L2 buffer to V4L2 buffer queue std::shared_ptr v4l2Frame = std::static_pointer_cast(req->frameIn); enqueueV4l2Frame(v4l2Frame); // NotifyShutter notifyShutter(req->frameNumber, req->shutterTs); // Fill output buffers; std::vector results(1); CaptureResult& result = results[0]; result.frameNumber = req->frameNumber; result.partialResult = 1; result.inputBuffer.streamId = -1; result.outputBuffers.resize(req->buffers.size()); for (size_t i = 0; i < req->buffers.size(); i++) { result.outputBuffers[i].streamId = req->buffers[i].streamId; result.outputBuffers[i].bufferId = req->buffers[i].bufferId; if (req->buffers[i].fenceTimeout) { result.outputBuffers[i].status = BufferStatus::ERROR; if (req->buffers[i].acquireFence >= 0) { native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0); handle->data[0] = req->buffers[i].acquireFence; result.outputBuffers[i].releaseFence = android::dupToAidl(handle); native_handle_delete(handle); } notifyError(req->frameNumber, req->buffers[i].streamId, ErrorCode::ERROR_BUFFER); } else { result.outputBuffers[i].status = BufferStatus::OK; // TODO: refactor if (req->buffers[i].acquireFence >= 0) { native_handle_t* handle = native_handle_create(/*numFds*/ 1, /*numInts*/ 0); handle->data[0] = req->buffers[i].acquireFence; result.outputBuffers[i].releaseFence = android::dupToAidl(handle); native_handle_delete(handle); } } } // Fill capture result metadata fillCaptureResult(req->setting, req->shutterTs); const camera_metadata_t* rawResult = req->setting.getAndLock(); convertToAidl(rawResult, &result.result); req->setting.unlock(rawResult); // update inflight records { std::lock_guard lk(mInflightFramesLock); mInflightFrames.erase(req->frameNumber); } // Callback into framework invokeProcessCaptureResultCallback(results, /* tryWriteFmq */ true); freeReleaseFences(results); return Status::OK; } ssize_t ExternalCameraDeviceSession::getJpegBufferSize(int32_t width, int32_t height) const { // Constant from camera3.h const ssize_t kMinJpegBufferSize = 256 * 1024 + sizeof(CameraBlob); // Get max jpeg size (area-wise). if (mMaxJpegResolution.width == 0) { ALOGE("%s: No supported JPEG stream", __FUNCTION__); return BAD_VALUE; } // Get max jpeg buffer size ssize_t maxJpegBufferSize = 0; camera_metadata_ro_entry jpegBufMaxSize = mCameraCharacteristics.find(ANDROID_JPEG_MAX_SIZE); if (jpegBufMaxSize.count == 0) { ALOGE("%s: Can't find maximum JPEG size in static metadata!", __FUNCTION__); return BAD_VALUE; } maxJpegBufferSize = jpegBufMaxSize.data.i32[0]; if (maxJpegBufferSize <= kMinJpegBufferSize) { ALOGE("%s: ANDROID_JPEG_MAX_SIZE (%zd) <= kMinJpegBufferSize (%zd)", __FUNCTION__, maxJpegBufferSize, kMinJpegBufferSize); return BAD_VALUE; } // Calculate final jpeg buffer size for the given resolution. float scaleFactor = ((float)(width * height)) / (mMaxJpegResolution.width * mMaxJpegResolution.height); ssize_t jpegBufferSize = scaleFactor * (maxJpegBufferSize - kMinJpegBufferSize) + kMinJpegBufferSize; if (jpegBufferSize > maxJpegBufferSize) { jpegBufferSize = maxJpegBufferSize; } return jpegBufferSize; } binder_status_t ExternalCameraDeviceSession::dump(int fd, const char** /*args*/, uint32_t /*numArgs*/) { bool intfLocked = tryLock(mInterfaceLock); if (!intfLocked) { dprintf(fd, "!! ExternalCameraDeviceSession interface may be deadlocked !!\n"); } if (isClosed()) { dprintf(fd, "External camera %s is closed\n", mCameraId.c_str()); return STATUS_OK; } bool streaming = false; size_t v4L2BufferCount = 0; SupportedV4L2Format streamingFmt; { bool sessionLocked = tryLock(mLock); if (!sessionLocked) { dprintf(fd, "!! ExternalCameraDeviceSession mLock may be deadlocked !!\n"); } streaming = mV4l2Streaming; streamingFmt = mV4l2StreamingFmt; v4L2BufferCount = mV4L2BufferCount; if (sessionLocked) { mLock.unlock(); } } std::unordered_set inflightFrames; { bool iffLocked = tryLock(mInflightFramesLock); if (!iffLocked) { dprintf(fd, "!! ExternalCameraDeviceSession mInflightFramesLock may be deadlocked !!\n"); } inflightFrames = mInflightFrames; if (iffLocked) { mInflightFramesLock.unlock(); } } dprintf(fd, "External camera %s V4L2 FD %d, cropping type %s, %s\n", mCameraId.c_str(), mV4l2Fd.get(), (mCroppingType == VERTICAL) ? "vertical" : "horizontal", streaming ? "streaming" : "not streaming"); if (streaming) { // TODO: dump fps later dprintf(fd, "Current V4L2 format %c%c%c%c %dx%d @ %ffps\n", streamingFmt.fourcc & 0xFF, (streamingFmt.fourcc >> 8) & 0xFF, (streamingFmt.fourcc >> 16) & 0xFF, (streamingFmt.fourcc >> 24) & 0xFF, streamingFmt.width, streamingFmt.height, mV4l2StreamingFps); size_t numDequeuedV4l2Buffers = 0; { std::lock_guard lk(mV4l2BufferLock); numDequeuedV4l2Buffers = mNumDequeuedV4l2Buffers; } dprintf(fd, "V4L2 buffer queue size %zu, dequeued %zu\n", v4L2BufferCount, numDequeuedV4l2Buffers); } dprintf(fd, "In-flight frames (not sorted):"); for (const auto& frameNumber : inflightFrames) { dprintf(fd, "%d, ", frameNumber); } dprintf(fd, "\n"); mOutputThread->dump(fd); dprintf(fd, "\n"); if (intfLocked) { mInterfaceLock.unlock(); } return STATUS_OK; } // Start ExternalCameraDeviceSession::BufferRequestThread functions ExternalCameraDeviceSession::BufferRequestThread::BufferRequestThread( std::weak_ptr parent, std::shared_ptr callbacks) : mParent(parent), mCallbacks(callbacks) {} int ExternalCameraDeviceSession::BufferRequestThread::requestBufferStart( const std::vector& bufReqs) { if (bufReqs.empty()) { ALOGE("%s: bufReqs is empty!", __FUNCTION__); return -1; } { std::lock_guard lk(mLock); if (mRequestingBuffer) { ALOGE("%s: BufferRequestThread does not support more than one concurrent request!", __FUNCTION__); return -1; } mBufferReqs = bufReqs; mRequestingBuffer = true; } mRequestCond.notify_one(); return 0; } int ExternalCameraDeviceSession::BufferRequestThread::waitForBufferRequestDone( std::vector* outBufReqs) { std::unique_lock lk(mLock); if (!mRequestingBuffer) { ALOGE("%s: no pending buffer request!", __FUNCTION__); return -1; } if (mPendingReturnBufferReqs.empty()) { std::chrono::milliseconds timeout = std::chrono::milliseconds(kReqProcTimeoutMs); auto st = mRequestDoneCond.wait_for(lk, timeout); if (st == std::cv_status::timeout) { mRequestingBuffer = false; ALOGE("%s: wait for buffer request finish timeout!", __FUNCTION__); return -1; } if (mPendingReturnBufferReqs.empty()) { mRequestingBuffer = false; ALOGE("%s: cameraservice did not return any buffers!", __FUNCTION__); return -1; } } mRequestingBuffer = false; *outBufReqs = std::move(mPendingReturnBufferReqs); mPendingReturnBufferReqs.clear(); return 0; } void ExternalCameraDeviceSession::BufferRequestThread::waitForNextRequest() { ATRACE_CALL(); std::unique_lock lk(mLock); int waitTimes = 0; while (mBufferReqs.empty()) { if (exitPending()) { return; } auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs); auto st = mRequestCond.wait_for(lk, timeout); if (st == std::cv_status::timeout) { waitTimes++; if (waitTimes == kReqWaitTimesWarn) { // BufferRequestThread just wait forever for new buffer request // But it will print some periodic warning indicating it's waiting ALOGV("%s: still waiting for new buffer request", __FUNCTION__); waitTimes = 0; } } } // Fill in BufferRequest mHalBufferReqs.resize(mBufferReqs.size()); for (size_t i = 0; i < mHalBufferReqs.size(); i++) { mHalBufferReqs[i].streamId = mBufferReqs[i].streamId; mHalBufferReqs[i].numBuffersRequested = 1; } } bool ExternalCameraDeviceSession::BufferRequestThread::threadLoop() { waitForNextRequest(); if (exitPending()) { return false; } ATRACE_BEGIN("AIDL requestStreamBuffers"); BufferRequestStatus status; std::vector bufRets; ScopedAStatus ret = mCallbacks->requestStreamBuffers(mHalBufferReqs, &bufRets, &status); if (!ret.isOk()) { ALOGE("%s: Transaction error: %d:%d", __FUNCTION__, ret.getExceptionCode(), ret.getServiceSpecificError()); mBufferReqs.clear(); mRequestDoneCond.notify_one(); return false; } std::unique_lock lk(mLock); if (status == BufferRequestStatus::OK || status == BufferRequestStatus::FAILED_PARTIAL) { if (bufRets.size() != mHalBufferReqs.size()) { ALOGE("%s: expect %zu buffer requests returned, only got %zu", __FUNCTION__, mHalBufferReqs.size(), bufRets.size()); mBufferReqs.clear(); lk.unlock(); mRequestDoneCond.notify_one(); return false; } auto parent = mParent.lock(); if (parent == nullptr) { ALOGE("%s: session has been disconnected!", __FUNCTION__); mBufferReqs.clear(); lk.unlock(); mRequestDoneCond.notify_one(); return false; } std::vector importedFences; importedFences.resize(bufRets.size()); bool hasError = false; for (size_t i = 0; i < bufRets.size(); i++) { int streamId = bufRets[i].streamId; switch (bufRets[i].val.getTag()) { case StreamBuffersVal::Tag::error: continue; case StreamBuffersVal::Tag::buffers: { const std::vector& hBufs = bufRets[i].val.get(); if (hBufs.size() != 1) { ALOGE("%s: expect 1 buffer returned, got %zu!", __FUNCTION__, hBufs.size()); hasError = true; break; } const StreamBuffer& hBuf = hBufs[0]; mBufferReqs[i].bufferId = hBuf.bufferId; // TODO: create a batch import API so we don't need to lock/unlock mCbsLock // repeatedly? lk.unlock(); native_handle_t* h = makeFromAidl(hBuf.buffer); Status s = parent->importBuffer(streamId, hBuf.bufferId, h, /*out*/ &mBufferReqs[i].bufPtr); native_handle_delete(h); lk.lock(); if (s != Status::OK) { ALOGE("%s: stream %d import buffer failed!", __FUNCTION__, streamId); cleanupInflightFences(importedFences, i - 1); hasError = true; break; } h = makeFromAidl(hBuf.acquireFence); if (!sHandleImporter.importFence(h, mBufferReqs[i].acquireFence)) { ALOGE("%s: stream %d import fence failed!", __FUNCTION__, streamId); cleanupInflightFences(importedFences, i - 1); native_handle_delete(h); hasError = true; break; } native_handle_delete(h); importedFences[i] = mBufferReqs[i].acquireFence; } break; default: ALOGE("%s: Unknown StreamBuffersVal!", __FUNCTION__); hasError = true; break; } if (hasError) { mBufferReqs.clear(); lk.unlock(); mRequestDoneCond.notify_one(); return true; } } } else { ALOGE("%s: requestStreamBuffers call failed!", __FUNCTION__); mBufferReqs.clear(); lk.unlock(); mRequestDoneCond.notify_one(); return true; } mPendingReturnBufferReqs = std::move(mBufferReqs); mBufferReqs.clear(); lk.unlock(); mRequestDoneCond.notify_one(); return true; } // End ExternalCameraDeviceSession::BufferRequestThread functions // Start ExternalCameraDeviceSession::OutputThread functions ExternalCameraDeviceSession::OutputThread::OutputThread( std::weak_ptr parent, CroppingType ct, const common::V1_0::helper::CameraMetadata& chars, std::shared_ptr bufReqThread) : mParent(parent), mCroppingType(ct), mCameraCharacteristics(chars), mBufferRequestThread(bufReqThread) {} ExternalCameraDeviceSession::OutputThread::~OutputThread() {} Status ExternalCameraDeviceSession::OutputThread::allocateIntermediateBuffers( const Size& v4lSize, const Size& thumbSize, const std::vector& streams, uint32_t blobBufferSize) { std::lock_guard lk(mBufferLock); if (!mScaledYu12Frames.empty()) { ALOGE("%s: intermediate buffer pool has %zu inflight buffers! (expect 0)", __FUNCTION__, mScaledYu12Frames.size()); return Status::INTERNAL_ERROR; } // Allocating intermediate YU12 frame if (mYu12Frame == nullptr || mYu12Frame->mWidth != v4lSize.width || mYu12Frame->mHeight != v4lSize.height) { mYu12Frame.reset(); mYu12Frame = std::make_shared(v4lSize.width, v4lSize.height); int ret = mYu12Frame->allocate(&mYu12FrameLayout); if (ret != 0) { ALOGE("%s: allocating YU12 frame failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } } // Allocating intermediate YU12 thumbnail frame if (mYu12ThumbFrame == nullptr || mYu12ThumbFrame->mWidth != thumbSize.width || mYu12ThumbFrame->mHeight != thumbSize.height) { mYu12ThumbFrame.reset(); mYu12ThumbFrame = std::make_shared(thumbSize.width, thumbSize.height); int ret = mYu12ThumbFrame->allocate(&mYu12ThumbFrameLayout); if (ret != 0) { ALOGE("%s: allocating YU12 thumb frame failed!", __FUNCTION__); return Status::INTERNAL_ERROR; } } // Allocating scaled buffers for (const auto& stream : streams) { Size sz = {stream.width, stream.height}; if (sz == v4lSize) { continue; // Don't need an intermediate buffer same size as v4lBuffer } if (mIntermediateBuffers.count(sz) == 0) { // Create new intermediate buffer std::shared_ptr buf = std::make_shared(stream.width, stream.height); int ret = buf->allocate(); if (ret != 0) { ALOGE("%s: allocating intermediate YU12 frame %dx%d failed!", __FUNCTION__, stream.width, stream.height); return Status::INTERNAL_ERROR; } mIntermediateBuffers[sz] = buf; } } // Remove unconfigured buffers auto it = mIntermediateBuffers.begin(); while (it != mIntermediateBuffers.end()) { bool configured = false; auto sz = it->first; for (const auto& stream : streams) { if (stream.width == sz.width && stream.height == sz.height) { configured = true; break; } } if (configured) { it++; } else { it = mIntermediateBuffers.erase(it); } } // Allocate mute test pattern frame mMuteTestPatternFrame.resize(mYu12Frame->mWidth * mYu12Frame->mHeight * 3); mBlobBufferSize = blobBufferSize; return Status::OK; } Status ExternalCameraDeviceSession::OutputThread::submitRequest( const std::shared_ptr& req) { std::unique_lock lk(mRequestListLock); mRequestList.push_back(req); lk.unlock(); mRequestCond.notify_one(); return Status::OK; } void ExternalCameraDeviceSession::OutputThread::flush() { ATRACE_CALL(); auto parent = mParent.lock(); if (parent == nullptr) { ALOGE("%s: session has been disconnected!", __FUNCTION__); return; } std::unique_lock lk(mRequestListLock); std::list> reqs = std::move(mRequestList); mRequestList.clear(); if (mProcessingRequest) { auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec); auto st = mRequestDoneCond.wait_for(lk, timeout); if (st == std::cv_status::timeout) { ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__); } } ALOGV("%s: flushing inflight requests", __FUNCTION__); lk.unlock(); for (const auto& req : reqs) { parent->processCaptureRequestError(req); } } void ExternalCameraDeviceSession::OutputThread::dump(int fd) { std::lock_guard lk(mRequestListLock); if (mProcessingRequest) { dprintf(fd, "OutputThread processing frame %d\n", mProcessingFrameNumber); } else { dprintf(fd, "OutputThread not processing any frames\n"); } dprintf(fd, "OutputThread request list contains frame: "); for (const auto& req : mRequestList) { dprintf(fd, "%d, ", req->frameNumber); } dprintf(fd, "\n"); } void ExternalCameraDeviceSession::OutputThread::setExifMakeModel(const std::string& make, const std::string& model) { mExifMake = make; mExifModel = model; } std::list> ExternalCameraDeviceSession::OutputThread::switchToOffline() { ATRACE_CALL(); auto parent = mParent.lock(); if (parent == nullptr) { ALOGE("%s: session has been disconnected!", __FUNCTION__); return {}; } std::unique_lock lk(mRequestListLock); std::list> reqs = std::move(mRequestList); mRequestList.clear(); if (mProcessingRequest) { auto timeout = std::chrono::seconds(kFlushWaitTimeoutSec); auto st = mRequestDoneCond.wait_for(lk, timeout); if (st == std::cv_status::timeout) { ALOGE("%s: wait for inflight request finish timeout!", __FUNCTION__); } } lk.unlock(); clearIntermediateBuffers(); ALOGV("%s: returning %zu request for offline processing", __FUNCTION__, reqs.size()); return reqs; } int ExternalCameraDeviceSession::OutputThread::requestBufferStart( const std::vector& bufs) { if (mBufferRequestThread == nullptr) { return 0; } return mBufferRequestThread->requestBufferStart(bufs); } int ExternalCameraDeviceSession::OutputThread::waitForBufferRequestDone( std::vector* outBufs) { if (mBufferRequestThread == nullptr) { return 0; } return mBufferRequestThread->waitForBufferRequestDone(outBufs); } void ExternalCameraDeviceSession::OutputThread::waitForNextRequest( std::shared_ptr* out) { ATRACE_CALL(); if (out == nullptr) { ALOGE("%s: out is null", __FUNCTION__); return; } std::unique_lock lk(mRequestListLock); int waitTimes = 0; while (mRequestList.empty()) { if (exitPending()) { return; } auto timeout = std::chrono::milliseconds(kReqWaitTimeoutMs); auto st = mRequestCond.wait_for(lk, timeout); if (st == std::cv_status::timeout) { waitTimes++; if (waitTimes == kReqWaitTimesMax) { // no new request, return return; } } } *out = mRequestList.front(); mRequestList.pop_front(); mProcessingRequest = true; mProcessingFrameNumber = (*out)->frameNumber; } void ExternalCameraDeviceSession::OutputThread::signalRequestDone() { std::unique_lock lk(mRequestListLock); mProcessingRequest = false; mProcessingFrameNumber = 0; lk.unlock(); mRequestDoneCond.notify_one(); } int ExternalCameraDeviceSession::OutputThread::cropAndScaleLocked( std::shared_ptr& in, const Size& outSz, YCbCrLayout* out) { Size inSz = {in->mWidth, in->mHeight}; int ret; if (inSz == outSz) { ret = in->getLayout(out); if (ret != 0) { ALOGE("%s: failed to get input image layout", __FUNCTION__); return ret; } return ret; } // Cropping to output aspect ratio IMapper::Rect inputCrop; ret = getCropRect(mCroppingType, inSz, outSz, &inputCrop); if (ret != 0) { ALOGE("%s: failed to compute crop rect for output size %dx%d", __FUNCTION__, outSz.width, outSz.height); return ret; } YCbCrLayout croppedLayout; ret = in->getCroppedLayout(inputCrop, &croppedLayout); if (ret != 0) { ALOGE("%s: failed to crop input image %dx%d to output size %dx%d", __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height); return ret; } if ((mCroppingType == VERTICAL && inSz.width == outSz.width) || (mCroppingType == HORIZONTAL && inSz.height == outSz.height)) { // No scale is needed *out = croppedLayout; return 0; } auto it = mScaledYu12Frames.find(outSz); std::shared_ptr scaledYu12Buf; if (it != mScaledYu12Frames.end()) { scaledYu12Buf = it->second; } else { it = mIntermediateBuffers.find(outSz); if (it == mIntermediateBuffers.end()) { ALOGE("%s: failed to find intermediate buffer size %dx%d", __FUNCTION__, outSz.width, outSz.height); return -1; } scaledYu12Buf = it->second; } // Scale YCbCrLayout outLayout; ret = scaledYu12Buf->getLayout(&outLayout); if (ret != 0) { ALOGE("%s: failed to get output buffer layout", __FUNCTION__); return ret; } ret = libyuv::I420Scale( static_cast(croppedLayout.y), croppedLayout.yStride, static_cast(croppedLayout.cb), croppedLayout.cStride, static_cast(croppedLayout.cr), croppedLayout.cStride, inputCrop.width, inputCrop.height, static_cast(outLayout.y), outLayout.yStride, static_cast(outLayout.cb), outLayout.cStride, static_cast(outLayout.cr), outLayout.cStride, outSz.width, outSz.height, // TODO: b/72261744 see if we can use better filter without losing too much perf libyuv::FilterMode::kFilterNone); if (ret != 0) { ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__, inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret); return ret; } *out = outLayout; mScaledYu12Frames.insert({outSz, scaledYu12Buf}); return 0; } int ExternalCameraDeviceSession::OutputThread::cropAndScaleThumbLocked( std::shared_ptr& in, const Size& outSz, YCbCrLayout* out) { Size inSz{in->mWidth, in->mHeight}; if ((outSz.width * outSz.height) > (mYu12ThumbFrame->mWidth * mYu12ThumbFrame->mHeight)) { ALOGE("%s: Requested thumbnail size too big (%d,%d) > (%d,%d)", __FUNCTION__, outSz.width, outSz.height, mYu12ThumbFrame->mWidth, mYu12ThumbFrame->mHeight); return -1; } int ret; /* This will crop-and-zoom the input YUV frame to the thumbnail size * Based on the following logic: * 1) Square pixels come in, square pixels come out, therefore single * scale factor is computed to either make input bigger or smaller * depending on if we are upscaling or downscaling * 2) That single scale factor would either make height too tall or width * too wide so we need to crop the input either horizontally or vertically * but not both */ /* Convert the input and output dimensions into floats for ease of math */ float fWin = static_cast(inSz.width); float fHin = static_cast(inSz.height); float fWout = static_cast(outSz.width); float fHout = static_cast(outSz.height); /* Compute the one scale factor from (1) above, it will be the smaller of * the two possibilities. */ float scaleFactor = std::min(fHin / fHout, fWin / fWout); /* Since we are crop-and-zooming (as opposed to letter/pillar boxing) we can * simply multiply the output by our scaleFactor to get the cropped input * size. Note that at least one of {fWcrop, fHcrop} is going to wind up * being {fWin, fHin} respectively because fHout or fWout cancels out the * scaleFactor calculation above. * * Specifically: * if ( fHin / fHout ) < ( fWin / fWout ) we crop the sides off * input, in which case * scaleFactor = fHin / fHout * fWcrop = fHin / fHout * fWout * fHcrop = fHin * * Note that fWcrop <= fWin ( because ( fHin / fHout ) * fWout < fWin, which * is just the inequality above with both sides multiplied by fWout * * on the other hand if ( fWin / fWout ) < ( fHin / fHout) we crop the top * and the bottom off of input, and * scaleFactor = fWin / fWout * fWcrop = fWin * fHCrop = fWin / fWout * fHout */ float fWcrop = scaleFactor * fWout; float fHcrop = scaleFactor * fHout; /* Convert to integer and truncate to an even number */ Size cropSz = {.width = 2 * static_cast(fWcrop / 2.0f), .height = 2 * static_cast(fHcrop / 2.0f)}; /* Convert to a centered rectange with even top/left */ IMapper::Rect inputCrop{.left = 2 * static_cast((inSz.width - cropSz.width) / 4), .top = 2 * static_cast((inSz.height - cropSz.height) / 4), .width = static_cast(cropSz.width), .height = static_cast(cropSz.height)}; if ((inputCrop.top < 0) || (inputCrop.top >= static_cast(inSz.height)) || (inputCrop.left < 0) || (inputCrop.left >= static_cast(inSz.width)) || (inputCrop.width <= 0) || (inputCrop.width + inputCrop.left > static_cast(inSz.width)) || (inputCrop.height <= 0) || (inputCrop.height + inputCrop.top > static_cast(inSz.height))) { ALOGE("%s: came up with really wrong crop rectangle", __FUNCTION__); ALOGE("%s: input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height); ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top, inputCrop.width, inputCrop.height); return -1; } YCbCrLayout inputLayout; ret = in->getCroppedLayout(inputCrop, &inputLayout); if (ret != 0) { ALOGE("%s: failed to crop input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height); ALOGE("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top, inputCrop.width, inputCrop.height); return ret; } ALOGV("%s: crop input layout %dx%d to for output size %dx%d", __FUNCTION__, inSz.width, inSz.height, outSz.width, outSz.height); ALOGV("%s: computed input crop +%d,+%d %dx%d", __FUNCTION__, inputCrop.left, inputCrop.top, inputCrop.width, inputCrop.height); // Scale YCbCrLayout outFullLayout; ret = mYu12ThumbFrame->getLayout(&outFullLayout); if (ret != 0) { ALOGE("%s: failed to get output buffer layout", __FUNCTION__); return ret; } ret = libyuv::I420Scale(static_cast(inputLayout.y), inputLayout.yStride, static_cast(inputLayout.cb), inputLayout.cStride, static_cast(inputLayout.cr), inputLayout.cStride, inputCrop.width, inputCrop.height, static_cast(outFullLayout.y), outFullLayout.yStride, static_cast(outFullLayout.cb), outFullLayout.cStride, static_cast(outFullLayout.cr), outFullLayout.cStride, outSz.width, outSz.height, libyuv::FilterMode::kFilterNone); if (ret != 0) { ALOGE("%s: failed to scale buffer from %dx%d to %dx%d. Ret %d", __FUNCTION__, inputCrop.width, inputCrop.height, outSz.width, outSz.height, ret); return ret; } *out = outFullLayout; return 0; } int ExternalCameraDeviceSession::OutputThread::createJpegLocked( HalStreamBuffer& halBuf, const common::V1_0::helper::CameraMetadata& setting) { ATRACE_CALL(); int ret; auto lfail = [&](auto... args) { ALOGE(args...); return 1; }; auto parent = mParent.lock(); if (parent == nullptr) { ALOGE("%s: session has been disconnected!", __FUNCTION__); return 1; } ALOGV("%s: HAL buffer sid: %d bid: %" PRIu64 " w: %u h: %u", __FUNCTION__, halBuf.streamId, static_cast(halBuf.bufferId), halBuf.width, halBuf.height); ALOGV("%s: HAL buffer fmt: %x usage: %" PRIx64 " ptr: %p", __FUNCTION__, halBuf.format, static_cast(halBuf.usage), halBuf.bufPtr); ALOGV("%s: YV12 buffer %d x %d", __FUNCTION__, mYu12Frame->mWidth, mYu12Frame->mHeight); int jpegQuality, thumbQuality; Size thumbSize; bool outputThumbnail = true; if (setting.exists(ANDROID_JPEG_QUALITY)) { camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_QUALITY); jpegQuality = entry.data.u8[0]; } else { return lfail("%s: ANDROID_JPEG_QUALITY not set", __FUNCTION__); } if (setting.exists(ANDROID_JPEG_THUMBNAIL_QUALITY)) { camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_QUALITY); thumbQuality = entry.data.u8[0]; } else { return lfail("%s: ANDROID_JPEG_THUMBNAIL_QUALITY not set", __FUNCTION__); } if (setting.exists(ANDROID_JPEG_THUMBNAIL_SIZE)) { camera_metadata_ro_entry entry = setting.find(ANDROID_JPEG_THUMBNAIL_SIZE); thumbSize = Size{.width = entry.data.i32[0], .height = entry.data.i32[1]}; if (thumbSize.width == 0 && thumbSize.height == 0) { outputThumbnail = false; } } else { return lfail("%s: ANDROID_JPEG_THUMBNAIL_SIZE not set", __FUNCTION__); } /* Cropped and scaled YU12 buffer for main and thumbnail */ YCbCrLayout yu12Main; Size jpegSize{halBuf.width, halBuf.height}; /* Compute temporary buffer sizes accounting for the following: * thumbnail can't exceed APP1 size of 64K * main image needs to hold APP1, headers, and at most a poorly * compressed image */ const ssize_t maxThumbCodeSize = 64 * 1024; const ssize_t maxJpegCodeSize = mBlobBufferSize == 0 ? parent->getJpegBufferSize(jpegSize.width, jpegSize.height) : mBlobBufferSize; /* Check that getJpegBufferSize did not return an error */ if (maxJpegCodeSize < 0) { return lfail("%s: getJpegBufferSize returned %zd", __FUNCTION__, maxJpegCodeSize); } /* Hold actual thumbnail and main image code sizes */ size_t thumbCodeSize = 0, jpegCodeSize = 0; /* Temporary thumbnail code buffer */ std::vector thumbCode(outputThumbnail ? maxThumbCodeSize : 0); YCbCrLayout yu12Thumb; if (outputThumbnail) { ret = cropAndScaleThumbLocked(mYu12Frame, thumbSize, &yu12Thumb); if (ret != 0) { return lfail("%s: crop and scale thumbnail failed!", __FUNCTION__); } } /* Scale and crop main jpeg */ ret = cropAndScaleLocked(mYu12Frame, jpegSize, &yu12Main); if (ret != 0) { return lfail("%s: crop and scale main failed!", __FUNCTION__); } /* Encode the thumbnail image */ if (outputThumbnail) { ret = encodeJpegYU12(thumbSize, yu12Thumb, thumbQuality, 0, 0, &thumbCode[0], maxThumbCodeSize, thumbCodeSize); if (ret != 0) { return lfail("%s: thumbnail encodeJpegYU12 failed with %d", __FUNCTION__, ret); } } /* Combine camera characteristics with request settings to form EXIF * metadata */ common::V1_0::helper::CameraMetadata meta(mCameraCharacteristics); meta.append(setting); /* Generate EXIF object */ std::unique_ptr utils(ExifUtils::create()); /* Make sure it's initialized */ utils->initialize(); utils->setFromMetadata(meta, jpegSize.width, jpegSize.height); utils->setMake(mExifMake); utils->setModel(mExifModel); ret = utils->generateApp1(outputThumbnail ? &thumbCode[0] : nullptr, thumbCodeSize); if (!ret) { return lfail("%s: generating APP1 failed", __FUNCTION__); } /* Get internal buffer */ size_t exifDataSize = utils->getApp1Length(); const uint8_t* exifData = utils->getApp1Buffer(); /* Lock the HAL jpeg code buffer */ void* bufPtr = sHandleImporter.lock(*(halBuf.bufPtr), static_cast(halBuf.usage), maxJpegCodeSize); if (!bufPtr) { return lfail("%s: could not lock %zu bytes", __FUNCTION__, maxJpegCodeSize); } /* Encode the main jpeg image */ ret = encodeJpegYU12(jpegSize, yu12Main, jpegQuality, exifData, exifDataSize, bufPtr, maxJpegCodeSize, jpegCodeSize); /* TODO: Not sure this belongs here, maybe better to pass jpegCodeSize out * and do this when returning buffer to parent */ CameraBlob blob{CameraBlobId::JPEG, static_cast(jpegCodeSize)}; void* blobDst = reinterpret_cast(reinterpret_cast(bufPtr) + maxJpegCodeSize - sizeof(CameraBlob)); memcpy(blobDst, &blob, sizeof(CameraBlob)); /* Unlock the HAL jpeg code buffer */ int relFence = sHandleImporter.unlock(*(halBuf.bufPtr)); if (relFence >= 0) { halBuf.acquireFence = relFence; } /* Check if our JPEG actually succeeded */ if (ret != 0) { return lfail("%s: encodeJpegYU12 failed with %d", __FUNCTION__, ret); } ALOGV("%s: encoded JPEG (ret:%d) with Q:%d max size: %zu", __FUNCTION__, ret, jpegQuality, maxJpegCodeSize); return 0; } void ExternalCameraDeviceSession::OutputThread::clearIntermediateBuffers() { std::lock_guard lk(mBufferLock); mYu12Frame.reset(); mYu12ThumbFrame.reset(); mIntermediateBuffers.clear(); mMuteTestPatternFrame.clear(); mBlobBufferSize = 0; } bool ExternalCameraDeviceSession::OutputThread::threadLoop() { std::shared_ptr req; auto parent = mParent.lock(); if (parent == nullptr) { ALOGE("%s: session has been disconnected!", __FUNCTION__); return false; } // TODO: maybe we need to setup a sensor thread to dq/enq v4l frames // regularly to prevent v4l buffer queue filled with stale buffers // when app doesn't program a preview request waitForNextRequest(&req); if (req == nullptr) { // No new request, wait again return true; } auto onDeviceError = [&](auto... args) { ALOGE(args...); parent->notifyError(req->frameNumber, /*stream*/ -1, ErrorCode::ERROR_DEVICE); signalRequestDone(); return false; }; if (req->frameIn->mFourcc != V4L2_PIX_FMT_MJPEG && req->frameIn->mFourcc != V4L2_PIX_FMT_Z16) { return onDeviceError("%s: do not support V4L2 format %c%c%c%c", __FUNCTION__, req->frameIn->mFourcc & 0xFF, (req->frameIn->mFourcc >> 8) & 0xFF, (req->frameIn->mFourcc >> 16) & 0xFF, (req->frameIn->mFourcc >> 24) & 0xFF); } int res = requestBufferStart(req->buffers); if (res != 0) { ALOGE("%s: send BufferRequest failed! res %d", __FUNCTION__, res); return onDeviceError("%s: failed to send buffer request!", __FUNCTION__); } std::unique_lock lk(mBufferLock); // Convert input V4L2 frame to YU12 of the same size // TODO: see if we can save some computation by converting to YV12 here uint8_t* inData; size_t inDataSize; if (req->frameIn->getData(&inData, &inDataSize) != 0) { lk.unlock(); return onDeviceError("%s: V4L2 buffer map failed", __FUNCTION__); } // Process camera mute state auto testPatternMode = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_MODE); if (testPatternMode.count == 1) { if (mCameraMuted != (testPatternMode.data.u8[0] != ANDROID_SENSOR_TEST_PATTERN_MODE_OFF)) { mCameraMuted = !mCameraMuted; // Get solid color for test pattern, if any was set if (testPatternMode.data.u8[0] == ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR) { auto entry = req->setting.find(ANDROID_SENSOR_TEST_PATTERN_DATA); if (entry.count == 4) { // Update the mute frame if the pattern color has changed if (memcmp(entry.data.i32, mTestPatternData, sizeof(mTestPatternData)) != 0) { memcpy(mTestPatternData, entry.data.i32, sizeof(mTestPatternData)); // Fill the mute frame with the solid color, use only 8 MSB of RGGB as RGB for (int i = 0; i < mMuteTestPatternFrame.size(); i += 3) { mMuteTestPatternFrame[i] = entry.data.i32[0] >> 24; mMuteTestPatternFrame[i + 1] = entry.data.i32[1] >> 24; mMuteTestPatternFrame[i + 2] = entry.data.i32[3] >> 24; } } } } } } // TODO: in some special case maybe we can decode jpg directly to gralloc output? if (req->frameIn->mFourcc == V4L2_PIX_FMT_MJPEG) { ATRACE_BEGIN("MJPGtoI420"); res = 0; if (mCameraMuted) { res = libyuv::ConvertToI420( mMuteTestPatternFrame.data(), mMuteTestPatternFrame.size(), static_cast(mYu12FrameLayout.y), mYu12FrameLayout.yStride, static_cast(mYu12FrameLayout.cb), mYu12FrameLayout.cStride, static_cast(mYu12FrameLayout.cr), mYu12FrameLayout.cStride, 0, 0, mYu12Frame->mWidth, mYu12Frame->mHeight, mYu12Frame->mWidth, mYu12Frame->mHeight, libyuv::kRotate0, libyuv::FOURCC_RAW); } else { res = libyuv::MJPGToI420( inData, inDataSize, static_cast(mYu12FrameLayout.y), mYu12FrameLayout.yStride, static_cast(mYu12FrameLayout.cb), mYu12FrameLayout.cStride, static_cast(mYu12FrameLayout.cr), mYu12FrameLayout.cStride, mYu12Frame->mWidth, mYu12Frame->mHeight, mYu12Frame->mWidth, mYu12Frame->mHeight); } ATRACE_END(); if (res != 0) { // For some webcam, the first few V4L2 frames might be malformed... ALOGE("%s: Convert V4L2 frame to YU12 failed! res %d", __FUNCTION__, res); ATRACE_BEGIN("Wait for BufferRequest done"); res = waitForBufferRequestDone(&req->buffers); ATRACE_END(); lk.unlock(); Status st = parent->processCaptureRequestError(req); if (st != Status::OK) { return onDeviceError("%s: failed to process capture request error!", __FUNCTION__); } signalRequestDone(); return true; } } ATRACE_BEGIN("Wait for BufferRequest done"); res = waitForBufferRequestDone(&req->buffers); ATRACE_END(); if (res != 0) { // HAL buffer management buffer request can fail ALOGE("%s: wait for BufferRequest done failed! res %d", __FUNCTION__, res); lk.unlock(); Status st = parent->processCaptureRequestError(req); if (st != Status::OK) { return onDeviceError("%s: failed to process capture request error!", __FUNCTION__); } signalRequestDone(); return true; } ALOGV("%s processing new request", __FUNCTION__); const int kSyncWaitTimeoutMs = 500; for (auto& halBuf : req->buffers) { if (*(halBuf.bufPtr) == nullptr) { ALOGW("%s: buffer for stream %d missing", __FUNCTION__, halBuf.streamId); halBuf.fenceTimeout = true; } else if (halBuf.acquireFence >= 0) { int ret = sync_wait(halBuf.acquireFence, kSyncWaitTimeoutMs); if (ret) { halBuf.fenceTimeout = true; } else { ::close(halBuf.acquireFence); halBuf.acquireFence = -1; } } if (halBuf.fenceTimeout) { continue; } // Gralloc lockYCbCr the buffer switch (halBuf.format) { case PixelFormat::BLOB: { int ret = createJpegLocked(halBuf, req->setting); if (ret != 0) { lk.unlock(); return onDeviceError("%s: createJpegLocked failed with %d", __FUNCTION__, ret); } } break; case PixelFormat::Y16: { void* outLayout = sHandleImporter.lock( *(halBuf.bufPtr), static_cast(halBuf.usage), inDataSize); std::memcpy(outLayout, inData, inDataSize); int relFence = sHandleImporter.unlock(*(halBuf.bufPtr)); if (relFence >= 0) { halBuf.acquireFence = relFence; } } break; case PixelFormat::YCBCR_420_888: case PixelFormat::YV12: { android::Rect outRect{0, 0, static_cast(halBuf.width), static_cast(halBuf.height)}; android_ycbcr result = sHandleImporter.lockYCbCr( *(halBuf.bufPtr), static_cast(halBuf.usage), outRect); ALOGV("%s: outLayout y %p cb %p cr %p y_str %zu c_str %zu c_step %zu", __FUNCTION__, result.y, result.cb, result.cr, result.ystride, result.cstride, result.chroma_step); if (result.ystride > UINT32_MAX || result.cstride > UINT32_MAX || result.chroma_step > UINT32_MAX) { return onDeviceError("%s: lockYCbCr failed. Unexpected values!", __FUNCTION__); } YCbCrLayout outLayout = {.y = result.y, .cb = result.cb, .cr = result.cr, .yStride = static_cast(result.ystride), .cStride = static_cast(result.cstride), .chromaStep = static_cast(result.chroma_step)}; // Convert to output buffer size/format uint32_t outputFourcc = getFourCcFromLayout(outLayout); ALOGV("%s: converting to format %c%c%c%c", __FUNCTION__, outputFourcc & 0xFF, (outputFourcc >> 8) & 0xFF, (outputFourcc >> 16) & 0xFF, (outputFourcc >> 24) & 0xFF); YCbCrLayout cropAndScaled; ATRACE_BEGIN("cropAndScaleLocked"); int ret = cropAndScaleLocked(mYu12Frame, Size{halBuf.width, halBuf.height}, &cropAndScaled); ATRACE_END(); if (ret != 0) { lk.unlock(); return onDeviceError("%s: crop and scale failed!", __FUNCTION__); } Size sz{halBuf.width, halBuf.height}; ATRACE_BEGIN("formatConvert"); ret = formatConvert(cropAndScaled, outLayout, sz, outputFourcc); ATRACE_END(); if (ret != 0) { lk.unlock(); return onDeviceError("%s: format conversion failed!", __FUNCTION__); } int relFence = sHandleImporter.unlock(*(halBuf.bufPtr)); if (relFence >= 0) { halBuf.acquireFence = relFence; } } break; default: lk.unlock(); return onDeviceError("%s: unknown output format %x", __FUNCTION__, halBuf.format); } } // for each buffer mScaledYu12Frames.clear(); // Don't hold the lock while calling back to parent lk.unlock(); Status st = parent->processCaptureResult(req); if (st != Status::OK) { return onDeviceError("%s: failed to process capture result!", __FUNCTION__); } signalRequestDone(); return true; } // End ExternalCameraDeviceSession::OutputThread functions } // namespace implementation } // namespace device } // namespace camera } // namespace hardware } // namespace android