/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "ExtCamUtils" // #define LOG_NDEBUG 0 #include "ExternalCameraUtils.h" #include #include #include #include #include #include #include #define HAVE_JPEG // required for libyuv.h to export MJPEG decode APIs #include namespace android { namespace hardware { namespace camera { namespace external { namespace common { namespace { const int kDefaultCameraIdOffset = 100; const int kDefaultJpegBufSize = 5 << 20; // 5MB const int kDefaultNumVideoBuffer = 4; const int kDefaultNumStillBuffer = 2; const int kDefaultOrientation = 0; // suitable for natural landscape displays like tablet/TV // For phone devices 270 is better } // anonymous namespace const char* ExternalCameraConfig::kDefaultCfgPath = "/vendor/etc/external_camera_config.xml"; ExternalCameraConfig ExternalCameraConfig::loadFromCfg(const char* cfgPath) { using namespace tinyxml2; ExternalCameraConfig ret; XMLDocument configXml; XMLError err = configXml.LoadFile(cfgPath); if (err != XML_SUCCESS) { ALOGE("%s: Unable to load external camera config file '%s'. Error: %s", __FUNCTION__, cfgPath, XMLDocument::ErrorIDToName(err)); return ret; } else { ALOGI("%s: load external camera config succeeded!", __FUNCTION__); } XMLElement* extCam = configXml.FirstChildElement("ExternalCamera"); if (extCam == nullptr) { ALOGI("%s: no external camera config specified", __FUNCTION__); return ret; } XMLElement* providerCfg = extCam->FirstChildElement("Provider"); if (providerCfg == nullptr) { ALOGI("%s: no external camera provider config specified", __FUNCTION__); return ret; } XMLElement* cameraIdOffset = providerCfg->FirstChildElement("CameraIdOffset"); if (cameraIdOffset != nullptr) { ret.cameraIdOffset = std::atoi(cameraIdOffset->GetText()); } XMLElement* ignore = providerCfg->FirstChildElement("ignore"); if (ignore == nullptr) { ALOGI("%s: no internal ignored device specified", __FUNCTION__); return ret; } XMLElement* id = ignore->FirstChildElement("id"); while (id != nullptr) { const char* text = id->GetText(); if (text != nullptr) { ret.mInternalDevices.insert(text); ALOGI("%s: device %s will be ignored by external camera provider", __FUNCTION__, text); } id = id->NextSiblingElement("id"); } XMLElement* deviceCfg = extCam->FirstChildElement("Device"); if (deviceCfg == nullptr) { ALOGI("%s: no external camera device config specified", __FUNCTION__); return ret; } XMLElement* jpegBufSz = deviceCfg->FirstChildElement("MaxJpegBufferSize"); if (jpegBufSz == nullptr) { ALOGI("%s: no max jpeg buffer size specified", __FUNCTION__); } else { ret.maxJpegBufSize = jpegBufSz->UnsignedAttribute("bytes", /*Default*/ kDefaultJpegBufSize); } XMLElement* numVideoBuf = deviceCfg->FirstChildElement("NumVideoBuffers"); if (numVideoBuf == nullptr) { ALOGI("%s: no num video buffers specified", __FUNCTION__); } else { ret.numVideoBuffers = numVideoBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumVideoBuffer); } XMLElement* numStillBuf = deviceCfg->FirstChildElement("NumStillBuffers"); if (numStillBuf == nullptr) { ALOGI("%s: no num still buffers specified", __FUNCTION__); } else { ret.numStillBuffers = numStillBuf->UnsignedAttribute("count", /*Default*/ kDefaultNumStillBuffer); } XMLElement* fpsList = deviceCfg->FirstChildElement("FpsList"); if (fpsList == nullptr) { ALOGI("%s: no fps list specified", __FUNCTION__); } else { if (!updateFpsList(fpsList, ret.fpsLimits)) { return ret; } } XMLElement* depth = deviceCfg->FirstChildElement("Depth16Supported"); if (depth == nullptr) { ret.depthEnabled = false; ALOGI("%s: depth output is not enabled", __FUNCTION__); } else { ret.depthEnabled = depth->BoolAttribute("enabled", false); } if (ret.depthEnabled) { XMLElement* depthFpsList = deviceCfg->FirstChildElement("DepthFpsList"); if (depthFpsList == nullptr) { ALOGW("%s: no depth fps list specified", __FUNCTION__); } else { if (!updateFpsList(depthFpsList, ret.depthFpsLimits)) { return ret; } } } XMLElement* minStreamSize = deviceCfg->FirstChildElement("MinimumStreamSize"); if (minStreamSize == nullptr) { ALOGI("%s: no minimum stream size specified", __FUNCTION__); } else { ret.minStreamSize = { static_cast(minStreamSize->UnsignedAttribute("width", /*Default*/ 0)), static_cast(minStreamSize->UnsignedAttribute("height", /*Default*/ 0))}; } XMLElement* orientation = deviceCfg->FirstChildElement("Orientation"); if (orientation == nullptr) { ALOGI("%s: no sensor orientation specified", __FUNCTION__); } else { ret.orientation = orientation->IntAttribute("degree", /*Default*/ kDefaultOrientation); } ALOGI("%s: external camera cfg loaded: maxJpgBufSize %d," " num video buffers %d, num still buffers %d, orientation %d", __FUNCTION__, ret.maxJpegBufSize, ret.numVideoBuffers, ret.numStillBuffers, ret.orientation); for (const auto& limit : ret.fpsLimits) { ALOGI("%s: fpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height, limit.fpsUpperBound); } for (const auto& limit : ret.depthFpsLimits) { ALOGI("%s: depthFpsLimitList: %dx%d@%f", __FUNCTION__, limit.size.width, limit.size.height, limit.fpsUpperBound); } ALOGI("%s: minStreamSize: %dx%d", __FUNCTION__, ret.minStreamSize.width, ret.minStreamSize.height); return ret; } bool ExternalCameraConfig::updateFpsList(tinyxml2::XMLElement* fpsList, std::vector& fpsLimits) { using namespace tinyxml2; std::vector limits; XMLElement* row = fpsList->FirstChildElement("Limit"); while (row != nullptr) { FpsLimitation prevLimit{{0, 0}, 1000.0}; FpsLimitation limit = { {/* width */ static_cast(row->UnsignedAttribute("width", /*Default*/ 0)), /* height */ static_cast( row->UnsignedAttribute("height", /*Default*/ 0))}, /* fpsUpperBound */ row->DoubleAttribute("fpsBound", /*Default*/ 1000.0)}; if (limit.size.width <= prevLimit.size.width || limit.size.height <= prevLimit.size.height || limit.fpsUpperBound >= prevLimit.fpsUpperBound) { ALOGE("%s: FPS limit list must have increasing size and decreasing fps!" " Prev %dx%d@%f, Current %dx%d@%f", __FUNCTION__, prevLimit.size.width, prevLimit.size.height, prevLimit.fpsUpperBound, limit.size.width, limit.size.height, limit.fpsUpperBound); return false; } limits.push_back(limit); row = row->NextSiblingElement("Limit"); } fpsLimits = limits; return true; } ExternalCameraConfig::ExternalCameraConfig() : cameraIdOffset(kDefaultCameraIdOffset), maxJpegBufSize(kDefaultJpegBufSize), numVideoBuffers(kDefaultNumVideoBuffer), numStillBuffers(kDefaultNumStillBuffer), depthEnabled(false), orientation(kDefaultOrientation) { fpsLimits.push_back({/* size */ {/* width */ 640, /* height */ 480}, /* fpsUpperBound */ 30.0}); fpsLimits.push_back({/* size */ {/* width */ 1280, /* height */ 720}, /* fpsUpperBound */ 7.5}); fpsLimits.push_back( {/* size */ {/* width */ 1920, /* height */ 1080}, /* fpsUpperBound */ 5.0}); minStreamSize = {0, 0}; } } // namespace common } // namespace external namespace device { namespace implementation { double SupportedV4L2Format::FrameRate::getFramesPerSecond() const { return static_cast(durationDenominator) / durationNumerator; } Frame::Frame(uint32_t width, uint32_t height, uint32_t fourcc) : mWidth(width), mHeight(height), mFourcc(fourcc) {} Frame::~Frame() {} V4L2Frame::V4L2Frame(uint32_t w, uint32_t h, uint32_t fourcc, int bufIdx, int fd, uint32_t dataSize, uint64_t offset) : Frame(w, h, fourcc), mBufferIndex(bufIdx), mFd(fd), mDataSize(dataSize), mOffset(offset) {} V4L2Frame::~V4L2Frame() { unmap(); } int V4L2Frame::getData(uint8_t** outData, size_t* dataSize) { return map(outData, dataSize); } int V4L2Frame::map(uint8_t** data, size_t* dataSize) { if (data == nullptr || dataSize == nullptr) { ALOGI("%s: V4L2 buffer map bad argument: data %p, dataSize %p", __FUNCTION__, data, dataSize); return -EINVAL; } std::lock_guard lk(mLock); if (!mMapped) { void* addr = mmap(nullptr, mDataSize, PROT_READ, MAP_SHARED, mFd, mOffset); if (addr == MAP_FAILED) { ALOGE("%s: V4L2 buffer map failed: %s", __FUNCTION__, strerror(errno)); return -EINVAL; } mData = static_cast(addr); mMapped = true; } *data = mData; *dataSize = mDataSize; ALOGV("%s: V4L map FD %d, data %p size %zu", __FUNCTION__, mFd, mData, mDataSize); return 0; } int V4L2Frame::unmap() { std::lock_guard lk(mLock); if (mMapped) { ALOGV("%s: V4L unmap data %p size %zu", __FUNCTION__, mData, mDataSize); if (munmap(mData, mDataSize) != 0) { ALOGE("%s: V4L2 buffer unmap failed: %s", __FUNCTION__, strerror(errno)); return -EINVAL; } mMapped = false; } return 0; } AllocatedFrame::AllocatedFrame(uint32_t w, uint32_t h) : Frame(w, h, V4L2_PIX_FMT_YUV420) {} AllocatedFrame::~AllocatedFrame() {} int AllocatedFrame::getData(uint8_t** outData, size_t* dataSize) { YCbCrLayout layout; int ret = allocate(&layout); if (ret != 0) { return ret; } *outData = mData.data(); *dataSize = mBufferSize; return 0; } int AllocatedFrame::allocate(YCbCrLayout* out) { std::lock_guard lk(mLock); if ((mWidth % 2) || (mHeight % 2)) { ALOGE("%s: bad dimension %dx%d (not multiple of 2)", __FUNCTION__, mWidth, mHeight); return -EINVAL; } // This frame might be sent to jpeglib to be encoded. Since AllocatedFrame only contains YUV420, // jpeglib expects height and width of Y component to be an integral multiple of 2*DCTSIZE, // and heights and widths of Cb and Cr components to be an integral multiple of DCTSIZE. If the // image size does not meet this requirement, libjpeg expects its input to be padded to meet the // constraints. This padding is removed from the final encoded image so the content in the // padding doesn't matter. What matters is that the memory is accessible to jpeglib at the time // of encoding. // For example, if the image size is 1500x844 and DCTSIZE is 8, jpeglib expects a YUV 420 // frame with components of following sizes: // Y: 1504x848 because 1504 and 848 are the next smallest multiples of 2*8 // Cb/Cr: 752x424 which are the next smallest multiples of 8 // jpeglib takes an array of row pointers which makes vertical padding trivial when setting up // the pointers. Padding horizontally is a bit more complicated. AllocatedFrame holds the data // in a flattened buffer, which means memory accesses past a row will flow into the next logical // row. For any row of a component, we can consider the first few bytes of the next row as // padding for the current one. This is true for Y and Cb components and all but last row of the // Cr component. Reading past the last row of Cr component will lead to undefined behavior as // libjpeg attempts to read memory past the allocated buffer. To prevent undefined behavior, // the buffer allocated here is padded such that libjpeg never accesses unallocated memory when // reading the last row. Effectively, we only need to ensure that the last row of Cr component // has width that is an integral multiple of DCTSIZE. size_t dataSize = mWidth * mHeight * 3 / 2; // YUV420 size_t cbWidth = mWidth / 2; size_t requiredCbWidth = DCTSIZE * ((cbWidth + DCTSIZE - 1) / DCTSIZE); size_t padding = requiredCbWidth - cbWidth; size_t finalSize = dataSize + padding; if (mData.size() != finalSize) { mData.resize(finalSize); mBufferSize = dataSize; } if (out != nullptr) { out->y = mData.data(); out->yStride = mWidth; uint8_t* cbStart = mData.data() + mWidth * mHeight; uint8_t* crStart = cbStart + mWidth * mHeight / 4; out->cb = cbStart; out->cr = crStart; out->cStride = mWidth / 2; out->chromaStep = 1; } return 0; } int AllocatedFrame::getLayout(YCbCrLayout* out) { IMapper::Rect noCrop = {0, 0, static_cast(mWidth), static_cast(mHeight)}; return getCroppedLayout(noCrop, out); } int AllocatedFrame::getCroppedLayout(const IMapper::Rect& rect, YCbCrLayout* out) { if (out == nullptr) { ALOGE("%s: null out", __FUNCTION__); return -1; } std::lock_guard lk(mLock); if ((rect.left + rect.width) > static_cast(mWidth) || (rect.top + rect.height) > static_cast(mHeight) || (rect.left % 2) || (rect.top % 2) || (rect.width % 2) || (rect.height % 2)) { ALOGE("%s: bad rect left %d top %d w %d h %d", __FUNCTION__, rect.left, rect.top, rect.width, rect.height); return -1; } out->y = mData.data() + mWidth * rect.top + rect.left; out->yStride = mWidth; uint8_t* cbStart = mData.data() + mWidth * mHeight; uint8_t* crStart = cbStart + mWidth * mHeight / 4; out->cb = cbStart + mWidth * rect.top / 4 + rect.left / 2; out->cr = crStart + mWidth * rect.top / 4 + rect.left / 2; out->cStride = mWidth / 2; out->chromaStep = 1; return 0; } bool isAspectRatioClose(float ar1, float ar2) { constexpr float kAspectRatioMatchThres = 0.025f; // This threshold is good enough to // distinguish 4:3/16:9/20:9 1.33/1.78/2 return std::abs(ar1 - ar2) < kAspectRatioMatchThres; } aidl::android::hardware::camera::common::Status importBufferImpl( /*inout*/ std::map& circulatingBuffers, /*inout*/ HandleImporter& handleImporter, int32_t streamId, uint64_t bufId, buffer_handle_t buf, /*out*/ buffer_handle_t** outBufPtr) { using ::aidl::android::hardware::camera::common::Status; // AIDL does not have null NativeHandles. It sends empty handles instead. // We check for when the buf is empty instead of when buf is null. bool isBufEmpty = buf == nullptr || (buf->numFds == 0 && buf->numInts == 0); if (isBufEmpty && bufId == BUFFER_ID_NO_BUFFER) { ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId); return Status::ILLEGAL_ARGUMENT; } CirculatingBuffers& cbs = circulatingBuffers[streamId]; if (cbs.count(bufId) == 0) { if (buf == nullptr) { ALOGE("%s: bufferId %" PRIu64 " has null buffer handle!", __FUNCTION__, bufId); return Status::ILLEGAL_ARGUMENT; } // Register a newly seen buffer buffer_handle_t importedBuf = buf; handleImporter.importBuffer(importedBuf); if (importedBuf == nullptr) { ALOGE("%s: output buffer for stream %d is invalid!", __FUNCTION__, streamId); return Status::INTERNAL_ERROR; } else { cbs[bufId] = importedBuf; } } *outBufPtr = &cbs[bufId]; return Status::OK; } uint32_t getFourCcFromLayout(const YCbCrLayout& layout) { intptr_t cb = reinterpret_cast(layout.cb); intptr_t cr = reinterpret_cast(layout.cr); if (std::abs(cb - cr) == 1 && layout.chromaStep == 2) { // Interleaved format if (layout.cb > layout.cr) { return V4L2_PIX_FMT_NV21; } else { return V4L2_PIX_FMT_NV12; } } else if (layout.chromaStep == 1) { // Planar format if (layout.cb > layout.cr) { return V4L2_PIX_FMT_YVU420; // YV12 } else { return V4L2_PIX_FMT_YUV420; // YU12 } } else { return FLEX_YUV_GENERIC; } } int getCropRect(CroppingType ct, const Size& inSize, const Size& outSize, IMapper::Rect* out) { if (out == nullptr) { ALOGE("%s: out is null", __FUNCTION__); return -1; } uint32_t inW = inSize.width; uint32_t inH = inSize.height; uint32_t outW = outSize.width; uint32_t outH = outSize.height; // Handle special case where aspect ratio is close to input but scaled // dimension is slightly larger than input float arIn = ASPECT_RATIO(inSize); float arOut = ASPECT_RATIO(outSize); if (isAspectRatioClose(arIn, arOut)) { out->left = 0; out->top = 0; out->width = static_cast(inW); out->height = static_cast(inH); return 0; } if (ct == VERTICAL) { uint64_t scaledOutH = static_cast(outH) * inW / outW; if (scaledOutH > inH) { ALOGE("%s: Output size %dx%d cannot be vertically cropped from input size %dx%d", __FUNCTION__, outW, outH, inW, inH); return -1; } scaledOutH = scaledOutH & ~0x1; // make it multiple of 2 out->left = 0; out->top = static_cast((inH - scaledOutH) / 2) & ~0x1; out->width = static_cast(inW); out->height = static_cast(scaledOutH); ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledH %d", __FUNCTION__, inW, inH, outW, outH, out->top, static_cast(scaledOutH)); } else { uint64_t scaledOutW = static_cast(outW) * inH / outH; if (scaledOutW > inW) { ALOGE("%s: Output size %dx%d cannot be horizontally cropped from input size %dx%d", __FUNCTION__, outW, outH, inW, inH); return -1; } scaledOutW = scaledOutW & ~0x1; // make it multiple of 2 out->left = static_cast((inW - scaledOutW) / 2) & ~0x1; out->top = 0; out->width = static_cast(scaledOutW); out->height = static_cast(inH); ALOGV("%s: crop %dx%d to %dx%d: top %d, scaledW %d", __FUNCTION__, inW, inH, outW, outH, out->top, static_cast(scaledOutW)); } return 0; } int formatConvert(const YCbCrLayout& in, const YCbCrLayout& out, Size sz, uint32_t format) { int ret = 0; switch (format) { case V4L2_PIX_FMT_NV21: ret = libyuv::I420ToNV21( static_cast(in.y), static_cast(in.yStride), static_cast(in.cb), static_cast(in.cStride), static_cast(in.cr), static_cast(in.cStride), static_cast(out.y), static_cast(out.yStride), static_cast(out.cr), static_cast(out.cStride), static_cast(sz.width), static_cast(sz.height)); if (ret != 0) { ALOGE("%s: convert to NV21 buffer failed! ret %d", __FUNCTION__, ret); return ret; } break; case V4L2_PIX_FMT_NV12: ret = libyuv::I420ToNV12( static_cast(in.y), static_cast(in.yStride), static_cast(in.cb), static_cast(in.cStride), static_cast(in.cr), static_cast(in.cStride), static_cast(out.y), static_cast(out.yStride), static_cast(out.cb), static_cast(out.cStride), static_cast(sz.width), static_cast(sz.height)); if (ret != 0) { ALOGE("%s: convert to NV12 buffer failed! ret %d", __FUNCTION__, ret); return ret; } break; case V4L2_PIX_FMT_YVU420: // YV12 case V4L2_PIX_FMT_YUV420: // YU12 // TODO: maybe we can speed up here by somehow save this copy? ret = libyuv::I420Copy(static_cast(in.y), static_cast(in.yStride), static_cast(in.cb), static_cast(in.cStride), static_cast(in.cr), static_cast(in.cStride), static_cast(out.y), static_cast(out.yStride), static_cast(out.cb), static_cast(out.cStride), static_cast(out.cr), static_cast(out.cStride), static_cast(sz.width), static_cast(sz.height)); if (ret != 0) { ALOGE("%s: copy to YV12 or YU12 buffer failed! ret %d", __FUNCTION__, ret); return ret; } break; case FLEX_YUV_GENERIC: // TODO: b/72261744 write to arbitrary flexible YUV layout. Slow. ALOGE("%s: unsupported flexible yuv layout" " y %p cb %p cr %p y_str %d c_str %d c_step %d", __FUNCTION__, out.y, out.cb, out.cr, out.yStride, out.cStride, out.chromaStep); return -1; default: ALOGE("%s: unknown YUV format 0x%x!", __FUNCTION__, format); return -1; } return 0; } int encodeJpegYU12(const Size& inSz, const YCbCrLayout& inLayout, int jpegQuality, const void* app1Buffer, size_t app1Size, void* out, size_t maxOutSize, size_t& actualCodeSize) { /* libjpeg is a C library so we use C-style "inheritance" by * putting libjpeg's jpeg_destination_mgr first in our custom * struct. This allows us to cast jpeg_destination_mgr* to * CustomJpegDestMgr* when we get it passed to us in a callback */ struct CustomJpegDestMgr { struct jpeg_destination_mgr mgr; JOCTET* mBuffer; size_t mBufferSize; size_t mEncodedSize; bool mSuccess; } dmgr; jpeg_compress_struct cinfo = {}; jpeg_error_mgr jerr; /* Initialize error handling with standard callbacks, but * then override output_message (to print to ALOG) and * error_exit to set a flag and print a message instead * of killing the whole process */ cinfo.err = jpeg_std_error(&jerr); cinfo.err->output_message = [](j_common_ptr cinfo) { char buffer[JMSG_LENGTH_MAX]; /* Create the message */ (*cinfo->err->format_message)(cinfo, buffer); ALOGE("libjpeg error: %s", buffer); }; cinfo.err->error_exit = [](j_common_ptr cinfo) { (*cinfo->err->output_message)(cinfo); if (cinfo->client_data) { auto& dmgr = *reinterpret_cast(cinfo->client_data); dmgr.mSuccess = false; } }; /* Now that we initialized some callbacks, let's create our compressor */ jpeg_create_compress(&cinfo); /* Initialize our destination manager */ dmgr.mBuffer = static_cast(out); dmgr.mBufferSize = maxOutSize; dmgr.mEncodedSize = 0; dmgr.mSuccess = true; cinfo.client_data = static_cast(&dmgr); /* These lambdas become C-style function pointers and as per C++11 spec * may not capture anything */ dmgr.mgr.init_destination = [](j_compress_ptr cinfo) { auto& dmgr = reinterpret_cast(*cinfo->dest); dmgr.mgr.next_output_byte = dmgr.mBuffer; dmgr.mgr.free_in_buffer = dmgr.mBufferSize; ALOGV("%s:%d jpeg start: %p [%zu]", __FUNCTION__, __LINE__, dmgr.mBuffer, dmgr.mBufferSize); }; dmgr.mgr.empty_output_buffer = [](j_compress_ptr cinfo __unused) { ALOGV("%s:%d Out of buffer", __FUNCTION__, __LINE__); return 0; }; dmgr.mgr.term_destination = [](j_compress_ptr cinfo) { auto& dmgr = reinterpret_cast(*cinfo->dest); dmgr.mEncodedSize = dmgr.mBufferSize - dmgr.mgr.free_in_buffer; ALOGV("%s:%d Done with jpeg: %zu", __FUNCTION__, __LINE__, dmgr.mEncodedSize); }; cinfo.dest = reinterpret_cast(&dmgr); /* We are going to be using JPEG in raw data mode, so we are passing * straight subsampled planar YCbCr and it will not touch our pixel * data or do any scaling or anything */ cinfo.image_width = inSz.width; cinfo.image_height = inSz.height; cinfo.input_components = 3; cinfo.in_color_space = JCS_YCbCr; /* Initialize defaults and then override what we want */ jpeg_set_defaults(&cinfo); jpeg_set_quality(&cinfo, jpegQuality, 1); jpeg_set_colorspace(&cinfo, JCS_YCbCr); cinfo.raw_data_in = 1; cinfo.dct_method = JDCT_IFAST; /* Configure sampling factors. The sampling factor is JPEG subsampling 420 * because the source format is YUV420. Note that libjpeg sampling factors * are... a little weird. Sampling of Y=2,U=1,V=1 means there is 1 U and * 1 V value for each 2 Y values */ cinfo.comp_info[0].h_samp_factor = 2; cinfo.comp_info[0].v_samp_factor = 2; cinfo.comp_info[1].h_samp_factor = 1; cinfo.comp_info[1].v_samp_factor = 1; cinfo.comp_info[2].h_samp_factor = 1; cinfo.comp_info[2].v_samp_factor = 1; /* Start the compressor */ jpeg_start_compress(&cinfo, TRUE); /* Let's not hardcode YUV420 in 6 places... 5 was enough */ int maxVSampFactor = cinfo.max_v_samp_factor; int cVSubSampling = cinfo.comp_info[0].v_samp_factor / cinfo.comp_info[1].v_samp_factor; /* Compute our macroblock height, so we can pad our input to be vertically * macroblock aligned. No need to for horizontal alignment since AllocatedFrame already * pads horizontally */ size_t mcuV = DCTSIZE * maxVSampFactor; size_t paddedHeight = mcuV * ((inSz.height + mcuV - 1) / mcuV); /* libjpeg uses arrays of row pointers, which makes it really easy to pad * data vertically (unfortunately doesn't help horizontally) */ std::vector yLines(paddedHeight); std::vector cbLines(paddedHeight / cVSubSampling); std::vector crLines(paddedHeight / cVSubSampling); uint8_t* py = static_cast(inLayout.y); uint8_t* pcb = static_cast(inLayout.cb); uint8_t* pcr = static_cast(inLayout.cr); for (int32_t i = 0; i < paddedHeight; i++) { /* Once we are in the padding territory we still point to the last line * effectively replicating it several times ~ CLAMP_TO_EDGE */ int li = std::min(i, inSz.height - 1); yLines[i] = static_cast(py + li * inLayout.yStride); if (i < paddedHeight / cVSubSampling) { li = std::min(i, (inSz.height - 1) / cVSubSampling); cbLines[i] = static_cast(pcb + li * inLayout.cStride); crLines[i] = static_cast(pcr + li * inLayout.cStride); } } /* If APP1 data was passed in, use it */ if (app1Buffer && app1Size) { jpeg_write_marker(&cinfo, JPEG_APP0 + 1, static_cast(app1Buffer), app1Size); } /* While we still have padded height left to go, keep giving it one * macroblock at a time. */ while (cinfo.next_scanline < cinfo.image_height) { const uint32_t batchSize = DCTSIZE * maxVSampFactor; const uint32_t nl = cinfo.next_scanline; JSAMPARRAY planes[3]{&yLines[nl], &cbLines[nl / cVSubSampling], &crLines[nl / cVSubSampling]}; uint32_t done = jpeg_write_raw_data(&cinfo, planes, batchSize); if (done != batchSize) { ALOGE("%s: compressed %u lines, expected %u (total %u/%u)", __FUNCTION__, done, batchSize, cinfo.next_scanline, cinfo.image_height); return -1; } } /* This will flush everything */ jpeg_finish_compress(&cinfo); /* Grab the actual code size and set it */ actualCodeSize = dmgr.mEncodedSize; return 0; } Size getMaxThumbnailResolution(const common::V1_0::helper::CameraMetadata& chars) { Size thumbSize{0, 0}; camera_metadata_ro_entry entry = chars.find(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES); for (uint32_t i = 0; i < entry.count; i += 2) { Size sz{.width = entry.data.i32[i], .height = entry.data.i32[i + 1]}; if (sz.width * sz.height > thumbSize.width * thumbSize.height) { thumbSize = sz; } } if (thumbSize.width * thumbSize.height == 0) { ALOGW("%s: non-zero thumbnail size not available", __FUNCTION__); } return thumbSize; } void freeReleaseFences(std::vector& results) { for (auto& result : results) { // NativeHandles free fd's on desctruction. Simply delete the objects! result.inputBuffer.releaseFence.fds.clear(); // Implicitly closes fds result.inputBuffer.releaseFence.ints.clear(); for (auto& buf : result.outputBuffers) { buf.releaseFence.fds.clear(); // Implicitly closes fds buf.releaseFence.ints.clear(); } } } #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #define UPDATE(md, tag, data, size) \ do { \ if ((md).update((tag), (data), (size))) { \ ALOGE("Update " #tag " failed!"); \ return BAD_VALUE; \ } \ } while (0) status_t fillCaptureResultCommon(CameraMetadata& md, nsecs_t timestamp, camera_metadata_ro_entry& activeArraySize) { if (activeArraySize.count < 4) { ALOGE("%s: cannot find active array size!", __FUNCTION__); return -EINVAL; } // android.control // For USB camera, we don't know the AE state. Set the state to converged to // indicate the frame should be good to use. Then apps don't have to wait the // AE state. const uint8_t aeState = ANDROID_CONTROL_AE_STATE_CONVERGED; UPDATE(md, ANDROID_CONTROL_AE_STATE, &aeState, 1); const uint8_t ae_lock = ANDROID_CONTROL_AE_LOCK_OFF; UPDATE(md, ANDROID_CONTROL_AE_LOCK, &ae_lock, 1); // Set AWB state to converged to indicate the frame should be good to use. const uint8_t awbState = ANDROID_CONTROL_AWB_STATE_CONVERGED; UPDATE(md, ANDROID_CONTROL_AWB_STATE, &awbState, 1); const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF; UPDATE(md, ANDROID_CONTROL_AWB_LOCK, &awbLock, 1); const uint8_t flashState = ANDROID_FLASH_STATE_UNAVAILABLE; UPDATE(md, ANDROID_FLASH_STATE, &flashState, 1); // This means pipeline latency of X frame intervals. The maximum number is 4. const uint8_t requestPipelineMaxDepth = 4; UPDATE(md, ANDROID_REQUEST_PIPELINE_DEPTH, &requestPipelineMaxDepth, 1); // android.scaler const int32_t crop_region[] = { activeArraySize.data.i32[0], activeArraySize.data.i32[1], activeArraySize.data.i32[2], activeArraySize.data.i32[3], }; UPDATE(md, ANDROID_SCALER_CROP_REGION, crop_region, ARRAY_SIZE(crop_region)); // android.sensor UPDATE(md, ANDROID_SENSOR_TIMESTAMP, ×tamp, 1); // android.statistics const uint8_t lensShadingMapMode = ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_OFF; UPDATE(md, ANDROID_STATISTICS_LENS_SHADING_MAP_MODE, &lensShadingMapMode, 1); const uint8_t sceneFlicker = ANDROID_STATISTICS_SCENE_FLICKER_NONE; UPDATE(md, ANDROID_STATISTICS_SCENE_FLICKER, &sceneFlicker, 1); return OK; } #undef ARRAY_SIZE #undef UPDATE AllocatedV4L2Frame::AllocatedV4L2Frame(std::shared_ptr frameIn) : Frame(frameIn->mWidth, frameIn->mHeight, frameIn->mFourcc) { uint8_t* dataIn; size_t dataSize; if (frameIn->getData(&dataIn, &dataSize) != 0) { ALOGE("%s: map input V4L2 frame failed!", __FUNCTION__); return; } mData.resize(dataSize); std::memcpy(mData.data(), dataIn, dataSize); } AllocatedV4L2Frame::~AllocatedV4L2Frame() {} int AllocatedV4L2Frame::getData(uint8_t** outData, size_t* dataSize) { if (outData == nullptr || dataSize == nullptr) { ALOGE("%s: outData(%p)/dataSize(%p) must not be null", __FUNCTION__, outData, dataSize); return -1; } *outData = mData.data(); *dataSize = mData.size(); return 0; } } // namespace implementation } // namespace device } // namespace camera } // namespace hardware } // namespace android