/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "GnssHalTest" #include "gnss_hal_test.h" #include #include #include #include "Utils.h" using android::hardware::gnss::GnssClock; using android::hardware::gnss::GnssConstellationType; using android::hardware::gnss::GnssData; using android::hardware::gnss::GnssLocation; using android::hardware::gnss::GnssMeasurement; using android::hardware::gnss::IGnss; using android::hardware::gnss::IGnssCallback; using android::hardware::gnss::IGnssMeasurementInterface; using android::hardware::gnss::common::Utils; using GnssConstellationTypeV2_0 = android::hardware::gnss::V2_0::GnssConstellationType; namespace { // The difference between the mean of the received intervals and the requested interval should not // be larger mInterval * ALLOWED_MEAN_ERROR_RATIO constexpr double ALLOWED_MEAN_ERROR_RATIO = 0.25; // The standard deviation computed for the deltas should not be bigger // than mInterval * ALLOWED_STDEV_ERROR_RATIO or MIN_STDEV_MS, whichever is higher. constexpr double ALLOWED_STDEV_ERROR_RATIO = 0.50; constexpr double MIN_STDEV_MS = 1000; double computeMean(std::vector& deltas) { long accumulator = 0; for (auto& d : deltas) { accumulator += d; } return accumulator / deltas.size(); } double computeStdev(double mean, std::vector& deltas) { double accumulator = 0; for (auto& d : deltas) { double diff = d - mean; accumulator += diff * diff; } return std::sqrt(accumulator / (deltas.size() - 1)); } } // anonymous namespace void GnssHalTest::SetUp() { // Get AIDL handle aidl_gnss_hal_ = android::waitForDeclaredService(String16(GetParam().c_str())); ASSERT_NE(aidl_gnss_hal_, nullptr); ALOGD("AIDL Interface Version = %d", aidl_gnss_hal_->getInterfaceVersion()); if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { const auto& hidlInstanceNames = android::hardware::getAllHalInstanceNames( android::hardware::gnss::V2_1::IGnss::descriptor); gnss_hal_ = IGnss_V2_1::getService(hidlInstanceNames[0]); ASSERT_NE(gnss_hal_, nullptr); } SetUpGnssCallback(); } void GnssHalTest::SetUpGnssCallback() { aidl_gnss_cb_ = new GnssCallbackAidl(); ASSERT_NE(aidl_gnss_cb_, nullptr); auto status = aidl_gnss_hal_->setCallback(aidl_gnss_cb_); if (!status.isOk()) { ALOGE("Failed to setCallback"); } ASSERT_TRUE(status.isOk()); /* * Capabilities callback should trigger. */ EXPECT_TRUE(aidl_gnss_cb_->capabilities_cbq_.retrieve(aidl_gnss_cb_->last_capabilities_, TIMEOUT_SEC)); EXPECT_EQ(aidl_gnss_cb_->capabilities_cbq_.calledCount(), 1); if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { // Invoke the super method. GnssHalTestTemplate::SetUpGnssCallback(); } else { /* * SystemInfo callback should trigger */ EXPECT_TRUE(aidl_gnss_cb_->info_cbq_.retrieve(aidl_gnss_cb_->last_info_, TIMEOUT_SEC)); EXPECT_EQ(aidl_gnss_cb_->info_cbq_.calledCount(), 1); } /* * SignalTypeCapabilities callback should trigger. */ if (aidl_gnss_hal_->getInterfaceVersion() >= 3) { EXPECT_TRUE(aidl_gnss_cb_->signal_type_capabilities_cbq_.retrieve( aidl_gnss_cb_->last_signal_type_capabilities, TIMEOUT_SEC)); EXPECT_EQ(aidl_gnss_cb_->signal_type_capabilities_cbq_.calledCount(), 1); } } void GnssHalTest::TearDown() { GnssHalTestTemplate::TearDown(); if (aidl_gnss_hal_ != nullptr) { aidl_gnss_hal_->close(); aidl_gnss_hal_ = nullptr; } // Set to nullptr to destruct the callback event queues and warn of any unprocessed events. aidl_gnss_cb_ = nullptr; } void GnssHalTest::CheckLocation(const GnssLocation& location, bool check_speed) { Utils::checkLocation(location, check_speed, /* check_more_accuracies= */ true); } void GnssHalTest::SetPositionMode(const int min_interval_msec, const bool low_power_mode) { if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { // Invoke the super method. return GnssHalTestTemplate::SetPositionMode(min_interval_msec, low_power_mode); } const int kPreferredAccuracy = 0; // Ideally perfect (matches GnssLocationProvider) const int kPreferredTimeMsec = 0; // Ideally immediate IGnss::PositionModeOptions options; options.mode = IGnss::GnssPositionMode::MS_BASED; options.recurrence = IGnss::GnssPositionRecurrence::RECURRENCE_PERIODIC; options.minIntervalMs = min_interval_msec; options.preferredAccuracyMeters = kPreferredAccuracy; options.preferredTimeMs = kPreferredTimeMsec; options.lowPowerMode = low_power_mode; auto status = aidl_gnss_hal_->setPositionMode(options); ASSERT_TRUE(status.isOk()); } bool GnssHalTest::StartAndCheckFirstLocation(const int min_interval_msec, const bool low_power_mode, const bool start_sv_status, const bool start_nmea) { if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { // Invoke the super method. return GnssHalTestTemplate::StartAndCheckFirstLocation(min_interval_msec, low_power_mode); } SetPositionMode(min_interval_msec, low_power_mode); if (start_sv_status) { auto status = aidl_gnss_hal_->startSvStatus(); EXPECT_TRUE(status.isOk()); } if (start_nmea) { auto status = aidl_gnss_hal_->startNmea(); EXPECT_TRUE(status.isOk()); } auto status = aidl_gnss_hal_->start(); EXPECT_TRUE(status.isOk()); /* * GnssLocationProvider support of AGPS SUPL & XtraDownloader is not available in VTS, * so allow time to demodulate ephemeris over the air. */ const int kFirstGnssLocationTimeoutSeconds = 75; EXPECT_TRUE(aidl_gnss_cb_->location_cbq_.retrieve(aidl_gnss_cb_->last_location_, kFirstGnssLocationTimeoutSeconds)); int locationCalledCount = aidl_gnss_cb_->location_cbq_.calledCount(); EXPECT_EQ(locationCalledCount, 1); if (locationCalledCount > 0) { // don't require speed on first fix CheckLocation(aidl_gnss_cb_->last_location_, false); return true; } return false; } bool GnssHalTest::StartAndCheckFirstLocation(const int min_interval_msec, const bool low_power_mode) { return StartAndCheckFirstLocation(min_interval_msec, low_power_mode, /* start_sv_status= */ true, /* start_nmea= */ true); } void GnssHalTest::StopAndClearLocations() { ALOGD("StopAndClearLocations"); if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { // Invoke the super method. return GnssHalTestTemplate::StopAndClearLocations(); } auto status = aidl_gnss_hal_->stopSvStatus(); EXPECT_TRUE(status.isOk()); status = aidl_gnss_hal_->stopNmea(); EXPECT_TRUE(status.isOk()); status = aidl_gnss_hal_->stop(); EXPECT_TRUE(status.isOk()); /* * Clear notify/waiting counter, allowing up till the timeout after * the last reply for final startup messages to arrive (esp. system * info.) */ while (aidl_gnss_cb_->location_cbq_.retrieve(aidl_gnss_cb_->last_location_, TIMEOUT_SEC)) { } aidl_gnss_cb_->location_cbq_.reset(); } void GnssHalTest::StartAndCheckLocations(const int count, const bool start_sv_status, const bool start_nmea) { if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { // Invoke the super method. return GnssHalTestTemplate::StartAndCheckLocations(count); } const int kMinIntervalMsec = 500; const int kLocationTimeoutSubsequentSec = 2; const bool kLowPowerMode = false; EXPECT_TRUE(StartAndCheckFirstLocation(kMinIntervalMsec, kLowPowerMode, start_sv_status, start_nmea)); for (int i = 1; i < count; i++) { EXPECT_TRUE(aidl_gnss_cb_->location_cbq_.retrieve(aidl_gnss_cb_->last_location_, kLocationTimeoutSubsequentSec)); int locationCalledCount = aidl_gnss_cb_->location_cbq_.calledCount(); EXPECT_EQ(locationCalledCount, i + 1); // Don't cause confusion by checking details if no location yet if (locationCalledCount > 0) { // Should be more than 1 location by now, but if not, still don't check first fix speed CheckLocation(aidl_gnss_cb_->last_location_, locationCalledCount > 1); } } } void GnssHalTest::StartAndCheckLocations(const int count) { StartAndCheckLocations(count, /* start_sv_status= */ true, /* start_nmea= */ true); } std::list> GnssHalTest::convertToAidl( const std::list>& sv_info_list) { std::list> aidl_sv_info_list; for (const auto& sv_info_vec : sv_info_list) { std::vector aidl_sv_info_vec; for (const auto& sv_info : sv_info_vec) { IGnssCallback::GnssSvInfo aidl_sv_info; aidl_sv_info.svid = sv_info.v2_0.v1_0.svid; aidl_sv_info.constellation = static_cast(sv_info.v2_0.constellation); aidl_sv_info.cN0Dbhz = sv_info.v2_0.v1_0.cN0Dbhz; aidl_sv_info.basebandCN0DbHz = sv_info.basebandCN0DbHz; aidl_sv_info.elevationDegrees = sv_info.v2_0.v1_0.elevationDegrees; aidl_sv_info.azimuthDegrees = sv_info.v2_0.v1_0.azimuthDegrees; aidl_sv_info.carrierFrequencyHz = (int64_t)sv_info.v2_0.v1_0.carrierFrequencyHz; aidl_sv_info.svFlag = (int)sv_info.v2_0.v1_0.svFlag; aidl_sv_info_vec.push_back(aidl_sv_info); } aidl_sv_info_list.push_back(aidl_sv_info_vec); } return aidl_sv_info_list; } /* * FindStrongFrequentNonGpsSource: * * Search through a GnssSvStatus list for the strongest non-GPS satellite observed enough times * * returns the strongest source, * or a source with constellation == UNKNOWN if none are found sufficient times */ BlocklistedSource GnssHalTest::FindStrongFrequentNonGpsSource( const std::list> sv_info_list, const int min_observations) { return FindStrongFrequentNonGpsSource(convertToAidl(sv_info_list), min_observations); } BlocklistedSource GnssHalTest::FindStrongFrequentNonGpsSource( const std::list> sv_info_list, const int min_observations) { std::map mapSignals; for (const auto& sv_info_vec : sv_info_list) { for (uint32_t iSv = 0; iSv < sv_info_vec.size(); iSv++) { const auto& gnss_sv = sv_info_vec[iSv]; if ((gnss_sv.svFlag & (int)IGnssCallback::GnssSvFlags::USED_IN_FIX) && (gnss_sv.constellation != GnssConstellationType::GPS)) { ComparableBlocklistedSource source; source.id.svid = gnss_sv.svid; source.id.constellation = gnss_sv.constellation; const auto& itSignal = mapSignals.find(source); if (itSignal == mapSignals.end()) { SignalCounts counts; counts.observations = 1; counts.max_cn0_dbhz = gnss_sv.cN0Dbhz; mapSignals.insert( std::pair(source, counts)); } else { itSignal->second.observations++; if (itSignal->second.max_cn0_dbhz < gnss_sv.cN0Dbhz) { itSignal->second.max_cn0_dbhz = gnss_sv.cN0Dbhz; } } } } } float max_cn0_dbhz_with_sufficient_count = 0.; int total_observation_count = 0; int blocklisted_source_count_observation = 0; ComparableBlocklistedSource source_to_blocklist; // initializes to zero = UNKNOWN constellation for (auto const& pairSignal : mapSignals) { total_observation_count += pairSignal.second.observations; if ((pairSignal.second.observations >= min_observations) && (pairSignal.second.max_cn0_dbhz > max_cn0_dbhz_with_sufficient_count)) { source_to_blocklist = pairSignal.first; blocklisted_source_count_observation = pairSignal.second.observations; max_cn0_dbhz_with_sufficient_count = pairSignal.second.max_cn0_dbhz; } } ALOGD("Among %d observations, chose svid %d, constellation %d, " "with %d observations at %.1f max CNo", total_observation_count, source_to_blocklist.id.svid, (int)source_to_blocklist.id.constellation, blocklisted_source_count_observation, max_cn0_dbhz_with_sufficient_count); return source_to_blocklist.id; } GnssConstellationType GnssHalTest::startLocationAndGetNonGpsConstellation( const int locations_to_await, const int gnss_sv_info_list_timeout) { if (aidl_gnss_hal_->getInterfaceVersion() <= 1) { return static_cast( GnssHalTestTemplate::startLocationAndGetNonGpsConstellation( locations_to_await, gnss_sv_info_list_timeout)); } aidl_gnss_cb_->location_cbq_.reset(); StartAndCheckLocations(locations_to_await); const int location_called_count = aidl_gnss_cb_->location_cbq_.calledCount(); // Tolerate 1 less sv status to handle edge cases in reporting. int sv_info_list_cbq_size = aidl_gnss_cb_->sv_info_list_cbq_.size(); EXPECT_GE(sv_info_list_cbq_size + 1, locations_to_await); ALOGD("Observed %d GnssSvInfo, while awaiting %d Locations (%d received)", sv_info_list_cbq_size, locations_to_await, location_called_count); // Find first non-GPS constellation to blocklist GnssConstellationType constellation_to_blocklist = GnssConstellationType::UNKNOWN; for (int i = 0; i < sv_info_list_cbq_size; ++i) { std::vector sv_info_vec; aidl_gnss_cb_->sv_info_list_cbq_.retrieve(sv_info_vec, gnss_sv_info_list_timeout); for (uint32_t iSv = 0; iSv < sv_info_vec.size(); iSv++) { auto& gnss_sv = sv_info_vec[iSv]; if ((gnss_sv.svFlag & (uint32_t)IGnssCallback::GnssSvFlags::USED_IN_FIX) && (gnss_sv.constellation != GnssConstellationType::UNKNOWN) && (gnss_sv.constellation != GnssConstellationType::GPS)) { // found a non-GPS constellation constellation_to_blocklist = gnss_sv.constellation; break; } } if (constellation_to_blocklist != GnssConstellationType::UNKNOWN) { break; } } if (constellation_to_blocklist == GnssConstellationType::UNKNOWN) { ALOGI("No non-GPS constellations found, constellation blocklist test less effective."); // Proceed functionally to blocklist something. constellation_to_blocklist = GnssConstellationType::GLONASS; } return constellation_to_blocklist; } void GnssHalTest::checkGnssMeasurementClockFields(const GnssData& measurement) { Utils::checkElapsedRealtime(measurement.elapsedRealtime); ASSERT_TRUE(measurement.clock.gnssClockFlags >= 0 && measurement.clock.gnssClockFlags <= (GnssClock::HAS_LEAP_SECOND | GnssClock::HAS_TIME_UNCERTAINTY | GnssClock::HAS_FULL_BIAS | GnssClock::HAS_BIAS | GnssClock::HAS_BIAS_UNCERTAINTY | GnssClock::HAS_DRIFT | GnssClock::HAS_DRIFT_UNCERTAINTY)); } void GnssHalTest::checkGnssMeasurementFlags(const GnssMeasurement& measurement) { ASSERT_TRUE(measurement.flags >= 0 && measurement.flags <= (GnssMeasurement::HAS_SNR | GnssMeasurement::HAS_CARRIER_FREQUENCY | GnssMeasurement::HAS_CARRIER_CYCLES | GnssMeasurement::HAS_CARRIER_PHASE | GnssMeasurement::HAS_CARRIER_PHASE_UNCERTAINTY | GnssMeasurement::HAS_AUTOMATIC_GAIN_CONTROL | GnssMeasurement::HAS_FULL_ISB | GnssMeasurement::HAS_FULL_ISB_UNCERTAINTY | GnssMeasurement::HAS_SATELLITE_ISB | GnssMeasurement::HAS_SATELLITE_ISB_UNCERTAINTY | GnssMeasurement::HAS_SATELLITE_PVT | GnssMeasurement::HAS_CORRELATION_VECTOR)); } void GnssHalTest::checkGnssMeasurementFields(const GnssMeasurement& measurement, const GnssData& data) { checkGnssMeasurementFlags(measurement); // Verify CodeType is valid. ASSERT_NE(measurement.signalType.codeType, ""); // Verify basebandCn0DbHz is valid. ASSERT_TRUE(measurement.basebandCN0DbHz > 0.0 && measurement.basebandCN0DbHz <= 65.0); if (((measurement.flags & GnssMeasurement::HAS_FULL_ISB) > 0) && ((measurement.flags & GnssMeasurement::HAS_FULL_ISB_UNCERTAINTY) > 0) && ((measurement.flags & GnssMeasurement::HAS_SATELLITE_ISB) > 0) && ((measurement.flags & GnssMeasurement::HAS_SATELLITE_ISB_UNCERTAINTY) > 0)) { GnssConstellationType referenceConstellation = data.clock.referenceSignalTypeForIsb.constellation; double carrierFrequencyHz = data.clock.referenceSignalTypeForIsb.carrierFrequencyHz; std::string codeType = data.clock.referenceSignalTypeForIsb.codeType; ASSERT_TRUE(referenceConstellation >= GnssConstellationType::UNKNOWN && referenceConstellation <= GnssConstellationType::IRNSS); ASSERT_TRUE(carrierFrequencyHz > 0); ASSERT_NE(codeType, ""); ASSERT_TRUE(std::abs(measurement.fullInterSignalBiasNs) < 1.0e6); ASSERT_TRUE(measurement.fullInterSignalBiasUncertaintyNs >= 0); ASSERT_TRUE(std::abs(measurement.satelliteInterSignalBiasNs) < 1.0e6); ASSERT_TRUE(measurement.satelliteInterSignalBiasUncertaintyNs >= 0); } } void GnssHalTest::startMeasurementWithInterval( int intervalMs, const sp& iGnssMeasurement, sp& callback) { ALOGD("Start requesting measurement at interval of %d millis.", intervalMs); IGnssMeasurementInterface::Options options; options.intervalMs = intervalMs; auto status = iGnssMeasurement->setCallbackWithOptions(callback, options); ASSERT_TRUE(status.isOk()); } void GnssHalTest::collectMeasurementIntervals(const sp& callback, const int numMeasurementEvents, const int timeoutSeconds, std::vector& deltasMs) { callback->gnss_data_cbq_.reset(); // throw away the initial measurements if any int64_t lastElapsedRealtimeMillis = 0; for (int i = 0; i < numMeasurementEvents; i++) { GnssData lastGnssData; ASSERT_TRUE(callback->gnss_data_cbq_.retrieve(lastGnssData, timeoutSeconds)); EXPECT_EQ(callback->gnss_data_cbq_.calledCount(), i + 1); ASSERT_TRUE(lastGnssData.measurements.size() > 0); // Validity check GnssData fields checkGnssMeasurementClockFields(lastGnssData); for (const auto& measurement : lastGnssData.measurements) { checkGnssMeasurementFields(measurement, lastGnssData); } long currentElapsedRealtimeMillis = lastGnssData.elapsedRealtime.timestampNs * 1e-6; if (lastElapsedRealtimeMillis != 0) { deltasMs.push_back(currentElapsedRealtimeMillis - lastElapsedRealtimeMillis); } lastElapsedRealtimeMillis = currentElapsedRealtimeMillis; } } void GnssHalTest::collectSvInfoListTimestamps(const int numMeasurementEvents, const int timeoutSeconds, std::vector& deltasMs) { aidl_gnss_cb_->sv_info_list_timestamps_millis_cbq_.reset(); aidl_gnss_cb_->sv_info_list_cbq_.reset(); auto status = aidl_gnss_hal_->startSvStatus(); EXPECT_TRUE(status.isOk()); long lastElapsedRealtimeMillis = 0; for (int i = 0; i < numMeasurementEvents; i++) { long timeStamp; ASSERT_TRUE(aidl_gnss_cb_->sv_info_list_timestamps_millis_cbq_.retrieve(timeStamp, timeoutSeconds)); if (lastElapsedRealtimeMillis != 0) { deltasMs.push_back(timeStamp - lastElapsedRealtimeMillis); } lastElapsedRealtimeMillis = timeStamp; } status = aidl_gnss_hal_->stopSvStatus(); EXPECT_TRUE(status.isOk()); } void GnssHalTest::checkGnssDataFields(const sp& callback, const int numMeasurementEvents, const int timeoutSeconds, const bool isFullTracking) { for (int i = 0; i < numMeasurementEvents; i++) { GnssData lastGnssData; ASSERT_TRUE(callback->gnss_data_cbq_.retrieve(lastGnssData, timeoutSeconds)); EXPECT_EQ(callback->gnss_data_cbq_.calledCount(), i + 1); ASSERT_TRUE(lastGnssData.measurements.size() > 0); // Validity check GnssData fields checkGnssMeasurementClockFields(lastGnssData); if (aidl_gnss_hal_->getInterfaceVersion() >= 3) { if (isFullTracking) { EXPECT_EQ(lastGnssData.isFullTracking, isFullTracking); } } for (const auto& measurement : lastGnssData.measurements) { checkGnssMeasurementFields(measurement, lastGnssData); } } } void GnssHalTest::assertMeanAndStdev(int intervalMs, std::vector& deltasMs) { double mean = computeMean(deltasMs); double stdev = computeStdev(mean, deltasMs); EXPECT_TRUE(std::abs(mean - intervalMs) <= intervalMs * ALLOWED_MEAN_ERROR_RATIO) << "Test failed, because the mean of intervals is " << mean << " millis. The test requires that abs(" << mean << " - " << intervalMs << ") <= " << intervalMs * ALLOWED_MEAN_ERROR_RATIO << " millis, when the requested interval is " << intervalMs << " millis."; double maxStdev = std::max(MIN_STDEV_MS, intervalMs * ALLOWED_STDEV_ERROR_RATIO); EXPECT_TRUE(stdev <= maxStdev) << "Test failed, because the stdev of intervals is " << stdev << " millis, which must be <= " << maxStdev << " millis, when the requested interval is " << intervalMs << " millis."; ALOGD("Mean of interval deltas in millis: %.1lf", mean); ALOGD("Stdev of interval deltas in millis: %.1lf", stdev); }