/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Conversions.h" #include <android-base/logging.h> #include <android/hardware/neuralnetworks/1.0/types.h> #include <nnapi/OperandTypes.h> #include <nnapi/OperationTypes.h> #include <nnapi/Result.h> #include <nnapi/SharedMemory.h> #include <nnapi/TypeUtils.h> #include <nnapi/Types.h> #include <nnapi/Validation.h> #include <nnapi/hal/CommonUtils.h> #include <algorithm> #include <functional> #include <iterator> #include <memory> #include <type_traits> #include <utility> #include <variant> #include "Utils.h" #ifdef __ANDROID__ #include <android/hardware_buffer.h> #include <vndk/hardware_buffer.h> #endif // __ANDROID__ namespace { template <typename Type> constexpr std::underlying_type_t<Type> underlyingType(Type value) { return static_cast<std::underlying_type_t<Type>>(value); } } // namespace namespace android::nn { namespace { using hardware::hidl_handle; using hardware::hidl_memory; using hardware::hidl_vec; template <typename Input> using UnvalidatedConvertOutput = std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>; template <typename Type> GeneralResult<std::vector<UnvalidatedConvertOutput<Type>>> unvalidatedConvert( const hidl_vec<Type>& arguments) { std::vector<UnvalidatedConvertOutput<Type>> canonical; canonical.reserve(arguments.size()); for (const auto& argument : arguments) { canonical.push_back(NN_TRY(nn::unvalidatedConvert(argument))); } return canonical; } template <typename Type> GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& halObject) { auto canonical = NN_TRY(nn::unvalidatedConvert(halObject)); NN_TRY(hal::V1_0::utils::compliantVersion(canonical)); return canonical; } nn::GeneralResult<nn::Memory::Unknown::Handle> unknownHandleFromNativeHandle( const native_handle_t* handle) { if (handle == nullptr) { return NN_ERROR() << "unknownHandleFromNativeHandle failed because handle is nullptr"; } std::vector<base::unique_fd> fds = NN_TRY(nn::dupFds(handle->data + 0, handle->data + handle->numFds)); std::vector<int> ints(handle->data + handle->numFds, handle->data + handle->numFds + handle->numInts); return nn::Memory::Unknown::Handle{.fds = std::move(fds), .ints = std::move(ints)}; } nn::GeneralResult<nn::SharedMemory> createSharedMemoryFromHidlMemory(const hidl_memory& memory) { CHECK_LE(memory.size(), std::numeric_limits<size_t>::max()); if (!memory.valid()) { return NN_ERROR() << "Unable to convert invalid hidl_memory"; } if (memory.name() == "ashmem") { if (memory.handle()->numFds != 1) { return NN_ERROR() << "Unable to convert invalid ashmem memory object with " << memory.handle()->numFds << " numFds, but expected 1"; } if (memory.handle()->numInts != 0) { return NN_ERROR() << "Unable to convert invalid ashmem memory object with " << memory.handle()->numInts << " numInts, but expected 0"; } auto fd = NN_TRY(nn::dupFd(memory.handle()->data[0])); auto handle = nn::Memory::Ashmem{ .fd = std::move(fd), .size = static_cast<size_t>(memory.size()), }; return std::make_shared<const nn::Memory>(nn::Memory{.handle = std::move(handle)}); } if (memory.name() == "mmap_fd") { if (memory.handle()->numFds != 1) { return NN_ERROR() << "Unable to convert invalid mmap_fd memory object with " << memory.handle()->numFds << " numFds, but expected 1"; } if (memory.handle()->numInts != 3) { return NN_ERROR() << "Unable to convert invalid mmap_fd memory object with " << memory.handle()->numInts << " numInts, but expected 3"; } const int fd = memory.handle()->data[0]; const int prot = memory.handle()->data[1]; const int lower = memory.handle()->data[2]; const int higher = memory.handle()->data[3]; const size_t offset = nn::getOffsetFromInts(lower, higher); return nn::createSharedMemoryFromFd(static_cast<size_t>(memory.size()), prot, fd, offset); } if (memory.name() != "hardware_buffer_blob") { auto handle = NN_TRY(unknownHandleFromNativeHandle(memory.handle())); auto unknown = nn::Memory::Unknown{ .handle = std::move(handle), .size = static_cast<size_t>(memory.size()), .name = memory.name(), }; return std::make_shared<const nn::Memory>(nn::Memory{.handle = std::move(unknown)}); } #ifdef __ANDROID__ constexpr auto roundUpToMultiple = [](uint32_t value, uint32_t multiple) -> uint32_t { return (value + multiple - 1) / multiple * multiple; }; const auto size = memory.size(); const auto format = AHARDWAREBUFFER_FORMAT_BLOB; const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN; const uint32_t width = size; const uint32_t height = 1; // height is always 1 for BLOB mode AHardwareBuffer. const uint32_t layers = 1; // layers is always 1 for BLOB mode AHardwareBuffer. // AHardwareBuffer_createFromHandle() might fail because an allocator // expects a specific stride value. In that case, we try to guess it by // aligning the width to small powers of 2. // TODO(b/174120849): Avoid stride assumptions. AHardwareBuffer* hardwareBuffer = nullptr; status_t status = UNKNOWN_ERROR; for (uint32_t alignment : {1, 4, 32, 64, 128, 2, 8, 16}) { const uint32_t stride = roundUpToMultiple(width, alignment); AHardwareBuffer_Desc desc{ .width = width, .height = height, .layers = layers, .format = format, .usage = usage, .stride = stride, }; status = AHardwareBuffer_createFromHandle(&desc, memory.handle(), AHARDWAREBUFFER_CREATE_FROM_HANDLE_METHOD_CLONE, &hardwareBuffer); if (status == NO_ERROR) { break; } } if (status != NO_ERROR) { return NN_ERROR(nn::ErrorStatus::GENERAL_FAILURE) << "Can't create AHardwareBuffer from handle. Error: " << status; } return nn::createSharedMemoryFromAHWB(hardwareBuffer, /*takeOwnership=*/true); #else // __ANDROID__ LOG(FATAL) << "nn::GeneralResult<nn::SharedMemory> createSharedMemoryFromHidlMemory(const " "hidl_memory& memory): Not Available on Host Build"; return (NN_ERROR() << "createSharedMemoryFromHidlMemory failed") . operator nn::GeneralResult<nn::SharedMemory>(); #endif // __ANDROID__ } } // anonymous namespace GeneralResult<OperandType> unvalidatedConvert(const hal::V1_0::OperandType& operandType) { return static_cast<OperandType>(operandType); } GeneralResult<OperationType> unvalidatedConvert(const hal::V1_0::OperationType& operationType) { return static_cast<OperationType>(operationType); } GeneralResult<Operand::LifeTime> unvalidatedConvert(const hal::V1_0::OperandLifeTime& lifetime) { return static_cast<Operand::LifeTime>(lifetime); } GeneralResult<DeviceStatus> unvalidatedConvert(const hal::V1_0::DeviceStatus& deviceStatus) { return static_cast<DeviceStatus>(deviceStatus); } GeneralResult<Capabilities::PerformanceInfo> unvalidatedConvert( const hal::V1_0::PerformanceInfo& performanceInfo) { return Capabilities::PerformanceInfo{ .execTime = performanceInfo.execTime, .powerUsage = performanceInfo.powerUsage, }; } GeneralResult<Capabilities> unvalidatedConvert(const hal::V1_0::Capabilities& capabilities) { const auto quantized8Performance = NN_TRY(unvalidatedConvert(capabilities.quantized8Performance)); const auto float32Performance = NN_TRY(unvalidatedConvert(capabilities.float32Performance)); auto table = hal::utils::makeQuantized8PerformanceConsistentWithP(float32Performance, quantized8Performance); return Capabilities{ .relaxedFloat32toFloat16PerformanceScalar = float32Performance, .relaxedFloat32toFloat16PerformanceTensor = float32Performance, .operandPerformance = std::move(table), }; } GeneralResult<DataLocation> unvalidatedConvert(const hal::V1_0::DataLocation& location) { return DataLocation{ .poolIndex = location.poolIndex, .offset = location.offset, .length = location.length, }; } GeneralResult<Operand> unvalidatedConvert(const hal::V1_0::Operand& operand) { const auto type = NN_TRY(unvalidatedConvert(operand.type)); const auto lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)); const auto location = NN_TRY(unvalidatedConvert(operand.location)); return Operand{ .type = type, .dimensions = operand.dimensions, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = lifetime, .location = location, }; } GeneralResult<Operation> unvalidatedConvert(const hal::V1_0::Operation& operation) { const auto type = NN_TRY(unvalidatedConvert(operation.type)); return Operation{ .type = type, .inputs = operation.inputs, .outputs = operation.outputs, }; } GeneralResult<Model::OperandValues> unvalidatedConvert(const hidl_vec<uint8_t>& operandValues) { return Model::OperandValues(operandValues.data(), operandValues.size()); } GeneralResult<SharedHandle> unvalidatedConvert(const hidl_handle& handle) { if (handle.getNativeHandle() == nullptr) { return nullptr; } if (handle->numFds != 1 || handle->numInts != 0) { return NN_ERROR() << "unvalidatedConvert failed because handle does not only hold a single fd"; } auto duplicatedFd = NN_TRY(nn::dupFd(handle->data[0])); return std::make_shared<const Handle>(std::move(duplicatedFd)); } GeneralResult<SharedMemory> unvalidatedConvert(const hidl_memory& memory) { return createSharedMemoryFromHidlMemory(memory); } GeneralResult<Model> unvalidatedConvert(const hal::V1_0::Model& model) { auto operations = NN_TRY(unvalidatedConvert(model.operations)); // Verify number of consumers. const auto numberOfConsumers = NN_TRY(countNumberOfConsumers(model.operands.size(), operations)); CHECK(model.operands.size() == numberOfConsumers.size()); for (size_t i = 0; i < model.operands.size(); ++i) { if (model.operands[i].numberOfConsumers != numberOfConsumers[i]) { return NN_ERROR(ErrorStatus::GENERAL_FAILURE) << "Invalid numberOfConsumers for operand " << i << ", expected " << numberOfConsumers[i] << " but found " << model.operands[i].numberOfConsumers; } } auto operands = NN_TRY(unvalidatedConvert(model.operands)); auto main = Model::Subgraph{ .operands = std::move(operands), .operations = std::move(operations), .inputIndexes = model.inputIndexes, .outputIndexes = model.outputIndexes, }; auto operandValues = NN_TRY(unvalidatedConvert(model.operandValues)); auto pools = NN_TRY(unvalidatedConvert(model.pools)); return Model{ .main = std::move(main), .operandValues = std::move(operandValues), .pools = std::move(pools), }; } GeneralResult<Request::Argument> unvalidatedConvert(const hal::V1_0::RequestArgument& argument) { const auto lifetime = argument.hasNoValue ? Request::Argument::LifeTime::NO_VALUE : Request::Argument::LifeTime::POOL; const auto location = NN_TRY(unvalidatedConvert(argument.location)); return Request::Argument{ .lifetime = lifetime, .location = location, .dimensions = argument.dimensions, }; } GeneralResult<Request> unvalidatedConvert(const hal::V1_0::Request& request) { auto memories = NN_TRY(unvalidatedConvert(request.pools)); std::vector<Request::MemoryPool> pools; pools.reserve(memories.size()); std::move(memories.begin(), memories.end(), std::back_inserter(pools)); auto inputs = NN_TRY(unvalidatedConvert(request.inputs)); auto outputs = NN_TRY(unvalidatedConvert(request.outputs)); return Request{ .inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools), }; } GeneralResult<ErrorStatus> unvalidatedConvert(const hal::V1_0::ErrorStatus& status) { switch (status) { case hal::V1_0::ErrorStatus::NONE: case hal::V1_0::ErrorStatus::DEVICE_UNAVAILABLE: case hal::V1_0::ErrorStatus::GENERAL_FAILURE: case hal::V1_0::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: case hal::V1_0::ErrorStatus::INVALID_ARGUMENT: return static_cast<ErrorStatus>(status); } return NN_ERROR(ErrorStatus::GENERAL_FAILURE) << "Invalid ErrorStatus " << underlyingType(status); } GeneralResult<DeviceStatus> convert(const hal::V1_0::DeviceStatus& deviceStatus) { return validatedConvert(deviceStatus); } GeneralResult<Capabilities> convert(const hal::V1_0::Capabilities& capabilities) { return validatedConvert(capabilities); } GeneralResult<Model> convert(const hal::V1_0::Model& model) { return validatedConvert(model); } GeneralResult<Request> convert(const hal::V1_0::Request& request) { return validatedConvert(request); } GeneralResult<ErrorStatus> convert(const hal::V1_0::ErrorStatus& status) { return validatedConvert(status); } } // namespace android::nn namespace android::hardware::neuralnetworks::V1_0::utils { namespace { template <typename Input> using UnvalidatedConvertOutput = std::decay_t<decltype(unvalidatedConvert(std::declval<Input>()).value())>; template <typename Type> nn::GeneralResult<hidl_vec<UnvalidatedConvertOutput<Type>>> unvalidatedConvert( const std::vector<Type>& arguments) { hidl_vec<UnvalidatedConvertOutput<Type>> halObject(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) { halObject[i] = NN_TRY(utils::unvalidatedConvert(arguments[i])); } return halObject; } template <typename Type> nn::GeneralResult<UnvalidatedConvertOutput<Type>> validatedConvert(const Type& canonical) { NN_TRY(compliantVersion(canonical)); return utils::unvalidatedConvert(canonical); } nn::GeneralResult<hidl_handle> createNativeHandleFrom(std::vector<base::unique_fd> fds, const std::vector<int32_t>& ints) { constexpr size_t kIntMax = std::numeric_limits<int>::max(); CHECK_LE(fds.size(), kIntMax); CHECK_LE(ints.size(), kIntMax); native_handle_t* nativeHandle = native_handle_create(static_cast<int>(fds.size()), static_cast<int>(ints.size())); if (nativeHandle == nullptr) { return NN_ERROR() << "Failed to create native_handle"; } for (size_t i = 0; i < fds.size(); ++i) { nativeHandle->data[i] = fds[i].release(); } std::copy(ints.begin(), ints.end(), nativeHandle->data + nativeHandle->numFds); hidl_handle handle; handle.setTo(nativeHandle, /*shouldOwn=*/true); return handle; } nn::GeneralResult<hidl_handle> createNativeHandleFrom(base::unique_fd fd, const std::vector<int32_t>& ints) { std::vector<base::unique_fd> fds; fds.push_back(std::move(fd)); return createNativeHandleFrom(std::move(fds), ints); } nn::GeneralResult<hidl_handle> createNativeHandleFrom(const nn::Memory::Unknown::Handle& handle) { std::vector<base::unique_fd> fds = NN_TRY(nn::dupFds(handle.fds.begin(), handle.fds.end())); return createNativeHandleFrom(std::move(fds), handle.ints); } nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Ashmem& memory) { auto fd = NN_TRY(nn::dupFd(memory.fd)); auto handle = NN_TRY(createNativeHandleFrom(std::move(fd), {})); return hidl_memory("ashmem", std::move(handle), memory.size); } nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Fd& memory) { auto fd = NN_TRY(nn::dupFd(memory.fd)); const auto [lowOffsetBits, highOffsetBits] = nn::getIntsFromOffset(memory.offset); const std::vector<int> ints = {memory.prot, lowOffsetBits, highOffsetBits}; auto handle = NN_TRY(createNativeHandleFrom(std::move(fd), ints)); return hidl_memory("mmap_fd", std::move(handle), memory.size); } nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::HardwareBuffer& memory) { #ifdef __ANDROID__ const auto* ahwb = memory.handle.get(); AHardwareBuffer_Desc bufferDesc; AHardwareBuffer_describe(ahwb, &bufferDesc); const bool isBlob = bufferDesc.format == AHARDWAREBUFFER_FORMAT_BLOB; const size_t size = isBlob ? bufferDesc.width : 0; const char* const name = isBlob ? "hardware_buffer_blob" : "hardware_buffer"; const native_handle_t* nativeHandle = AHardwareBuffer_getNativeHandle(ahwb); const hidl_handle hidlHandle(nativeHandle); hidl_handle copiedHandle(hidlHandle); return hidl_memory(name, std::move(copiedHandle), size); #else // __ANDROID__ LOG(FATAL) << "nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const " "nn::Memory::HardwareBuffer& memory): Not Available on Host Build"; (void)memory; return (NN_ERROR() << "createHidlMemoryFrom failed").operator nn::GeneralResult<hidl_memory>(); #endif // __ANDROID__ } nn::GeneralResult<hidl_memory> createHidlMemoryFrom(const nn::Memory::Unknown& memory) { return hidl_memory(memory.name, NN_TRY(createNativeHandleFrom(memory.handle)), memory.size); } } // anonymous namespace nn::GeneralResult<OperandType> unvalidatedConvert(const nn::OperandType& operandType) { return static_cast<OperandType>(operandType); } nn::GeneralResult<OperationType> unvalidatedConvert(const nn::OperationType& operationType) { return static_cast<OperationType>(operationType); } nn::GeneralResult<OperandLifeTime> unvalidatedConvert(const nn::Operand::LifeTime& lifetime) { if (lifetime == nn::Operand::LifeTime::POINTER) { return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Model cannot be unvalidatedConverted because it contains pointer-based memory"; } return static_cast<OperandLifeTime>(lifetime); } nn::GeneralResult<DeviceStatus> unvalidatedConvert(const nn::DeviceStatus& deviceStatus) { return static_cast<DeviceStatus>(deviceStatus); } nn::GeneralResult<PerformanceInfo> unvalidatedConvert( const nn::Capabilities::PerformanceInfo& performanceInfo) { return PerformanceInfo{ .execTime = performanceInfo.execTime, .powerUsage = performanceInfo.powerUsage, }; } nn::GeneralResult<Capabilities> unvalidatedConvert(const nn::Capabilities& capabilities) { const auto float32Performance = NN_TRY(unvalidatedConvert( capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_FLOAT32))); const auto quantized8Performance = NN_TRY(unvalidatedConvert( capabilities.operandPerformance.lookup(nn::OperandType::TENSOR_QUANT8_ASYMM))); return Capabilities{ .float32Performance = float32Performance, .quantized8Performance = quantized8Performance, }; } nn::GeneralResult<DataLocation> unvalidatedConvert(const nn::DataLocation& location) { return DataLocation{ .poolIndex = location.poolIndex, .offset = location.offset, .length = location.length, }; } nn::GeneralResult<Operand> unvalidatedConvert(const nn::Operand& operand) { const auto type = NN_TRY(unvalidatedConvert(operand.type)); const auto lifetime = NN_TRY(unvalidatedConvert(operand.lifetime)); const auto location = NN_TRY(unvalidatedConvert(operand.location)); return Operand{ .type = type, .dimensions = operand.dimensions, .numberOfConsumers = 0, .scale = operand.scale, .zeroPoint = operand.zeroPoint, .lifetime = lifetime, .location = location, }; } nn::GeneralResult<Operation> unvalidatedConvert(const nn::Operation& operation) { const auto type = NN_TRY(unvalidatedConvert(operation.type)); return Operation{ .type = type, .inputs = operation.inputs, .outputs = operation.outputs, }; } nn::GeneralResult<hidl_vec<uint8_t>> unvalidatedConvert( const nn::Model::OperandValues& operandValues) { return hidl_vec<uint8_t>(operandValues.data(), operandValues.data() + operandValues.size()); } nn::GeneralResult<hidl_handle> unvalidatedConvert(const nn::SharedHandle& handle) { if (handle == nullptr) { return {}; } base::unique_fd fd = NN_TRY(nn::dupFd(handle->get())); return createNativeHandleFrom(std::move(fd), {}); } nn::GeneralResult<hidl_memory> unvalidatedConvert(const nn::SharedMemory& memory) { if (memory == nullptr) { return NN_ERROR() << "Memory must be non-empty"; } return std::visit([](const auto& x) { return createHidlMemoryFrom(x); }, memory->handle); } nn::GeneralResult<Model> unvalidatedConvert(const nn::Model& model) { if (!hal::utils::hasNoPointerData(model)) { return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Mdoel cannot be unvalidatedConverted because it contains pointer-based memory"; } auto operands = NN_TRY(unvalidatedConvert(model.main.operands)); // Update number of consumers. const auto numberOfConsumers = NN_TRY(countNumberOfConsumers(operands.size(), model.main.operations)); CHECK(operands.size() == numberOfConsumers.size()); for (size_t i = 0; i < operands.size(); ++i) { operands[i].numberOfConsumers = numberOfConsumers[i]; } auto operations = NN_TRY(unvalidatedConvert(model.main.operations)); auto operandValues = NN_TRY(unvalidatedConvert(model.operandValues)); auto pools = NN_TRY(unvalidatedConvert(model.pools)); return Model{ .operands = std::move(operands), .operations = std::move(operations), .inputIndexes = model.main.inputIndexes, .outputIndexes = model.main.outputIndexes, .operandValues = std::move(operandValues), .pools = std::move(pools), }; } nn::GeneralResult<RequestArgument> unvalidatedConvert( const nn::Request::Argument& requestArgument) { if (requestArgument.lifetime == nn::Request::Argument::LifeTime::POINTER) { return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Request cannot be unvalidatedConverted because it contains pointer-based memory"; } const bool hasNoValue = requestArgument.lifetime == nn::Request::Argument::LifeTime::NO_VALUE; const auto location = NN_TRY(unvalidatedConvert(requestArgument.location)); return RequestArgument{ .hasNoValue = hasNoValue, .location = location, .dimensions = requestArgument.dimensions, }; } nn::GeneralResult<hidl_memory> unvalidatedConvert(const nn::Request::MemoryPool& memoryPool) { return unvalidatedConvert(std::get<nn::SharedMemory>(memoryPool)); } nn::GeneralResult<Request> unvalidatedConvert(const nn::Request& request) { if (!hal::utils::hasNoPointerData(request)) { return NN_ERROR(nn::ErrorStatus::INVALID_ARGUMENT) << "Request cannot be unvalidatedConverted because it contains pointer-based memory"; } auto inputs = NN_TRY(unvalidatedConvert(request.inputs)); auto outputs = NN_TRY(unvalidatedConvert(request.outputs)); auto pools = NN_TRY(unvalidatedConvert(request.pools)); return Request{ .inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools), }; } nn::GeneralResult<ErrorStatus> unvalidatedConvert(const nn::ErrorStatus& status) { switch (status) { case nn::ErrorStatus::NONE: case nn::ErrorStatus::DEVICE_UNAVAILABLE: case nn::ErrorStatus::GENERAL_FAILURE: case nn::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE: case nn::ErrorStatus::INVALID_ARGUMENT: return static_cast<ErrorStatus>(status); default: return ErrorStatus::GENERAL_FAILURE; } } nn::GeneralResult<DeviceStatus> convert(const nn::DeviceStatus& deviceStatus) { return validatedConvert(deviceStatus); } nn::GeneralResult<Capabilities> convert(const nn::Capabilities& capabilities) { return validatedConvert(capabilities); } nn::GeneralResult<Model> convert(const nn::Model& model) { return validatedConvert(model); } nn::GeneralResult<Request> convert(const nn::Request& request) { return validatedConvert(request); } nn::GeneralResult<ErrorStatus> convert(const nn::ErrorStatus& status) { return validatedConvert(status); } } // namespace android::hardware::neuralnetworks::V1_0::utils