/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #define LOG_TAG "VtsRemotelyProvisionableComponentTests" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "KeyMintAidlTestBase.h" namespace aidl::android::hardware::security::keymint::test { using ::std::string; using ::std::vector; namespace { constexpr int32_t VERSION_WITH_UNIQUE_ID_SUPPORT = 2; constexpr int32_t VERSION_WITHOUT_EEK = 3; constexpr int32_t VERSION_WITHOUT_TEST_MODE = 3; constexpr int32_t VERSION_WITH_CERTIFICATE_REQUEST_V2 = 3; constexpr int32_t VERSION_WITH_SUPPORTED_NUM_KEYS_IN_CSR = 3; constexpr uint8_t MIN_CHALLENGE_SIZE = 0; constexpr uint8_t MAX_CHALLENGE_SIZE = 64; const string DEFAULT_INSTANCE_NAME = "android.hardware.security.keymint.IRemotelyProvisionedComponent/default"; const string RKP_VM_INSTANCE_NAME = "android.hardware.security.keymint.IRemotelyProvisionedComponent/avf"; const string KEYMINT_STRONGBOX_INSTANCE_NAME = "android.hardware.security.keymint.IKeyMintDevice/strongbox"; #define INSTANTIATE_REM_PROV_AIDL_TEST(name) \ GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(name); \ INSTANTIATE_TEST_SUITE_P( \ PerInstance, name, \ testing::ValuesIn(VtsRemotelyProvisionedComponentTests::build_params()), \ ::android::PrintInstanceNameToString) using ::android::sp; using bytevec = std::vector; using testing::MatchesRegex; using namespace remote_prov; using namespace keymaster; bytevec string_to_bytevec(const char* s) { const uint8_t* p = reinterpret_cast(s); return bytevec(p, p + strlen(s)); } ErrMsgOr corrupt_maced_key(const MacedPublicKey& macedPubKey) { auto [coseMac0, _, mac0ParseErr] = cppbor::parse(macedPubKey.macedKey); if (!coseMac0 || coseMac0->asArray()->size() != kCoseMac0EntryCount) { return "COSE Mac0 parse failed"; } auto protParams = coseMac0->asArray()->get(kCoseMac0ProtectedParams)->asBstr(); auto unprotParams = coseMac0->asArray()->get(kCoseMac0UnprotectedParams)->asMap(); auto payload = coseMac0->asArray()->get(kCoseMac0Payload)->asBstr(); auto tag = coseMac0->asArray()->get(kCoseMac0Tag)->asBstr(); if (!protParams || !unprotParams || !payload || !tag) { return "Invalid COSE_Sign1: missing content"; } auto corruptMac0 = cppbor::Array(); corruptMac0.add(protParams->clone()); corruptMac0.add(unprotParams->clone()); corruptMac0.add(payload->clone()); vector tagData = tag->value(); tagData[0] ^= 0x08; tagData[tagData.size() - 1] ^= 0x80; corruptMac0.add(cppbor::Bstr(tagData)); return MacedPublicKey{corruptMac0.encode()}; } ErrMsgOr corrupt_sig(const cppbor::Array* coseSign1) { if (coseSign1->size() != kCoseSign1EntryCount) { return "Invalid COSE_Sign1, wrong entry count"; } const cppbor::Bstr* protectedParams = coseSign1->get(kCoseSign1ProtectedParams)->asBstr(); const cppbor::Map* unprotectedParams = coseSign1->get(kCoseSign1UnprotectedParams)->asMap(); const cppbor::Bstr* payload = coseSign1->get(kCoseSign1Payload)->asBstr(); const cppbor::Bstr* signature = coseSign1->get(kCoseSign1Signature)->asBstr(); if (!protectedParams || !unprotectedParams || !payload || !signature) { return "Invalid COSE_Sign1: missing content"; } auto corruptSig = cppbor::Array(); corruptSig.add(protectedParams->clone()); corruptSig.add(unprotectedParams->clone()); corruptSig.add(payload->clone()); vector sigData = signature->value(); sigData[0] ^= 0x08; corruptSig.add(cppbor::Bstr(sigData)); return std::move(corruptSig); } ErrMsgOr corrupt_sig_chain(const bytevec& encodedEekChain, int which) { auto [chain, _, parseErr] = cppbor::parse(encodedEekChain); if (!chain || !chain->asArray()) { return "EekChain parse failed"; } cppbor::Array* eekChain = chain->asArray(); if (which >= eekChain->size()) { return "selected sig out of range"; } auto corruptChain = cppbor::Array(); for (int ii = 0; ii < eekChain->size(); ++ii) { if (ii == which) { auto sig = corrupt_sig(eekChain->get(which)->asArray()); if (!sig) { return "Failed to build corrupted signature" + sig.moveMessage(); } corruptChain.add(sig.moveValue()); } else { corruptChain.add(eekChain->get(ii)->clone()); } } return corruptChain.encode(); } string device_suffix(const string& name) { size_t pos = name.find('/'); if (pos == string::npos) { return name; } return name.substr(pos + 1); } bool matching_keymint_device(const string& rp_name, std::shared_ptr* keyMint) { string rp_suffix = device_suffix(rp_name); vector km_names = ::android::getAidlHalInstanceNames(IKeyMintDevice::descriptor); for (const string& km_name : km_names) { // If the suffix of the KeyMint instance equals the suffix of the // RemotelyProvisionedComponent instance, assume they match. if (device_suffix(km_name) == rp_suffix && AServiceManager_isDeclared(km_name.c_str())) { ::ndk::SpAIBinder binder(AServiceManager_waitForService(km_name.c_str())); *keyMint = IKeyMintDevice::fromBinder(binder); return true; } } return false; } } // namespace class VtsRemotelyProvisionedComponentTests : public testing::TestWithParam { public: virtual void SetUp() override { if (AServiceManager_isDeclared(GetParam().c_str())) { ::ndk::SpAIBinder binder(AServiceManager_waitForService(GetParam().c_str())); provisionable_ = IRemotelyProvisionedComponent::fromBinder(binder); } ASSERT_NE(provisionable_, nullptr); auto status = provisionable_->getHardwareInfo(&rpcHardwareInfo); if (GetParam() == RKP_VM_INSTANCE_NAME) { if (status.getExceptionCode() == EX_UNSUPPORTED_OPERATION) { GTEST_SKIP() << "The RKP VM is not supported on this system."; } int apiLevel = get_vsr_api_level(); if (apiLevel < __ANDROID_API_V__) { GTEST_SKIP() << "The RKP VM is supported only on V+ devices. Vendor API level: " << apiLevel; } } ASSERT_TRUE(status.isOk()); } static vector build_params() { auto params = ::android::getAidlHalInstanceNames(IRemotelyProvisionedComponent::descriptor); return params; } protected: std::shared_ptr provisionable_; RpcHardwareInfo rpcHardwareInfo; }; /** * Verify that every implementation reports a different unique id. */ TEST(NonParameterizedTests, eachRpcHasAUniqueId) { std::set uniqueIds; for (auto hal : ::android::getAidlHalInstanceNames(IRemotelyProvisionedComponent::descriptor)) { ASSERT_TRUE(AServiceManager_isDeclared(hal.c_str())); ::ndk::SpAIBinder binder(AServiceManager_waitForService(hal.c_str())); std::shared_ptr rpc = IRemotelyProvisionedComponent::fromBinder(binder); ASSERT_NE(rpc, nullptr); RpcHardwareInfo hwInfo; auto status = rpc->getHardwareInfo(&hwInfo); if (hal == RKP_VM_INSTANCE_NAME && status.getExceptionCode() == EX_UNSUPPORTED_OPERATION) { GTEST_SKIP() << "The RKP VM is not supported on this system."; } ASSERT_TRUE(status.isOk()); if (hwInfo.versionNumber >= VERSION_WITH_UNIQUE_ID_SUPPORT) { ASSERT_TRUE(hwInfo.uniqueId); auto [_, wasInserted] = uniqueIds.insert(*hwInfo.uniqueId); EXPECT_TRUE(wasInserted); } else { ASSERT_FALSE(hwInfo.uniqueId); } } } /** * Verify that the default implementation supports DICE if there is a StrongBox KeyMint instance * on the device. */ // @VsrTest = 3.10-015 TEST(NonParameterizedTests, requireDiceOnDefaultInstanceIfStrongboxPresent) { int vsr_api_level = get_vsr_api_level(); if (vsr_api_level < 35) { GTEST_SKIP() << "Applies only to VSR API level 35 or newer, this device is: " << vsr_api_level; } if (!AServiceManager_isDeclared(KEYMINT_STRONGBOX_INSTANCE_NAME.c_str())) { GTEST_SKIP() << "Strongbox is not present on this device."; } ::ndk::SpAIBinder binder(AServiceManager_waitForService(DEFAULT_INSTANCE_NAME.c_str())); std::shared_ptr rpc = IRemotelyProvisionedComponent::fromBinder(binder); ASSERT_NE(rpc, nullptr); bytevec challenge = randomBytes(64); bytevec csr; auto status = rpc->generateCertificateRequestV2({} /* keysToSign */, challenge, &csr); EXPECT_TRUE(status.isOk()) << status.getDescription(); auto result = isCsrWithProperDiceChain(csr); ASSERT_TRUE(result) << result.message(); ASSERT_TRUE(*result); } using GetHardwareInfoTests = VtsRemotelyProvisionedComponentTests; INSTANTIATE_REM_PROV_AIDL_TEST(GetHardwareInfoTests); /** * Verify that a valid curve is reported by the implementation. */ TEST_P(GetHardwareInfoTests, supportsValidCurve) { RpcHardwareInfo hwInfo; ASSERT_TRUE(provisionable_->getHardwareInfo(&hwInfo).isOk()); if (rpcHardwareInfo.versionNumber >= VERSION_WITHOUT_EEK) { ASSERT_EQ(hwInfo.supportedEekCurve, RpcHardwareInfo::CURVE_NONE) << "Invalid curve: " << hwInfo.supportedEekCurve; return; } const std::set validCurves = {RpcHardwareInfo::CURVE_P256, RpcHardwareInfo::CURVE_25519}; ASSERT_EQ(validCurves.count(hwInfo.supportedEekCurve), 1) << "Invalid curve: " << hwInfo.supportedEekCurve; } /** * Verify that the unique id is within the length limits as described in RpcHardwareInfo.aidl. */ TEST_P(GetHardwareInfoTests, uniqueId) { if (rpcHardwareInfo.versionNumber < VERSION_WITH_UNIQUE_ID_SUPPORT) { return; } RpcHardwareInfo hwInfo; ASSERT_TRUE(provisionable_->getHardwareInfo(&hwInfo).isOk()); ASSERT_TRUE(hwInfo.uniqueId); EXPECT_GE(hwInfo.uniqueId->size(), 1); EXPECT_LE(hwInfo.uniqueId->size(), 32); } /** * Verify implementation supports at least MIN_SUPPORTED_NUM_KEYS_IN_CSR keys in a CSR. */ TEST_P(GetHardwareInfoTests, supportedNumKeysInCsr) { if (rpcHardwareInfo.versionNumber < VERSION_WITH_SUPPORTED_NUM_KEYS_IN_CSR) { return; } RpcHardwareInfo hwInfo; ASSERT_TRUE(provisionable_->getHardwareInfo(&hwInfo).isOk()); ASSERT_GE(hwInfo.supportedNumKeysInCsr, RpcHardwareInfo::MIN_SUPPORTED_NUM_KEYS_IN_CSR); } using GenerateKeyTests = VtsRemotelyProvisionedComponentTests; INSTANTIATE_REM_PROV_AIDL_TEST(GenerateKeyTests); /** * Generate and validate a production-mode key. MAC tag can't be verified, but * the private key blob should be usable in KeyMint operations. */ TEST_P(GenerateKeyTests, generateEcdsaP256Key_prodMode) { MacedPublicKey macedPubKey; bytevec privateKeyBlob; bool testMode = false; auto status = provisionable_->generateEcdsaP256KeyPair(testMode, &macedPubKey, &privateKeyBlob); ASSERT_TRUE(status.isOk()); vector coseKeyData; check_maced_pubkey(macedPubKey, testMode, &coseKeyData); } /** * Generate and validate a production-mode key, then use it as a KeyMint attestation key. */ TEST_P(GenerateKeyTests, generateAndUseEcdsaP256Key_prodMode) { // See if there is a matching IKeyMintDevice for this IRemotelyProvisionedComponent. std::shared_ptr keyMint; if (!matching_keymint_device(GetParam(), &keyMint)) { // No matching IKeyMintDevice. GTEST_SKIP() << "Skipping key use test as no matching KeyMint device found"; return; } KeyMintHardwareInfo info; ASSERT_TRUE(keyMint->getHardwareInfo(&info).isOk()); MacedPublicKey macedPubKey; bytevec privateKeyBlob; bool testMode = false; auto status = provisionable_->generateEcdsaP256KeyPair(testMode, &macedPubKey, &privateKeyBlob); ASSERT_TRUE(status.isOk()); vector coseKeyData; check_maced_pubkey(macedPubKey, testMode, &coseKeyData); AttestationKey attestKey; attestKey.keyBlob = std::move(privateKeyBlob); attestKey.issuerSubjectName = make_name_from_str("Android Keystore Key"); // Generate an ECDSA key that is attested by the generated P256 keypair. AuthorizationSet keyDesc = AuthorizationSetBuilder() .Authorization(TAG_NO_AUTH_REQUIRED) .EcdsaSigningKey(EcCurve::P_256) .AttestationChallenge("foo") .AttestationApplicationId("bar") .Digest(Digest::NONE) .SetDefaultValidity(); KeyCreationResult creationResult; auto result = keyMint->generateKey(keyDesc.vector_data(), attestKey, &creationResult); ASSERT_TRUE(result.isOk()); vector attested_key_blob = std::move(creationResult.keyBlob); vector attested_key_characteristics = std::move(creationResult.keyCharacteristics); vector attested_key_cert_chain = std::move(creationResult.certificateChain); EXPECT_EQ(attested_key_cert_chain.size(), 1); int32_t aidl_version = 0; ASSERT_TRUE(keyMint->getInterfaceVersion(&aidl_version).isOk()); AuthorizationSet hw_enforced = HwEnforcedAuthorizations(attested_key_characteristics); AuthorizationSet sw_enforced = SwEnforcedAuthorizations(attested_key_characteristics); EXPECT_TRUE(verify_attestation_record(aidl_version, "foo", "bar", sw_enforced, hw_enforced, info.securityLevel, attested_key_cert_chain[0].encodedCertificate)); // Attestation by itself is not valid (last entry is not self-signed). EXPECT_FALSE(ChainSignaturesAreValid(attested_key_cert_chain)); // The signature over the attested key should correspond to the P256 public key. X509_Ptr key_cert(parse_cert_blob(attested_key_cert_chain[0].encodedCertificate)); ASSERT_TRUE(key_cert.get()); EVP_PKEY_Ptr signing_pubkey; p256_pub_key(coseKeyData, &signing_pubkey); ASSERT_TRUE(signing_pubkey.get()); ASSERT_TRUE(X509_verify(key_cert.get(), signing_pubkey.get())) << "Verification of attested certificate failed " << "OpenSSL error string: " << ERR_error_string(ERR_get_error(), NULL); } /** * Generate and validate a test-mode key. */ TEST_P(GenerateKeyTests, generateEcdsaP256Key_testMode) { MacedPublicKey macedPubKey; bytevec privateKeyBlob; bool testMode = true; auto status = provisionable_->generateEcdsaP256KeyPair(testMode, &macedPubKey, &privateKeyBlob); if (rpcHardwareInfo.versionNumber >= VERSION_WITHOUT_TEST_MODE) { ASSERT_FALSE(status.isOk()); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_REMOVED); return; } ASSERT_TRUE(status.isOk()); check_maced_pubkey(macedPubKey, testMode, nullptr); } class CertificateRequestTestBase : public VtsRemotelyProvisionedComponentTests { protected: CertificateRequestTestBase() : eekId_(string_to_bytevec("eekid")), challenge_(randomBytes(64)) {} void generateTestEekChain(size_t eekLength) { auto chain = generateEekChain(rpcHardwareInfo.supportedEekCurve, eekLength, eekId_); ASSERT_TRUE(chain) << chain.message(); if (chain) testEekChain_ = chain.moveValue(); testEekLength_ = eekLength; } void generateKeys(bool testMode, size_t numKeys) { keysToSign_ = std::vector(numKeys); cborKeysToSign_ = cppbor::Array(); for (auto& key : keysToSign_) { bytevec privateKeyBlob; auto status = provisionable_->generateEcdsaP256KeyPair(testMode, &key, &privateKeyBlob); ASSERT_TRUE(status.isOk()) << status.getDescription(); vector payload_value; check_maced_pubkey(key, testMode, &payload_value); cborKeysToSign_.add(cppbor::EncodedItem(payload_value)); } } bytevec eekId_; size_t testEekLength_; EekChain testEekChain_; bytevec challenge_; std::vector keysToSign_; cppbor::Array cborKeysToSign_; }; class CertificateRequestTest : public CertificateRequestTestBase { protected: void SetUp() override { CertificateRequestTestBase::SetUp(); ASSERT_FALSE(HasFatalFailure()); if (rpcHardwareInfo.versionNumber >= VERSION_WITH_CERTIFICATE_REQUEST_V2) { GTEST_SKIP() << "This test case only applies to RKP v1 and v2. " << "RKP version discovered: " << rpcHardwareInfo.versionNumber; } } }; /** * Generate an empty certificate request in test mode, and decrypt and verify the structure and * content. */ TEST_P(CertificateRequestTest, EmptyRequest_testMode) { bool testMode = true; for (size_t eekLength : {2, 3, 7}) { SCOPED_TRACE(testing::Message() << "EEK of length " << eekLength); generateTestEekChain(eekLength); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, {} /* keysToSign */, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto result = verifyProductionProtectedData( deviceInfo, cppbor::Array(), keysToSignMac, protectedData, testEekChain_, eekId_, rpcHardwareInfo.supportedEekCurve, provisionable_.get(), challenge_); ASSERT_TRUE(result) << result.message(); } } /** * Ensure that test mode outputs a unique BCC root key every time we request a * certificate request. Else, it's possible that the test mode API could be used * to fingerprint devices. Only the GEEK should be allowed to decrypt the same * device public key multiple times. */ TEST_P(CertificateRequestTest, NewKeyPerCallInTestMode) { constexpr bool testMode = true; bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; generateTestEekChain(3); auto status = provisionable_->generateCertificateRequest( testMode, {} /* keysToSign */, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto firstBcc = verifyProductionProtectedData( deviceInfo, /*keysToSign=*/cppbor::Array(), keysToSignMac, protectedData, testEekChain_, eekId_, rpcHardwareInfo.supportedEekCurve, provisionable_.get(), challenge_); ASSERT_TRUE(firstBcc) << firstBcc.message(); status = provisionable_->generateCertificateRequest( testMode, {} /* keysToSign */, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto secondBcc = verifyProductionProtectedData( deviceInfo, /*keysToSign=*/cppbor::Array(), keysToSignMac, protectedData, testEekChain_, eekId_, rpcHardwareInfo.supportedEekCurve, provisionable_.get(), challenge_); ASSERT_TRUE(secondBcc) << secondBcc.message(); // Verify that none of the keys in the first BCC are repeated in the second one. for (const auto& i : *firstBcc) { for (auto& j : *secondBcc) { ASSERT_THAT(i.pubKey, testing::Not(testing::ElementsAreArray(j.pubKey))) << "Found a repeated pubkey in two generateCertificateRequest test mode calls"; } } } /** * Generate an empty certificate request in prod mode. This test must be run explicitly, and * is not run by default. Not all devices are GMS devices, and therefore they do not all * trust the Google EEK root. */ TEST_P(CertificateRequestTest, DISABLED_EmptyRequest_prodMode) { bool testMode = false; bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, {} /* keysToSign */, getProdEekChain(rpcHardwareInfo.supportedEekCurve), challenge_, &deviceInfo, &protectedData, &keysToSignMac); EXPECT_TRUE(status.isOk()); } /** * Generate a non-empty certificate request in test mode. Decrypt, parse and validate the contents. */ TEST_P(CertificateRequestTest, NonEmptyRequest_testMode) { bool testMode = true; generateKeys(testMode, 4 /* numKeys */); for (size_t eekLength : {2, 3, 7}) { SCOPED_TRACE(testing::Message() << "EEK of length " << eekLength); generateTestEekChain(eekLength); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, keysToSign_, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto result = verifyProductionProtectedData( deviceInfo, cborKeysToSign_, keysToSignMac, protectedData, testEekChain_, eekId_, rpcHardwareInfo.supportedEekCurve, provisionable_.get(), challenge_); ASSERT_TRUE(result) << result.message(); } } /** * Generate a non-empty certificate request in prod mode. This test must be run explicitly, and * is not run by default. Not all devices are GMS devices, and therefore they do not all * trust the Google EEK root. */ TEST_P(CertificateRequestTest, DISABLED_NonEmptyRequest_prodMode) { bool testMode = false; generateKeys(testMode, 4 /* numKeys */); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, keysToSign_, getProdEekChain(rpcHardwareInfo.supportedEekCurve), challenge_, &deviceInfo, &protectedData, &keysToSignMac); EXPECT_TRUE(status.isOk()); } /** * Generate a non-empty certificate request in test mode, but with the MAC corrupted on the keypair. */ TEST_P(CertificateRequestTest, NonEmptyRequestCorruptMac_testMode) { bool testMode = true; generateKeys(testMode, 1 /* numKeys */); auto result = corrupt_maced_key(keysToSign_[0]); ASSERT_TRUE(result) << result.moveMessage(); MacedPublicKey keyWithCorruptMac = result.moveValue(); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; generateTestEekChain(3); auto status = provisionable_->generateCertificateRequest( testMode, {keyWithCorruptMac}, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_INVALID_MAC); } /** * Generate a non-empty certificate request in prod mode, but with the MAC corrupted on the keypair. */ TEST_P(CertificateRequestTest, NonEmptyRequestCorruptMac_prodMode) { bool testMode = false; generateKeys(testMode, 1 /* numKeys */); auto result = corrupt_maced_key(keysToSign_[0]); ASSERT_TRUE(result) << result.moveMessage(); MacedPublicKey keyWithCorruptMac = result.moveValue(); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, {keyWithCorruptMac}, getProdEekChain(rpcHardwareInfo.supportedEekCurve), challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_INVALID_MAC); } /** * Generate a non-empty certificate request in prod mode that has a corrupt EEK chain. * Confirm that the request is rejected. */ TEST_P(CertificateRequestTest, NonEmptyCorruptEekRequest_prodMode) { bool testMode = false; generateKeys(testMode, 4 /* numKeys */); auto prodEekChain = getProdEekChain(rpcHardwareInfo.supportedEekCurve); auto [parsedChain, _, parseErr] = cppbor::parse(prodEekChain); ASSERT_NE(parsedChain, nullptr) << parseErr; ASSERT_NE(parsedChain->asArray(), nullptr); for (int ii = 0; ii < parsedChain->asArray()->size(); ++ii) { auto chain = corrupt_sig_chain(prodEekChain, ii); ASSERT_TRUE(chain) << chain.message(); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest(testMode, keysToSign_, *chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()); ASSERT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_INVALID_EEK); } } /** * Generate a non-empty certificate request in prod mode that has an incomplete EEK chain. * Confirm that the request is rejected. */ TEST_P(CertificateRequestTest, NonEmptyIncompleteEekRequest_prodMode) { bool testMode = false; generateKeys(testMode, 4 /* numKeys */); // Build an EEK chain that omits the first self-signed cert. auto truncatedChain = cppbor::Array(); auto [chain, _, parseErr] = cppbor::parse(getProdEekChain(rpcHardwareInfo.supportedEekCurve)); ASSERT_TRUE(chain); auto eekChain = chain->asArray(); ASSERT_NE(eekChain, nullptr); for (size_t ii = 1; ii < eekChain->size(); ii++) { truncatedChain.add(eekChain->get(ii)->clone()); } bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( testMode, keysToSign_, truncatedChain.encode(), challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()); ASSERT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_INVALID_EEK); } /** * Generate a non-empty certificate request in test mode, with prod keys. Must fail with * STATUS_PRODUCTION_KEY_IN_TEST_REQUEST. */ TEST_P(CertificateRequestTest, NonEmptyRequest_prodKeyInTestCert) { generateKeys(false /* testMode */, 2 /* numKeys */); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; generateTestEekChain(3); auto status = provisionable_->generateCertificateRequest( true /* testMode */, keysToSign_, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()); ASSERT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_PRODUCTION_KEY_IN_TEST_REQUEST); } /** * Generate a non-empty certificate request in prod mode, with test keys. Must fail with * STATUS_TEST_KEY_IN_PRODUCTION_REQUEST. */ TEST_P(CertificateRequestTest, NonEmptyRequest_testKeyInProdCert) { generateKeys(true /* testMode */, 2 /* numKeys */); bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; generateTestEekChain(3); auto status = provisionable_->generateCertificateRequest( false /* testMode */, keysToSign_, testEekChain_.chain, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()); ASSERT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_TEST_KEY_IN_PRODUCTION_REQUEST); } INSTANTIATE_REM_PROV_AIDL_TEST(CertificateRequestTest); class CertificateRequestV2Test : public CertificateRequestTestBase { void SetUp() override { CertificateRequestTestBase::SetUp(); ASSERT_FALSE(HasFatalFailure()); if (rpcHardwareInfo.versionNumber < VERSION_WITH_CERTIFICATE_REQUEST_V2) { GTEST_SKIP() << "This test case only applies to RKP v3 and above. " << "RKP version discovered: " << rpcHardwareInfo.versionNumber; } } }; /** * Generate an empty certificate request with all possible length of challenge, and decrypt and * verify the structure and content. */ // @VsrTest = 3.10-015 TEST_P(CertificateRequestV2Test, EmptyRequest) { bytevec csr; for (auto size = MIN_CHALLENGE_SIZE; size <= MAX_CHALLENGE_SIZE; size++) { SCOPED_TRACE(testing::Message() << "challenge[" << size << "]"); auto challenge = randomBytes(size); auto status = provisionable_->generateCertificateRequestV2({} /* keysToSign */, challenge, &csr); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto result = verifyProductionCsr(cppbor::Array(), csr, provisionable_.get(), challenge); ASSERT_TRUE(result) << result.message(); } } /** * Generate a non-empty certificate request with all possible length of challenge. Decrypt, parse * and validate the contents. */ // @VsrTest = 3.10-015 TEST_P(CertificateRequestV2Test, NonEmptyRequest) { generateKeys(false /* testMode */, 1 /* numKeys */); bytevec csr; for (auto size = MIN_CHALLENGE_SIZE; size <= MAX_CHALLENGE_SIZE; size++) { SCOPED_TRACE(testing::Message() << "challenge[" << size << "]"); auto challenge = randomBytes(size); auto status = provisionable_->generateCertificateRequestV2(keysToSign_, challenge, &csr); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto result = verifyProductionCsr(cborKeysToSign_, csr, provisionable_.get(), challenge); ASSERT_TRUE(result) << result.message(); } } /** * Generate an empty certificate request with invalid size of challenge */ TEST_P(CertificateRequestV2Test, EmptyRequestWithInvalidChallengeFail) { bytevec csr; auto status = provisionable_->generateCertificateRequestV2( /* keysToSign */ {}, randomBytes(MAX_CHALLENGE_SIZE + 1), &csr); EXPECT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_FAILED); } /** * Generate a non-empty certificate request. Make sure contents are reproducible but allow for the * signature to be different since algorithms including ECDSA P-256 can include a random value. */ // @VsrTest = 3.10-015 TEST_P(CertificateRequestV2Test, NonEmptyRequestReproducible) { generateKeys(false /* testMode */, 1 /* numKeys */); bytevec csr; auto status = provisionable_->generateCertificateRequestV2(keysToSign_, challenge_, &csr); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto firstCsr = verifyProductionCsr(cborKeysToSign_, csr, provisionable_.get(), challenge_); ASSERT_TRUE(firstCsr) << firstCsr.message(); status = provisionable_->generateCertificateRequestV2(keysToSign_, challenge_, &csr); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto secondCsr = verifyProductionCsr(cborKeysToSign_, csr, provisionable_.get(), challenge_); ASSERT_TRUE(secondCsr) << secondCsr.message(); ASSERT_EQ(**firstCsr, **secondCsr); } /** * Generate a non-empty certificate request with multiple keys. */ // @VsrTest = 3.10-015 TEST_P(CertificateRequestV2Test, NonEmptyRequestMultipleKeys) { generateKeys(false /* testMode */, rpcHardwareInfo.supportedNumKeysInCsr /* numKeys */); bytevec csr; auto status = provisionable_->generateCertificateRequestV2(keysToSign_, challenge_, &csr); ASSERT_TRUE(status.isOk()) << status.getDescription(); auto result = verifyProductionCsr(cborKeysToSign_, csr, provisionable_.get(), challenge_); ASSERT_TRUE(result) << result.message(); } /** * Generate a non-empty certificate request, but with the MAC corrupted on the keypair. */ TEST_P(CertificateRequestV2Test, NonEmptyRequestCorruptMac) { generateKeys(false /* testMode */, 1 /* numKeys */); auto result = corrupt_maced_key(keysToSign_[0]); ASSERT_TRUE(result) << result.moveMessage(); MacedPublicKey keyWithCorruptMac = result.moveValue(); bytevec csr; auto status = provisionable_->generateCertificateRequestV2({keyWithCorruptMac}, challenge_, &csr); ASSERT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_INVALID_MAC); } /** * Call generateCertificateRequest(). Make sure it's removed. */ TEST_P(CertificateRequestV2Test, CertificateRequestV1Removed_prodMode) { bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( false /* testMode */, {} /* keysToSign */, {} /* EEK chain */, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_REMOVED); } /** * Call generateCertificateRequest() in test mode. Make sure it's removed. */ TEST_P(CertificateRequestV2Test, CertificateRequestV1Removed_testMode) { bytevec keysToSignMac; DeviceInfo deviceInfo; ProtectedData protectedData; auto status = provisionable_->generateCertificateRequest( true /* testMode */, {} /* keysToSign */, {} /* EEK chain */, challenge_, &deviceInfo, &protectedData, &keysToSignMac); ASSERT_FALSE(status.isOk()) << status.getDescription(); EXPECT_EQ(status.getServiceSpecificError(), BnRemotelyProvisionedComponent::STATUS_REMOVED); } void parse_root_of_trust(const vector& attestation_cert, vector* verified_boot_key, VerifiedBoot* verified_boot_state, bool* device_locked, vector* verified_boot_hash) { X509_Ptr cert(parse_cert_blob(attestation_cert)); ASSERT_TRUE(cert.get()); ASN1_OCTET_STRING* attest_rec = get_attestation_record(cert.get()); ASSERT_TRUE(attest_rec); auto error = parse_root_of_trust(attest_rec->data, attest_rec->length, verified_boot_key, verified_boot_state, device_locked, verified_boot_hash); ASSERT_EQ(error, ErrorCode::OK); } /** * Generate a CSR and verify DeviceInfo against IDs attested by KeyMint. */ // @VsrTest = 3.10-015 TEST_P(CertificateRequestV2Test, DeviceInfo) { // See if there is a matching IKeyMintDevice for this IRemotelyProvisionedComponent. std::shared_ptr keyMint; if (!matching_keymint_device(GetParam(), &keyMint)) { // No matching IKeyMintDevice. GTEST_SKIP() << "Skipping key use test as no matching KeyMint device found"; return; } KeyMintHardwareInfo info; ASSERT_TRUE(keyMint->getHardwareInfo(&info).isOk()); // Get IDs attested by KeyMint. MacedPublicKey macedPubKey; bytevec privateKeyBlob; auto irpcStatus = provisionable_->generateEcdsaP256KeyPair(false, &macedPubKey, &privateKeyBlob); ASSERT_TRUE(irpcStatus.isOk()); AttestationKey attestKey; attestKey.keyBlob = std::move(privateKeyBlob); attestKey.issuerSubjectName = make_name_from_str("Android Keystore Key"); // Generate an ECDSA key that is attested by the generated P256 keypair. AuthorizationSet keyDesc = AuthorizationSetBuilder() .Authorization(TAG_NO_AUTH_REQUIRED) .EcdsaSigningKey(EcCurve::P_256) .AttestationChallenge("foo") .AttestationApplicationId("bar") .Digest(Digest::NONE) .SetDefaultValidity(); KeyCreationResult creationResult; auto kmStatus = keyMint->generateKey(keyDesc.vector_data(), attestKey, &creationResult); ASSERT_TRUE(kmStatus.isOk()); vector key_characteristics = std::move(creationResult.keyCharacteristics); vector key_cert_chain = std::move(creationResult.certificateChain); // We didn't provision the attestation key. ASSERT_EQ(key_cert_chain.size(), 1); // Parse attested patch levels. auto auths = HwEnforcedAuthorizations(key_characteristics); auto attestedSystemPatchLevel = auths.GetTagValue(TAG_OS_PATCHLEVEL); auto attestedVendorPatchLevel = auths.GetTagValue(TAG_VENDOR_PATCHLEVEL); auto attestedBootPatchLevel = auths.GetTagValue(TAG_BOOT_PATCHLEVEL); ASSERT_TRUE(attestedSystemPatchLevel.has_value()); ASSERT_TRUE(attestedVendorPatchLevel.has_value()); ASSERT_TRUE(attestedBootPatchLevel.has_value()); // Parse attested AVB values. vector key; VerifiedBoot attestedVbState; bool attestedBootloaderState; vector attestedVbmetaDigest; parse_root_of_trust(key_cert_chain[0].encodedCertificate, &key, &attestedVbState, &attestedBootloaderState, &attestedVbmetaDigest); // Get IDs from DeviceInfo. bytevec csr; irpcStatus = provisionable_->generateCertificateRequestV2({} /* keysToSign */, challenge_, &csr); ASSERT_TRUE(irpcStatus.isOk()) << irpcStatus.getDescription(); auto result = verifyProductionCsr(cppbor::Array(), csr, provisionable_.get(), challenge_); ASSERT_TRUE(result) << result.message(); std::unique_ptr csrPayload = std::move(*result); ASSERT_TRUE(csrPayload); auto deviceInfo = csrPayload->get(2)->asMap(); ASSERT_TRUE(deviceInfo); auto vbState = deviceInfo->get("vb_state")->asTstr(); auto bootloaderState = deviceInfo->get("bootloader_state")->asTstr(); auto vbmetaDigest = deviceInfo->get("vbmeta_digest")->asBstr(); auto systemPatchLevel = deviceInfo->get("system_patch_level")->asUint(); auto vendorPatchLevel = deviceInfo->get("vendor_patch_level")->asUint(); auto bootPatchLevel = deviceInfo->get("boot_patch_level")->asUint(); auto securityLevel = deviceInfo->get("security_level")->asTstr(); ASSERT_TRUE(vbState); ASSERT_TRUE(bootloaderState); ASSERT_TRUE(vbmetaDigest); ASSERT_TRUE(systemPatchLevel); ASSERT_TRUE(vendorPatchLevel); ASSERT_TRUE(bootPatchLevel); ASSERT_TRUE(securityLevel); auto kmDeviceName = device_suffix(GetParam()); // Compare DeviceInfo against IDs attested by KeyMint. ASSERT_TRUE((securityLevel->value() == "tee" && kmDeviceName == "default") || (securityLevel->value() == "strongbox" && kmDeviceName == "strongbox")); ASSERT_TRUE((vbState->value() == "green" && attestedVbState == VerifiedBoot::VERIFIED) || (vbState->value() == "yellow" && attestedVbState == VerifiedBoot::SELF_SIGNED) || (vbState->value() == "orange" && attestedVbState == VerifiedBoot::UNVERIFIED)); ASSERT_TRUE((bootloaderState->value() == "locked" && attestedBootloaderState) || (bootloaderState->value() == "unlocked" && !attestedBootloaderState)); ASSERT_EQ(vbmetaDigest->value(), attestedVbmetaDigest); ASSERT_EQ(systemPatchLevel->value(), attestedSystemPatchLevel.value()); ASSERT_EQ(vendorPatchLevel->value(), attestedVendorPatchLevel.value()); ASSERT_EQ(bootPatchLevel->value(), attestedBootPatchLevel.value()); } INSTANTIATE_REM_PROV_AIDL_TEST(CertificateRequestV2Test); using VsrRequirementTest = VtsRemotelyProvisionedComponentTests; INSTANTIATE_REM_PROV_AIDL_TEST(VsrRequirementTest); TEST_P(VsrRequirementTest, VsrEnforcementTest) { RpcHardwareInfo hwInfo; ASSERT_TRUE(provisionable_->getHardwareInfo(&hwInfo).isOk()); int vsr_api_level = get_vsr_api_level(); if (vsr_api_level < 34) { GTEST_SKIP() << "Applies only to VSR API level 34 or newer, this device is: " << vsr_api_level; } EXPECT_GE(hwInfo.versionNumber, 3) << "VSR 14+ requires IRemotelyProvisionedComponent v3 or newer."; } } // namespace aidl::android::hardware::security::keymint::test