// Quantized calculation utilities. // TODO(vddang): Replace this with tensorflow/lite/kernels/internal/tensor_utils(common).h // after TFLite module has been synced. #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_QUANTUTILS_H #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_QUANTUTILS_H #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wsign-compare" #include #pragma clang diagnostic pop #include #include #include #include "LegacyUtils.h" #include "OperationsExecutionUtils.h" namespace android { namespace nn { inline int32_t MultiplyByQuantizedMultiplier(int32_t x, int32_t quantized_multiplier, int shift) { using gemmlowp::RoundingDivideByPOT; using gemmlowp::SaturatingRoundingDoublingHighMul; int left_shift = shift > 0 ? shift : 0; int right_shift = shift > 0 ? 0 : -shift; return RoundingDivideByPOT( SaturatingRoundingDoublingHighMul(x * (1 << left_shift), quantized_multiplier), right_shift); } template void MatrixBatchVectorMultiplyAccumulate(const int8_t* input, const int32_t* bias, const int8_t* input_to_gate_weights, int32_t multiplier, int32_t shift, int32_t n_batch, int32_t n_input, int32_t n_output, int32_t output_zp, T* output) { const int16_t output_max = std::numeric_limits::max(); const int16_t output_min = std::numeric_limits::min(); for (int batch = 0; batch < n_batch; ++batch) { for (int row = 0; row < n_output; ++row) { int32_t acc = bias[row]; for (int col = 0; col < n_input; ++col) { int8_t input_val = input[batch * n_input + col]; int8_t weights_val = input_to_gate_weights[row * n_input + col]; acc += input_val * weights_val; } acc = MultiplyByQuantizedMultiplier(acc, multiplier, shift); acc += output_zp; acc += output[batch * n_output + row]; if (acc > output_max) { acc = output_max; } if (acc < output_min) { acc = output_min; } output[batch * n_output + row] = static_cast(acc); } } } template int CountLeadingZeros(T integer_input) { static_assert(std::is_unsigned::value, "Only unsigned integer types handled."); #if defined(__GNUC__) return integer_input ? __builtin_clz(integer_input) : std::numeric_limits::digits; #else if (integer_input == 0) { return std::numeric_limits::digits; } const T one_in_leading_positive = static_cast(1) << (std::numeric_limits::digits - 1); int leading_zeros = 0; while (integer_input < one_in_leading_positive) { integer_input <<= 1; ++leading_zeros; } return leading_zeros; #endif } inline bool GetInvSqrtQuantizedMultiplierExp(int32_t input, int reverse_shift, int32_t* output_inv_sqrt, int* output_shift) { NN_RET_CHECK_GE(input, 0); if (input <= 1) { // Handle the input value 1 separately to avoid overflow in that case // in the general computation below. Also handle 0 as if it // were a 1. 0 is an invalid input here (divide by zero) and 1 is a valid // but rare/unrealistic input value. We can expect both to occur in some // incompletely trained models, but probably not in fully trained models. *output_inv_sqrt = std::numeric_limits::max(); *output_shift = 0; return true; } *output_shift = 11; while (input >= (1 << 29)) { input /= 4; ++*output_shift; } const unsigned max_left_shift_bits = CountLeadingZeros(static_cast(input)) - 1; const unsigned max_left_shift_bit_pairs = max_left_shift_bits / 2; const unsigned left_shift_bit_pairs = max_left_shift_bit_pairs - 1; *output_shift -= left_shift_bit_pairs; input <<= 2 * left_shift_bit_pairs; NN_RET_CHECK_GE(input, (1 << 27)); NN_RET_CHECK_LT(input, (1 << 29)); using gemmlowp::FixedPoint; using gemmlowp::Rescale; using gemmlowp::SaturatingRoundingMultiplyByPOT; // Using 3 integer bits gives us enough room for the internal arithmetic in // this Newton-Raphson iteration. using F3 = FixedPoint; using F0 = FixedPoint; const F3 fixedpoint_input = F3::FromRaw(input >> 1); const F3 fixedpoint_half_input = SaturatingRoundingMultiplyByPOT<-1>(fixedpoint_input); const F3 fixedpoint_half_three = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F3, (1 << 28) + (1 << 27), 1.5); // Newton-Raphson iteration // Naive unoptimized starting guess: x = 1 F3 x = F3::One(); // Naive unoptimized number of iterations: 5 for (int i = 0; i < 5; i++) { const F3 x3 = Rescale<3>(x * x * x); x = Rescale<3>(fixedpoint_half_three * x - fixedpoint_half_input * x3); } const F0 fixedpoint_half_sqrt_2 = GEMMLOWP_CHECKED_FIXEDPOINT_CONSTANT(F0, 1518500250, std::sqrt(2.) / 2.); x = x * fixedpoint_half_sqrt_2; *output_inv_sqrt = x.raw(); if (*output_shift < 0) { *output_inv_sqrt <<= -*output_shift; *output_shift = 0; } // Convert right shift (right is positive) to left shift. *output_shift *= reverse_shift; return true; } void ApplyLayerNorm(const int16_t* input, const int16_t* layer_norm_weights, const int32_t* bias, int32_t layer_norm_scale_a, int32_t layer_norm_scale_b, int32_t variance_limit, int n_batch, int n_input, int16_t* output); void MatrixScalarMultiplyAccumulate(const int8_t* matrix, int32_t scalar, int32_t n_row, int32_t n_col, int32_t* output); bool PrecomputeZeroPointTimesWeightWithBias(int32_t zero_point, const int8_t* weight_tensor, const Shape& weight_shape, const int32_t* bias_tensor, std::unique_ptr* output); void ApplySigmoid(const int16_t* input, int32_t n_batch, int32_t n_input, int16_t* output); template void ApplyTanh(const int16_t* input, int32_t n_batch, int32_t n_input, int16_t* output) { using FX = gemmlowp::FixedPoint; using F0 = gemmlowp::FixedPoint; for (int batch = 0; batch < n_batch; ++batch) { for (int i = 0; i < n_input; ++i) { const int index = batch * n_input + i; FX tanh_input = FX::FromRaw(input[index]); F0 tanh_output = gemmlowp::tanh(tanh_input); output[index] = tanh_output.raw(); } } } inline void ApplyTanh(int32_t integer_bits, const int16_t* input, int32_t n_batch, int32_t n_input, int16_t* output) { assert(integer_bits <= 6); #define DISPATCH_TANH(i) \ case i: \ ApplyTanh(input, n_batch, n_input, output); \ break; switch (integer_bits) { DISPATCH_TANH(0); DISPATCH_TANH(1); DISPATCH_TANH(2); DISPATCH_TANH(3); DISPATCH_TANH(4); DISPATCH_TANH(5); DISPATCH_TANH(6); default: return; } #undef DISPATCH_TANH } void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch, int n_input, int shift, int16_t* output); void CwiseMul(const int16_t* input_1, const int16_t* input_2, int32_t multiplier, int32_t shift, int32_t n_batch, int32_t n_input, int32_t output_zp, int8_t* output); bool CheckedLog2(const float x, int* log2_result); void CwiseAdd(const int16_t* input_1, const int16_t* input_2, int n_batch, int n_input, int16_t* output); inline void Sub1Vector(const int16_t* vector, int v_size, int16_t* result) { static const int16_t kOne = 32767; for (int v = 0; v < v_size; v++) { *result++ = kOne - *vector++; } } void CwiseClipping(int16_t* input, const int16_t clipping_value, int32_t n_batch, int32_t n_input); void CwiseClipping(int8_t* input, const int8_t clipping_value, int32_t n_batch, int32_t n_input); void VectorBatchVectorCwiseProductAccumulate(const int16_t* vector, int v_size, const int16_t* batch_vector, int n_batch, int32_t multiplier, int shift, int16_t* result); } // namespace nn } // namespace android #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_QUANTUTILS_H