/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "Operations" #include "Reverse.h" #include "OperationResolver.h" #include "OperationsExecutionUtils.h" #ifdef NN_INCLUDE_CPU_IMPLEMENTATION #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wunused-parameter" #pragma clang diagnostic ignored "-Wsign-compare" #include #pragma clang diagnostic pop #include "CpuOperationUtils.h" #endif // NN_INCLUDE_CPU_IMPLEMENTATION namespace android { namespace nn { namespace reverse_op { #ifdef NN_INCLUDE_CPU_IMPLEMENTATION bool prepare(IOperationExecutionContext* context) { const Shape inputShape = context->getInputShape(kInputTensor); // Input tensor must be of rank 1..8. const auto inputTensorRank = getNumberOfDimensions(inputShape); NN_RET_CHECK_GE(inputTensorRank, 1U); NN_RET_CHECK_LE(inputTensorRank, 8U); // Check the axis dimension value. const Shape axisShape = context->getInputShape(kInputAxisTensor); NN_RET_CHECK_EQ(getNumberOfDimensions(axisShape), 1U); NN_RET_CHECK_EQ(getNumberOfElements(axisShape), 1U); const int32_t axisDimension = (context->getInputBuffer(kInputAxisTensor))[0]; NN_RET_CHECK_GE(axisDimension, 0); NN_RET_CHECK_LT(uint32_t(axisDimension), inputTensorRank); Shape outputShape = context->getOutputShape(kOutputTensor); NN_RET_CHECK(SetShape(inputShape, &outputShape)); return context->setOutputShape(kOutputTensor, outputShape); } template bool reverse(IOperationExecutionContext* context) { // Note that the NNAPI REVERSE operation requires input and output tensor to // have the same dimensions. const tflite::RuntimeShape tensorShape = convertShapeToTflshape(context->getInputShape(kInputTensor)); tflite::reference_ops::Reverse((context->getInputBuffer(kInputAxisTensor))[0], tensorShape, context->getInputBuffer(kInputTensor), tensorShape, context->getOutputBuffer(kOutputTensor)); return true; } bool execute(IOperationExecutionContext* context) { switch (context->getInputType(kInputTensor)) { case OperandType::TENSOR_FLOAT16: return reverse<_Float16>(context); case OperandType::TENSOR_FLOAT32: return reverse(context); case OperandType::TENSOR_QUANT8_ASYMM: return reverse(context); case OperandType::TENSOR_QUANT8_ASYMM_SIGNED: return reverse(context); case OperandType::TENSOR_INT32: return reverse(context); default: NN_RET_CHECK_FAIL() << "Unsupported tensor type for operation " << kOperationName; } } #endif // NN_INCLUDE_CPU_IMPLEMENTATION } // namespace reverse_op NN_REGISTER_OPERATION_DEFAULT_VALIDATION(REVERSE, reverse_op::prepare, reverse_op::execute); } // namespace nn } // namespace android