/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H #define ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H #include #include #include #include #include #include #include "OperationsExecutionUtils.h" namespace android { namespace nn { // The implementations in tflite/kernels/internal/ take a Dims<4> object // even if the original tensors were not 4D. inline tflite::Dims<4> convertShapeToDims(const Shape& shape) { CHECK_LE(shape.dimensions.size(), 4u); tflite::Dims<4> dims; // The dimensions are reversed in Dims<4>. for (int i = 0; i < 4; ++i) { int src = static_cast(shape.dimensions.size()) - i - 1; if (src >= 0) { dims.sizes[i] = static_cast(getSizeOfDimension(shape, src)); } else { dims.sizes[i] = 1; } } dims.strides[0] = 1; for (int i = 1; i < 4; i++) { dims.strides[i] = dims.strides[i - 1] * dims.sizes[i - 1]; } return dims; } inline tflite::RuntimeShape convertShapeToTflshape(const Shape& shape) { std::vector tflShapeDim(shape.dimensions.begin(), shape.dimensions.end()); return tflite::RuntimeShape(tflShapeDim.size(), tflShapeDim.data()); } inline void convertFloat16ToFloat32(const _Float16* input, std::vector* output) { CHECK(input != nullptr); CHECK(output != nullptr); for (size_t i = 0; i < output->size(); ++i) { (*output)[i] = static_cast(input[i]); } } inline void convertFloat32ToFloat16(const std::vector& input, _Float16* output) { CHECK(output != nullptr); for (size_t i = 0; i < input.size(); ++i) { output[i] = input[i]; } } // Convert int8 quantized values to uint8 assuming that the scale is the same // and the distance between offsets is 128. inline void convertInt8ToUInt8(const int8_t* input, std::vector* output) { CHECK(input != nullptr); CHECK(output != nullptr); for (size_t i = 0; i < output->size(); ++i) { (*output)[i] = static_cast(static_cast(input[i]) + 128); } } // Convert uint8 quantized values to int8 assuming that the scale is the same // and the distance between offsets is 128. inline void convertUInt8ToInt8(const std::vector& input, int8_t* output) { CHECK(output != nullptr); for (size_t i = 0; i < input.size(); ++i) { output[i] = static_cast(static_cast(input[i]) - 128); } } template inline void convertQuantToFloat32(const T* input, float scale, int32_t zeroPoint, std::vector* output) { CHECK(input != nullptr); CHECK(output != nullptr); for (size_t i = 0; i < output->size(); ++i) { (*output)[i] = (static_cast(input[i]) - zeroPoint) * scale; } } template inline void convertFloat32ToQuant(const std::vector& input, float scale, int32_t zeroPoint, T* output) { CHECK(output != nullptr); for (size_t i = 0; i < input.size(); ++i) { int32_t intVal = std::round(input[i] / scale + zeroPoint); intVal = std::min(std::max(intVal, std::numeric_limits::min()), std::numeric_limits::max()); output[i] = static_cast(intVal); } } template inline bool convertNchwToNhwc(const T* nchw, const Shape& nchwShape, std::vector* nhwc, Shape* nhwcShape) { NN_RET_CHECK_EQ(getNumberOfDimensions(nchwShape), 4u) << "Error converting a non-4-D tensor to NHWC layout"; *nhwcShape = nchwShape; const auto& fromDim = nchwShape.dimensions; nhwcShape->dimensions = {fromDim[0], fromDim[2], fromDim[3], fromDim[1]}; nhwc->resize(getNumberOfElements(nchwShape)); auto to = nhwc->data(); uint32_t spatialSize = fromDim[2] * fromDim[3]; for (uint32_t n = 0; n < fromDim[0]; n++) { for (uint32_t hw = 0; hw < spatialSize; hw++) { for (uint32_t c = 0; c < fromDim[1]; c++) { uint32_t fromIndex = n * fromDim[1] * spatialSize + c * spatialSize + hw; *to++ = nchw[fromIndex]; } } } return true; } template inline bool convertNhwcToNchw(const std::vector& nhwc, const Shape& nhwcShape, T* nchw) { NN_RET_CHECK_EQ(getNumberOfDimensions(nhwcShape), 4u) << "Error converting a non-4-D tensor to NCHW layout"; const auto& fromDim = nhwcShape.dimensions; const auto from = nhwc.data(); uint32_t spatialSize = fromDim[1] * fromDim[2]; for (uint32_t n = 0; n < fromDim[0]; n++) { for (uint32_t c = 0; c < fromDim[3]; c++) { for (uint32_t hw = 0; hw < spatialSize; hw++) { uint32_t fromIndex = n * spatialSize * fromDim[3] + hw * fromDim[3] + c; *nchw++ = from[fromIndex]; } } } return true; } template class InputWithLayout { public: InputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {} bool initialize(const T* data, const Shape& shape) { mDataOriginal = data; mShape = shape; if (mUseNchw) { return convertNchwToNhwc(mDataOriginal, shape, &mDataNhwc, &mShape); } return true; } const T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; } const Shape& getNhwcShape() { return mShape; } private: const T* mDataOriginal; std::vector mDataNhwc; Shape mShape; bool mUseNchw; }; template class OutputWithLayout { public: OutputWithLayout(bool useNchw) : mDataOriginal(nullptr), mUseNchw(useNchw) {} bool initialize(T* data, const Shape& shape) { NN_RET_CHECK_EQ(getNumberOfDimensions(shape), 4u); mDataOriginal = data; mShape = shape; if (mUseNchw) { const auto& dim = shape.dimensions; mShape.dimensions = {dim[0], dim[2], dim[3], dim[1]}; mDataNhwc.resize(getNumberOfElements(shape)); } return true; } T* getNhwcBuffer() { return mUseNchw ? mDataNhwc.data() : mDataOriginal; } const Shape& getNhwcShape() { return mShape; } bool commit() { if (mUseNchw) { return convertNhwcToNchw(mDataNhwc, mShape, mDataOriginal); } return true; } private: T* mDataOriginal; std::vector mDataNhwc; Shape mShape; bool mUseNchw; }; template inline void CalculateActivationRange(int32_t activation, const Shape& outputShape, int32_t* outputActivationMin, int32_t* outputActivationMax); template <> inline void CalculateActivationRange(int32_t activation, const Shape& outputShape, int32_t* outputActivationMin, int32_t* outputActivationMax) { CalculateActivationRangeUint8(activation, outputShape, outputActivationMin, outputActivationMax); } template <> inline void CalculateActivationRange(int32_t activation, const Shape& outputShape, int32_t* outputActivationMin, int32_t* outputActivationMax) { CalculateActivationRangeInt8(activation, outputShape, outputActivationMin, outputActivationMax); } } // namespace nn } // namespace android #endif // ANDROID_PACKAGES_MODULES_NEURALNETWORKS_COMMON_CPU_OPERATION_UTILS_H