/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include "GeneratedTestUtils.h" #include "TestHarness.h" #include "TestNeuralNetworksWrapper.h" #include "TmpDirectoryUtils.h" #include "fuzzing/OperationManager.h" #include "fuzzing/RandomGraphGenerator.h" #include "fuzzing/RandomGraphGeneratorUtils.h" #ifndef NNTEST_CTS #include #include #include #include "HalUtils.h" #include "Manager.h" #ifdef __ANDROID__ #include #endif // __ANDROID__ using android::nn::sample_driver::SampleDriverFull; #endif namespace android { namespace nn { namespace fuzzing_test { using namespace test_helper; using test_wrapper::Result; constexpr char kRefDeviceName[] = "nnapi-reference"; #ifndef NNTEST_CTS class TestDriverV1_2 : public SampleDriverFull { public: TestDriverV1_2() : SampleDriverFull(name, {.execTime = 0.9f, .powerUsage = 0.9f}) {} static constexpr char name[] = "TestDriverV1_2"; }; // Like SampleDriverFull, but implementing 1.1 class TestDriverV1_1 : public V1_1::IDevice { public: TestDriverV1_1() : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.8f, .powerUsage = 0.8f})) {} static constexpr char name[] = "TestDriverV1_1"; hardware::Return getCapabilities_1_1(getCapabilities_1_1_cb _hidl_cb) override { return mDriverV1_2->getCapabilities_1_1(_hidl_cb); } hardware::Return getSupportedOperations_1_1( const V1_1::Model& model, getSupportedOperations_1_1_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations_1_1(model, _hidl_cb); } hardware::Return prepareModel_1_1( const V1_1::Model& model, V1_1::ExecutionPreference preference, const sp& actualCallback) override { return mDriverV1_2->prepareModel_1_1(model, preference, actualCallback); } hardware::Return getStatus() override { return mDriverV1_2->getStatus(); } hardware::Return getCapabilities(getCapabilities_cb _hidl_cb) override { return mDriverV1_2->getCapabilities(_hidl_cb); } hardware::Return getSupportedOperations(const V1_0::Model& model, getSupportedOperations_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations(model, _hidl_cb); } hardware::Return prepareModel( const V1_0::Model& model, const sp& actualCallback) override { return mDriverV1_2->prepareModel(model, actualCallback); } private: const sp mDriverV1_2; }; // Like SampleDriverFull, but implementing 1.0 class TestDriverV1_0 : public V1_0::IDevice { public: TestDriverV1_0() : mDriverV1_2(new SampleDriverFull(name, {.execTime = 0.7f, .powerUsage = 0.7f})) {} static constexpr char name[] = "TestDriverV1_0"; hardware::Return getCapabilities(getCapabilities_cb _hidl_cb) override { return mDriverV1_2->getCapabilities(_hidl_cb); } hardware::Return getSupportedOperations(const V1_0::Model& model, getSupportedOperations_cb _hidl_cb) override { return mDriverV1_2->getSupportedOperations(model, _hidl_cb); } hardware::Return prepareModel( const V1_0::Model& model, const sp& actualCallback) override { return mDriverV1_2->prepareModel(model, actualCallback); } hardware::Return getStatus() override { return mDriverV1_2->getStatus(); } private: const sp mDriverV1_2; }; #endif // NN API fuzzer logging setting comes from system property debug.nn.fuzzer.log and // debug.nn.fuzzer.dumpspec. // * setprop debug.nn.fuzzer.log 1 : enable logging. // * setprop debug.nn.fuzzer.log 0 : silence logging. // * setprop debug.nn.fuzzer.dumpspec 1 : dump the randomly generated graph to a spec file. // * setprop debug.nn.fuzzer.dumpspec 0 : do not dump the graph. // // Logs and spec files are dumped to {NN_TMP_DIR}/${testname}.{log,mod.py}, // e.g. for test case TestRandomGraph/RandomGraphTest/Large/0, // log : {NN_TMP_DIR}/TestRandomGraph_RandomGraphTest_Large_0.log // spec: {NN_TMP_DIR}/TestRandomGraph_RandomGraphTest_Large_0.mod.py // class RandomGraphTest : public ::testing::TestWithParam { public: static void SetUpTestCase() { #ifndef NNTEST_CTS mEnableLog = ::android::base::GetProperty("debug.nn.fuzzer.log", "") == "1"; mDumpSpec = ::android::base::GetProperty("debug.nn.fuzzer.dumpspec", "") == "1"; mDetectMemoryLeak = ::android::base::GetProperty("debug.nn.fuzzer.detectleak", "") == "1"; mStandardDevices = DeviceManager::get()->forTest_getDevices(); mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice( makeSharedDevice(TestDriverV1_2::name, new TestDriverV1_2))); mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice( makeSharedDevice(TestDriverV1_1::name, new TestDriverV1_1))); mSyntheticDevices.push_back(DeviceManager::forTest_makeDriverDevice( makeSharedDevice(TestDriverV1_0::name, new TestDriverV1_0))); #endif mVndkVersion = ::android::base::GetIntProperty("ro.vndk.version", __ANDROID_API_FUTURE__); // Get all the devices and device names. mStandardDevicesFeatureLevel = __ANDROID_API_FUTURE__; uint32_t numDevices = 0; ASSERT_EQ(ANeuralNetworks_getDeviceCount(&numDevices), ANEURALNETWORKS_NO_ERROR); for (uint32_t i = 0; i < numDevices; i++) { ANeuralNetworksDevice* device = nullptr; const char* name = nullptr; int64_t featureLevel; ASSERT_EQ(ANeuralNetworks_getDevice(i, &device), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksDevice_getName(device, &name), ANEURALNETWORKS_NO_ERROR); ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel), ANEURALNETWORKS_NO_ERROR); mDevices.emplace(name, device); mStandardDevicesFeatureLevel = std::min(mStandardDevicesFeatureLevel, featureLevel); } } protected: virtual void SetUp() override { // Initialize logging. const ::testing::TestInfo* const testInfo = ::testing::UnitTest::GetInstance()->current_test_info(); mTestName = mTestName + testInfo->test_case_name() + "_" + testInfo->name(); std::replace(mTestName.begin(), mTestName.end(), '/', '_'); if (mEnableLog) NN_FUZZER_LOG_INIT(NN_TMP_DIR "/" + mTestName + ".log"); } virtual void TearDown() override { NN_FUZZER_LOG_CLOSE; // Dump test results on failure for debugging. if (::testing::Test::HasFailure() || mDumpSpec) { dumpTestResults(); } #if defined(__ANDROID__) && !defined(NNTEST_CTS) if (mDetectMemoryLeak) { ASSERT_TRUE(NoLeaks()); } #endif } bool shouldSkipTest(int64_t featureLevel) { static const std::set kDisabledTests = { // In this test, the RGG produces a non-sensible graph with extreme large output // gain and highly clamped output range. // TODO: Currently quantized buffer values are uniformly distributed within // [0, 255]. We should investigate on a better buffer value generation // algorithm that represents the real-world cases. "TestRandomGraph_SingleOperationTest_CONV_2D_V1_2_40", "TestRandomGraph_SingleOperationTest_DEPTHWISE_CONV_2D_V1_0_32", }; if (kDisabledTests.find(mTestName) != kDisabledTests.end()) return true; for (const auto& op : mTestModel.main.operations) { // Skip if testing BATCH_TO_SPACE_ND with batch dimension == 1. if (op.type == TestOperationType::BATCH_TO_SPACE_ND && mTestModel.main.operands[op.inputs[0]].dimensions[0] == 1 && featureLevel <= __ANDROID_API_Q__) { return true; } // L2_NORMALIZATION on axis of all zeros is undefined before R. if (op.type == TestOperationType::L2_NORMALIZATION && featureLevel <= __ANDROID_API_Q__) { return true; } // Skip the following operations for 1.2 and earlier devices. if ((op.type == TestOperationType::ADD || op.type == TestOperationType::SUB || op.type == TestOperationType::MAXIMUM || op.type == TestOperationType::MINIMUM || op.type == TestOperationType::ROI_ALIGN) && mTestModel.main.operands[op.inputs[0]].type == TestOperandType::TENSOR_QUANT8_ASYMM && featureLevel <= __ANDROID_API_Q__) { return true; } // Skip the following operations when the VNDK version is earlier than R. if (mVndkVersion < __ANDROID_API_R__ && op.type == TestOperationType::HEATMAP_MAX_KEYPOINT) { return true; } } return false; } // Compute the golden output results of the test model on nnapi-reference. If possible, the // golden results will be computed from an equivalent float32 model to avoid bias avoid bias // from quantized CPU implementation. void computeGoldenResults() { SCOPED_TRACE("computeGoldenResults"); // Convert the test model to an equivalent float32 model if possible. auto fpModel = convertToFloat32Model(mTestModel); const TestModel& goldenModel = fpModel.has_value() ? fpModel.value() : mTestModel; // Create model. generated_tests::GeneratedModel model; generated_tests::createModel(goldenModel, &model); ASSERT_TRUE(model.isValid()); ASSERT_EQ(model.finish(), Result::NO_ERROR); // Create compilation for nnapi-reference. ASSERT_TRUE(mDevices.find(kRefDeviceName) != mDevices.end()); const auto refDevice = mDevices[kRefDeviceName]; auto [result, compilation] = test_wrapper::Compilation::createForDevice(&model, refDevice); ASSERT_EQ(result, Result::NO_ERROR); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); // Create request. test_wrapper::Execution execution(&compilation); std::vector outputs; generated_tests::createRequest(goldenModel, &execution, &outputs); // Compute result. ASSERT_EQ(execution.compute(), Result::NO_ERROR); if (fpModel.has_value()) { // Quantize the execution results as golden values. setExpectedOutputsFromFloat32Results(outputs, &mTestModel); } else { for (uint32_t i = 0; i < outputs.size(); i++) { auto outputIndex = mTestModel.main.outputIndexes[i]; mTestModel.main.operands[outputIndex].data = outputs[i]; } } } // Compile and execute the generated graph on a device selected by name. void computeAndVerifyResultsForDevice(const test_wrapper::Model* model, uint32_t numOps, const std::string& name) { SCOPED_TRACE("Device: " + name); std::cout << "[ ] - RUN: " << name << "\n"; ASSERT_TRUE(mDevices.find(name) != mDevices.end()); const auto device = mDevices[name]; // Check if the device fully supports the graph. constexpr int kMaxNumberOperations = 1000; ASSERT_TRUE(numOps <= kMaxNumberOperations); bool supported[kMaxNumberOperations] = {false}; ASSERT_EQ(ANeuralNetworksModel_getSupportedOperationsForDevices(model->getHandle(), &device, 1, supported), ANEURALNETWORKS_NO_ERROR); if (!std::all_of(supported, supported + numOps, [](bool v) { return v; })) { std::cout << "[ ] SKIP: " << name << " does not support the graph.\n"; return; } // Since this test is introduced in Android Q, we only check the accuracy of output results // if the device has feature level >= Q (API level 29). For pre-Q devices, we allow // them to produce less accurate results, but must not hang or crash. int64_t featureLevel; ASSERT_EQ(ANeuralNetworksDevice_getFeatureLevel(device, &featureLevel), ANEURALNETWORKS_NO_ERROR); if (shouldSkipTest(featureLevel)) return; // Create compilation for device. auto [result, compilation] = test_wrapper::Compilation::createForDevice(model, device); ASSERT_EQ(result, Result::NO_ERROR); Result compileReturn = compilation.finish(); // Even if the model is fully supported, the compilation may still fail, e.g. each operation // is supported, but model is too big (too many operations and/or too-large constants) for // device. if (compileReturn == Result::OP_FAILED) { std::cout << "[ ] SKIP: " << name << " failed at compilation step.\n"; return; } ASSERT_EQ(compileReturn, Result::NO_ERROR); // Create request. test_wrapper::Execution execution(&compilation); std::vector outputs; generated_tests::createRequest(mTestModel, &execution, &outputs); // Compute result. Result executeReturn = execution.compute(); // Even if the model is fully supported and the compilation succeeds, the execution may // still fail, e.g. there may be operand shapes that are unknown until execution time, and // at execution time turn out to be too big. if (executeReturn == Result::OP_FAILED) { std::cout << "[ ] SKIP: " << name << " failed at execution step.\n"; return; } ASSERT_EQ(executeReturn, Result::NO_ERROR); if (featureLevel >= __ANDROID_API_Q__) { checkResults(mTestModel, outputs, mCriteria); mResults.emplace_back(name, std::move(outputs)); } } // Compile and execute the generated graph normally (i.e., allow runtime to // distribute across devices). void computeAndVerifyResults(const std::string& name, const test_wrapper::Model* model, bool shouldCheckResults) { // Because we're not using the introspection/control API, the CpuDevice // is available as a fallback, and hence we assume that compilation and // execution will succeed. SCOPED_TRACE(name); std::cout << "[ ] - RUN: " << name << "\n"; // Create compilation. test_wrapper::Compilation compilation(model); ASSERT_EQ(compilation.finish(), Result::NO_ERROR); // Create request. test_wrapper::Execution execution(&compilation); std::vector outputs; generated_tests::createRequest(mTestModel, &execution, &outputs); // Compute and verify result. ASSERT_EQ(execution.compute(), Result::NO_ERROR); if (shouldCheckResults) { checkResults(mTestModel, outputs, mCriteria); mResults.emplace_back(name, std::move(outputs)); } } // Main test entrance. void testRandomGraph(uint32_t numOperations, uint32_t dimensionRange) { // Generate a random graph. RandomGraph graph; ASSERT_TRUE(graph.generate(kSeed, numOperations, dimensionRange)); // Create a model from the random graph. mTestModel = graph.createTestModel(); generated_tests::GeneratedModel model; generated_tests::createModel(mTestModel, &model); ASSERT_TRUE(model.isValid()); ASSERT_EQ(model.finish(), Result::NO_ERROR); // Compute reference results. computeGoldenResults(); // Compute on each available device. for (auto& pair : mDevices) { computeAndVerifyResultsForDevice(&model, numOperations, pair.first); } if (numOperations > 1) { if (!shouldSkipTest(mStandardDevicesFeatureLevel)) { // Compute normally (i.e., allow runtime to distribute across devices). computeAndVerifyResults("Compute normally", &model, mStandardDevicesFeatureLevel >= __ANDROID_API_Q__); } #ifndef NNTEST_CTS { // Stress partitioner by allowing runtime to distribute across // three synthetic devices. The synthetic devices use the // CpuExecutor for execution, so we always check results, even // though some are of feature level < __ANDROID_API_Q__: In this // case, we don't take feature level as an indication of // reliability, as we do with real devices. DeviceManager::get()->forTest_setDevices(mSyntheticDevices); computeAndVerifyResults("Compute across synthetic devices", &model, true); DeviceManager::get()->forTest_setDevices(mStandardDevices); } #endif } } void dumpTestResults() { std::ofstream os(NN_TMP_DIR "/" + mTestName + ".mod.py"); ASSERT_TRUE(os.is_open()); os << "# Generated from " << mTestName << ". Do not edit.\n\n"; SpecDumper dumper(mTestModel, os); dumper.dumpTestModel(); for (const auto& [name, results] : mResults) { dumper.dumpResults(name, results); } } enum GraphSize : uint32_t { SINGLE = 1, SMALL = 5, LARGE = 40 }; enum DimensionRange : uint32_t { NARROW = 10, WIDE = 1000 }; static bool mEnableLog; static bool mDumpSpec; static bool mDetectMemoryLeak; static std::map mDevices; const uint32_t kSeed = GetParam(); std::string mTestName; TestModel mTestModel; AccuracyCriteria mCriteria; // A vector of {name, output_results}. std::vector>> mResults; static int mVndkVersion; static int64_t mStandardDevicesFeatureLevel; // minimum across all devices #ifndef NNTEST_CTS static std::vector> mStandardDevices; static std::vector> mSyntheticDevices; #endif }; bool RandomGraphTest::mEnableLog = false; bool RandomGraphTest::mDumpSpec = false; bool RandomGraphTest::mDetectMemoryLeak = false; std::map RandomGraphTest::mDevices; int RandomGraphTest::mVndkVersion = __ANDROID_API_FUTURE__; int64_t RandomGraphTest::mStandardDevicesFeatureLevel; #ifndef NNTEST_CTS std::vector> RandomGraphTest::mStandardDevices; std::vector> RandomGraphTest::mSyntheticDevices; #endif // Single-op graph with dimensions in range [1, 1000]. class SingleOperationTest : public RandomGraphTest {}; #define TEST_SINGLE_OPERATION(operation, halVersion, criteria) \ TEST_P(SingleOperationTest, operation##_##halVersion) { \ OperationFilter filter = {.opcodes = {TestOperationType::operation}, \ .versions = {TestHalVersion::halVersion}}; \ OperationManager::get()->applyFilter(filter); \ mCriteria = (criteria); \ testRandomGraph(GraphSize::SINGLE, DimensionRange::WIDE); \ } // TODO: Adjust the accuracy criteria based on testing. // We define three sets of accuracy criteria for single-operation tests. // This is for operations that only copy buffers around without any computation on buffer values. // Most of these operations fall into categories of reshape or selection, e.g. RESHAPE, GATHER. // Additionally, operations with only logical or comparison arithmetic also use this criteria, e.g. // EQUAL, ARGMAX, TOPK_V2. const AccuracyCriteria kStrictCriteria = { .float32 = {.bias = 1e-7f, .mse = 1e-10f, .atol = 1e-6f, .rtol = 1e-6f}, .float16 = {.bias = 1e-4f, .mse = 1e-8f, .atol = 1e-3f, .rtol = 1e-3f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, .quant8AsymmSigned = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, .quant8Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, .quant16Asymm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, .quant16Symm = {.bias = 0.1f, .mse = 0.1f, .atol = 1}, }; // This is for operations that only do simple and single computation on buffer values, such as // addition, multiplication, or requantization. Most of these operations fall into categories of // broadcast or elementwise, e.g ADD, FLOOR. const AccuracyCriteria kMediumCriteria = { .float32 = {.bias = 1e-6f, .mse = 1e-8f, .atol = 1e-5f, .rtol = 1e-5f}, .float16 = {.bias = 1e-3f, .mse = 1e-5f, .atol = 1e-2f, .rtol = 1e-2f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 1.2, .mse = 1.2, .atol = 2}, .quant8AsymmSigned = {.bias = 1.2, .mse = 1.2, .atol = 2}, .quant8Symm = {.bias = 1.2, .mse = 1.2, .atol = 2}, .quant16Asymm = {.bias = 1.2, .mse = 1.2, .atol = 2}, .quant16Symm = {.bias = 1.2, .mse = 1.2, .atol = 2}, }; // This is for operations that involve sophisticated computations on buffer values, either a single // but complex transformation, e.g. LOGISTIC, or multiple transformations with accumulated errors, // e.g. L2_NORMALIZATION, REDUCE_*. const AccuracyCriteria kRelaxedCriteria = { .float32 = {.bias = 3e-5f, .mse = 1e-6f, .atol = 1e-3f, .rtol = 1e-3f}, .float16 = {.bias = 5e-3f, .mse = 1e-3f, .atol = 1.0f, .rtol = 1.0f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant8AsymmSigned = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant8Symm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant16Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant16Symm = {.bias = 1.5, .mse = 1.5, .atol = 10}, }; // This is for convolution operations with potentially large kernel size. const AccuracyCriteria kConvCriteria = { .float32 = {.bias = 4e-4f, .mse = 1e-5f, .atol = 2e-2f, .rtol = 2e-2f}, .float16 = {.bias = 5e-2f, .mse = 1e-2f, .atol = 1.0f, .rtol = 1.0f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant8AsymmSigned = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant8Symm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant16Asymm = {.bias = 1.5, .mse = 1.5, .atol = 10}, .quant16Symm = {.bias = 1.5, .mse = 1.5, .atol = 10}, }; /*-- NNAPI 1.0 Operations ---------------------------------------------------*/ // TODO: The following 1.0 operation signatures are currently not defined: // - ANEURALNETWORKS_LSH_PROJECTION // - ANEURALNETWORKS_LSTM // - ANEURALNETWORKS_RNN // - ANEURALNETWORKS_SVDF TEST_SINGLE_OPERATION(ADD, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(MUL, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(FLOOR, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(LOGISTIC, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(RELU, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(RELU1, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(RELU6, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(TANH, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(SOFTMAX, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(L2_POOL_2D, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(CONV_2D, V1_0, kConvCriteria); TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_0, kConvCriteria); TEST_SINGLE_OPERATION(CONCATENATION, V1_0, kMediumCriteria); TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_0, kStrictCriteria); TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_0, kStrictCriteria); TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_0, kStrictCriteria); TEST_SINGLE_OPERATION(HASHTABLE_LOOKUP, V1_0, kStrictCriteria); TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_0, kRelaxedCriteria); TEST_SINGLE_OPERATION(RESHAPE, V1_0, kStrictCriteria); TEST_SINGLE_OPERATION(DEQUANTIZE, V1_0, kMediumCriteria); /*-- NNAPI 1.1 Operations ---------------------------------------------------*/ TEST_SINGLE_OPERATION(SUB, V1_1, kMediumCriteria); TEST_SINGLE_OPERATION(DIV, V1_1, kRelaxedCriteria); TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_1, kStrictCriteria); TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_1, kStrictCriteria); TEST_SINGLE_OPERATION(MEAN, V1_1, kRelaxedCriteria); TEST_SINGLE_OPERATION(PAD, V1_1, kStrictCriteria); TEST_SINGLE_OPERATION(TRANSPOSE, V1_1, kStrictCriteria); TEST_SINGLE_OPERATION(SQUEEZE, V1_1, kStrictCriteria); TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_1, kStrictCriteria); /*-- NNAPI 1.0 and 1.1 Operations with Extended Behavior in 1.2 -------------*/ TEST_SINGLE_OPERATION(ADD, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(MUL, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(SUB, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(DIV, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(FLOOR, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(LOGISTIC, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(RELU, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(RELU1, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(RELU6, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(TANH, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(CONCATENATION, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(RESHAPE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(MEAN, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(PAD, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(TRANSPOSE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(CONV_2D, V1_2, kConvCriteria); TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_2, kConvCriteria); TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(L2_POOL_2D, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(SOFTMAX, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(LOCAL_RESPONSE_NORMALIZATION, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(DEQUANTIZE, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(SQUEEZE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_2, kStrictCriteria); /*-- NNAPI 1.2 Operations ---------------------------------------------------*/ // TODO: The following 1.2 operation signatures are currently not defined: // - ANEURALNETWORKS_AXIS_ALIGNED_BBOX_TRANSFORM // - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_LSTM // - ANEURALNETWORKS_BIDIRECTIONAL_SEQUENCE_RNN // - ANEURALNETWORKS_BOX_WITH_NMS_LIMIT // - ANEURALNETWORKS_DETECTION_POSTPROCESSING // - ANEURALNETWORKS_GENERATE_PROPOSALS // - ANEURALNETWORKS_QUANTIZED_16BIT_LSTM // - ANEURALNETWORKS_RANDOM_MULTINOMIAL // - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_LSTM // - ANEURALNETWORKS_UNIDIRECTIONAL_SEQUENCE_RNN TEST_SINGLE_OPERATION(ABS, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(EXP, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(LOG, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(NEG, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(RSQRT, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(SIN, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(SQRT, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(ARGMAX, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(ARGMIN, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(EQUAL, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(GREATER, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(GREATER_EQUAL, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(LESS, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(LESS_EQUAL, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(LOGICAL_AND, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(LOGICAL_NOT, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(LOGICAL_OR, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(NOT_EQUAL, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(MAXIMUM, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(MINIMUM, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(POW, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(PRELU, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(REDUCE_ALL, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_ANY, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_MAX, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_MIN, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_PROD, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_SUM, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(CHANNEL_SHUFFLE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(INSTANCE_NORMALIZATION, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(LOG_SOFTMAX, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(GROUPED_CONV_2D, V1_2, kConvCriteria); TEST_SINGLE_OPERATION(TRANSPOSE_CONV_2D, V1_2, kConvCriteria); TEST_SINGLE_OPERATION(RESIZE_NEAREST_NEIGHBOR, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(PAD_V2, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(QUANTIZE, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(CAST, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(EXPAND_DIMS, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(TILE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(GATHER, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(SELECT, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(TOPK_V2, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(SLICE, V1_2, kStrictCriteria); TEST_SINGLE_OPERATION(SPLIT, V1_2, kMediumCriteria); TEST_SINGLE_OPERATION(ROI_ALIGN, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(ROI_POOLING, V1_2, kRelaxedCriteria); TEST_SINGLE_OPERATION(HEATMAP_MAX_KEYPOINT, V1_2, kRelaxedCriteria); /*-- NNAPI 1.0, 1.1, and 1.2 Operations with Extended Behavior in 1.3 -------------*/ TEST_SINGLE_OPERATION(ADD, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(AVERAGE_POOL_2D, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(CONCATENATION, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(CONV_2D, V1_3, kConvCriteria); TEST_SINGLE_OPERATION(DEPTHWISE_CONV_2D, V1_3, kConvCriteria); TEST_SINGLE_OPERATION(DEPTH_TO_SPACE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(DEQUANTIZE, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(EMBEDDING_LOOKUP, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(FULLY_CONNECTED, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(L2_NORMALIZATION, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(LOGISTIC, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(MAX_POOL_2D, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(MUL, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(RELU, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(RELU1, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(RELU6, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(RESHAPE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(RESIZE_BILINEAR, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(SOFTMAX, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(SPACE_TO_DEPTH, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(TANH, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(BATCH_TO_SPACE_ND, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(DIV, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(MEAN, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(PAD, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(SPACE_TO_BATCH_ND, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(SQUEEZE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(STRIDED_SLICE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(SUB, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(TRANSPOSE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(ABS, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(ARGMAX, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(ARGMIN, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(CAST, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(CHANNEL_SHUFFLE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(EQUAL, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(EXPAND_DIMS, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(GATHER, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(GREATER, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(GREATER_EQUAL, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(GROUPED_CONV_2D, V1_3, kConvCriteria); TEST_SINGLE_OPERATION(HEATMAP_MAX_KEYPOINT, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(LESS, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(LESS_EQUAL, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(MAXIMUM, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(MINIMUM, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(NOT_EQUAL, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(PAD_V2, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(PRELU, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(QUANTIZE, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(REDUCE_MAX, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(REDUCE_MIN, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(ROI_ALIGN, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(ROI_POOLING, V1_3, kRelaxedCriteria); TEST_SINGLE_OPERATION(SELECT, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(SLICE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(SPLIT, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(TILE, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(TOPK_V2, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(TRANSPOSE_CONV_2D, V1_3, kConvCriteria); TEST_SINGLE_OPERATION(RESIZE_NEAREST_NEIGHBOR, V1_3, kRelaxedCriteria); /*-- NNAPI 1.3 Operations ---------------------------------------------------*/ // TODO: The following 1.3 operation signatures are currently not defined: // - ANEURALNETWORKS_QUANTIZED_LSTM // - ANEURALNETWORKS_IF // - ANEURALNETWORKS_WHILE TEST_SINGLE_OPERATION(ELU, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(HARD_SWISH, V1_3, kMediumCriteria); TEST_SINGLE_OPERATION(FILL, V1_3, kStrictCriteria); TEST_SINGLE_OPERATION(RANK, V1_3, kStrictCriteria); const AccuracyCriteria kSmallGraphCriteria = { .float32 = {.bias = 4e-4f, .mse = 1e-5f, .atol = 1e-2f, .rtol = 1e-2f}, .float16 = {.bias = 5e-2f, .mse = 1e-2f, .atol = 1.0f, .rtol = 1.0f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 2, .mse = 2, .atol = 12}, .quant8AsymmSigned = {.bias = 2, .mse = 2, .atol = 12}, .quant8Symm = {.bias = 2, .mse = 2, .atol = 12}, .quant16Asymm = {.bias = 2, .mse = 2, .atol = 12}, .quant16Symm = {.bias = 2, .mse = 2, .atol = 12}, }; const AccuracyCriteria kLargeGraphCriteria = { .float32 = {.bias = 1e-2f, .mse = 1e-4f, .atol = 1e-1f, .rtol = 1e-1f}, .float16 = {.bias = 1e-1f, .mse = 5e-2f, .atol = 1.0f, .rtol = 1.0f}, .int32 = {.atol = 1}, .quant8Asymm = {.bias = 2, .mse = 2, .atol = 12}, .quant8AsymmSigned = {.bias = 2, .mse = 2, .atol = 12}, .quant8Symm = {.bias = 2, .mse = 2, .atol = 12}, .quant16Asymm = {.bias = 2, .mse = 2, .atol = 12}, .quant16Symm = {.bias = 2, .mse = 2, .atol = 12}, }; // Due to the limitation of the random graph generator, graphs generated with mixed-type or // mixed-rank operations are likely to result in a disconnected network. Thus, we filter the // operation signatures by primary data type and rank first, then generate random graph tests for // each combination. // // Two parameterized tests are created for each filter: // * 5-op graph with dimensions in range [1, 1000]. // * 40-op graph with dimensions in range [1, 10]. // #define TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(dataType, rank) \ TEST_P(RandomGraphTest, SmallGraph_##dataType##_Rank##rank) { \ OperationFilter filter = {.dataTypes = {TestOperandType::dataType}, .ranks = {rank}}; \ OperationManager::get()->applyFilter(filter); \ mCriteria = kSmallGraphCriteria; \ testRandomGraph(GraphSize::SMALL, DimensionRange::WIDE); \ } \ TEST_P(RandomGraphTest, LargeGraph_##dataType##_Rank##rank) { \ OperationFilter filter = {.dataTypes = {TestOperandType::dataType}, .ranks = {rank}}; \ OperationManager::get()->applyFilter(filter); \ mCriteria = kLargeGraphCriteria; \ testRandomGraph(GraphSize::LARGE, DimensionRange::NARROW); \ } // Random graph test with TENSOR_QUANT8_ASYMM as the primary data type is currently not defined. // The generated graph with TENSOR_QUANT8_ASYMM as the primary data type will likely to result in // disconnected graphs due to the mismatch between quantized parameters. TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 4); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 3); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 2); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT32, 1); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 4); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 3); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 2); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_FLOAT16, 1); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 4); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 3); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 2); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_INT32, 1); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 4); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 3); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 2); TEST_RANDOM_GRAPH_WITH_DATA_TYPE_AND_RANK(TENSOR_BOOL8, 1); INSTANTIATE_TEST_SUITE_P(TestRandomGraph, SingleOperationTest, ::testing::Range(0u, 50u)); INSTANTIATE_TEST_SUITE_P(TestRandomGraph, RandomGraphTest, ::testing::Range(0u, 50u)); } // namespace fuzzing_test } // namespace nn } // namespace android