# # Copyright (C) 2021 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # def test(name, axis_value, input_tensors, output_tensor, inputs_data, output_data): model = Model().Operation("PACK", Int32Scalar("axis", axis_value), *input_tensors).To(output_tensor) quant8_asymm_type = ("TENSOR_QUANT8_ASYMM", 0.5, 4) quant8_asymm_dict = dict(zip([*input_tensors, output_tensor], [quant8_asymm_type] * (len(input_tensors) + 1))) quant8_asymm = DataTypeConverter(name="quant8_asymm").Identify(quant8_asymm_dict) quant8_asymm_signed_type = ("TENSOR_QUANT8_ASYMM_SIGNED", 0.25, -9) quant8_asymm_signed_dict = dict(zip([*input_tensors, output_tensor], [quant8_asymm_signed_type] * (len(input_tensors) + 1))) quant8_asymm_signed = DataTypeConverter(name="quant8_asymm_signed").Identify(quant8_asymm_signed_dict) Example((dict(zip(input_tensors, inputs_data)), {output_tensor: output_data}), model=model, name=name).AddVariations("float16", quant8_asymm, quant8_asymm_signed, "int32") test( name="FLOAT32_unary_axis0", axis_value=0, input_tensors=[Input("in0", ("TENSOR_FLOAT32", [2]))], output_tensor=Output("out", ("TENSOR_FLOAT32", [1,2])), inputs_data=[[3, 4]], output_data=[3, 4], ) test( name="FLOAT32_unary_axis1", axis_value=1, input_tensors=[Input("in0", ("TENSOR_FLOAT32", [2]))], output_tensor=Output("out", ("TENSOR_FLOAT32", [2,1])), inputs_data=[[3, 4]], output_data=[3, 4], ) test( name="FLOAT32_binary_axis0", axis_value=0, input_tensors=[Input("in0", ("TENSOR_FLOAT32", [3,4])), Input("in1", ("TENSOR_FLOAT32", [3,4]))], output_tensor=Output("out", ("TENSOR_FLOAT32", [2,3,4])), inputs_data=[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]], output_data=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], ) test( name="FLOAT32_binary_axis1", axis_value=1, input_tensors=[Input("in0", ("TENSOR_FLOAT32", [3,4])), Input("in1", ("TENSOR_FLOAT32", [3,4]))], output_tensor=Output("out", ("TENSOR_FLOAT32", [3,2,4])), inputs_data=[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]], output_data=[0, 1, 2, 3, 12, 13, 14, 15, 4, 5, 6, 7, 16, 17, 18, 19, 8, 9, 10, 11, 20, 21, 22, 23], ) test( name="FLOAT32_binary_axis2", axis_value=2, input_tensors=[Input("in0", ("TENSOR_FLOAT32", [3,4])), Input("in1", ("TENSOR_FLOAT32", [3,4]))], output_tensor=Output("out", ("TENSOR_FLOAT32", [3,4,2])), inputs_data=[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]], output_data=[0, 12, 1, 13, 2, 14, 3, 15, 4, 16, 5, 17, 6, 18, 7, 19, 8, 20, 9, 21, 10, 22, 11, 23], )