/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ use libc::EIO; use std::io; use super::common::{build_fsverity_digest, merkle_tree_height, FsverityError, SHA256_HASH_SIZE}; use crate::common::{divide_roundup, CHUNK_SIZE}; use crate::file::{ChunkBuffer, ReadByChunk}; use openssl::sha::{sha256, Sha256}; const ZEROS: [u8; CHUNK_SIZE as usize] = [0u8; CHUNK_SIZE as usize]; type HashBuffer = [u8; SHA256_HASH_SIZE]; fn hash_with_padding(chunk: &[u8], pad_to: usize) -> HashBuffer { let padding_size = pad_to - chunk.len(); let mut ctx = Sha256::new(); ctx.update(chunk); ctx.update(&ZEROS[..padding_size]); ctx.finish() } fn verity_check( chunk: &[u8], chunk_index: u64, file_size: u64, merkle_tree: &T, ) -> Result { // The caller should not be able to produce a chunk at the first place if `file_size` is 0. The // current implementation expects to crash when a `ReadByChunk` implementation reads // beyond the file size, including empty file. assert_ne!(file_size, 0); let chunk_hash = hash_with_padding(chunk, CHUNK_SIZE as usize); // When the file is smaller or equal to CHUNK_SIZE, the root of Merkle tree is defined as the // hash of the file content, plus padding. if file_size <= CHUNK_SIZE { return Ok(chunk_hash); } fsverity_walk(chunk_index, file_size, merkle_tree)?.try_fold( chunk_hash, |actual_hash, result| { let (merkle_chunk, hash_offset_in_chunk) = result?; let expected_hash = &merkle_chunk[hash_offset_in_chunk..hash_offset_in_chunk + SHA256_HASH_SIZE]; if actual_hash != expected_hash { return Err(FsverityError::CannotVerify); } Ok(hash_with_padding(&merkle_chunk, CHUNK_SIZE as usize)) }, ) } /// Given a chunk index and the size of the file, returns an iterator that walks the Merkle tree /// from the leaf to the root. The iterator carries the slice of the chunk/node as well as the /// offset of the child node's hash. It is up to the iterator user to use the node and hash, /// e.g. for the actual verification. #[allow(clippy::needless_collect)] fn fsverity_walk( chunk_index: u64, file_size: u64, merkle_tree: &T, ) -> Result> + '_, FsverityError> { let hashes_per_node = CHUNK_SIZE / SHA256_HASH_SIZE as u64; debug_assert_eq!(hashes_per_node, 128u64); let max_level = merkle_tree_height(file_size).expect("file should not be empty") as u32; let root_to_leaf_steps = (0..=max_level) .rev() .map(|x| { let leaves_per_hash = hashes_per_node.pow(x); let leaves_size_per_hash = CHUNK_SIZE * leaves_per_hash; let leaves_size_per_node = leaves_size_per_hash * hashes_per_node; let nodes_at_level = divide_roundup(file_size, leaves_size_per_node); let level_size = nodes_at_level * CHUNK_SIZE; let offset_in_level = (chunk_index / leaves_per_hash) * SHA256_HASH_SIZE as u64; (level_size, offset_in_level) }) .scan(0, |level_offset, (level_size, offset_in_level)| { let this_level_offset = *level_offset; *level_offset += level_size; let global_hash_offset = this_level_offset + offset_in_level; Some(global_hash_offset) }) .map(|global_hash_offset| { let chunk_index = global_hash_offset / CHUNK_SIZE; let hash_offset_in_chunk = (global_hash_offset % CHUNK_SIZE) as usize; (chunk_index, hash_offset_in_chunk) }) .collect::>(); // Needs to collect first to be able to reverse below. Ok(root_to_leaf_steps.into_iter().rev().map(move |(chunk_index, hash_offset_in_chunk)| { let mut merkle_chunk = [0u8; 4096]; // read_chunk is supposed to return a full chunk, or an incomplete one at the end of the // file. In the incomplete case, the hash is calculated with 0-padding to the chunk size. // Therefore, we don't need to check the returned size here. let _ = merkle_tree.read_chunk(chunk_index, &mut merkle_chunk)?; Ok((merkle_chunk, hash_offset_in_chunk)) })) } pub struct VerifiedFileReader { pub file_size: u64, chunked_file: F, merkle_tree: M, root_hash: HashBuffer, } impl VerifiedFileReader { pub fn new( chunked_file: F, file_size: u64, expected_digest: &[u8], merkle_tree: M, ) -> Result, FsverityError> { let mut buf = [0u8; CHUNK_SIZE as usize]; if file_size <= CHUNK_SIZE { let _size = chunked_file.read_chunk(0, &mut buf)?; // The rest of buffer is 0-padded. } else { let size = merkle_tree.read_chunk(0, &mut buf)?; if buf.len() != size { return Err(FsverityError::InsufficientData(size)); } } let root_hash = sha256(&buf[..]); if expected_digest == build_fsverity_digest(&root_hash, file_size) { // Once verified, use the root_hash for verification going forward. Ok(VerifiedFileReader { chunked_file, file_size, merkle_tree, root_hash }) } else { Err(FsverityError::InvalidDigest) } } } impl ReadByChunk for VerifiedFileReader { fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result { let size = self.chunked_file.read_chunk(chunk_index, buf)?; let root_hash = verity_check(&buf[..size], chunk_index, self.file_size, &self.merkle_tree) .map_err(|_| io::Error::from_raw_os_error(EIO))?; if root_hash != self.root_hash { Err(io::Error::from_raw_os_error(EIO)) } else { Ok(size) } } } #[cfg(test)] mod tests { use super::*; use crate::file::ReadByChunk; use anyhow::Result; use authfs_fsverity_metadata::{parse_fsverity_metadata, FSVerityMetadata}; use std::cmp::min; use std::fs::File; use std::os::unix::fs::FileExt; struct LocalFileReader { file: File, size: u64, } impl LocalFileReader { fn new(file: File) -> io::Result { let size = file.metadata()?.len(); Ok(LocalFileReader { file, size }) } fn len(&self) -> u64 { self.size } } impl ReadByChunk for LocalFileReader { fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result { let start = chunk_index * CHUNK_SIZE; if start >= self.size { return Ok(0); } let end = min(self.size, start + CHUNK_SIZE); let read_size = (end - start) as usize; debug_assert!(read_size <= buf.len()); self.file.read_exact_at(&mut buf[..read_size], start)?; Ok(read_size) } } type LocalVerifiedFileReader = VerifiedFileReader; pub struct MerkleTreeReader { metadata: Box, } impl ReadByChunk for MerkleTreeReader { fn read_chunk(&self, chunk_index: u64, buf: &mut ChunkBuffer) -> io::Result { self.metadata.read_merkle_tree(chunk_index * CHUNK_SIZE, buf) } } fn total_chunk_number(file_size: u64) -> u64 { (file_size + 4095) / 4096 } // Returns a reader with fs-verity verification and the file size. fn new_reader_with_fsverity( content_path: &str, metadata_path: &str, ) -> Result<(LocalVerifiedFileReader, u64)> { let file_reader = LocalFileReader::new(File::open(content_path)?)?; let file_size = file_reader.len(); let metadata = parse_fsverity_metadata(File::open(metadata_path)?)?; Ok(( VerifiedFileReader::new( file_reader, file_size, &metadata.digest.clone(), MerkleTreeReader { metadata }, )?, file_size, )) } #[test] fn fsverity_verify_full_read_4k() -> Result<()> { let (file_reader, file_size) = new_reader_with_fsverity("testdata/input.4k", "testdata/input.4k.fsv_meta")?; for i in 0..total_chunk_number(file_size) { let mut buf = [0u8; 4096]; assert!(file_reader.read_chunk(i, &mut buf).is_ok()); } Ok(()) } #[test] fn fsverity_verify_full_read_4k1() -> Result<()> { let (file_reader, file_size) = new_reader_with_fsverity("testdata/input.4k1", "testdata/input.4k1.fsv_meta")?; for i in 0..total_chunk_number(file_size) { let mut buf = [0u8; 4096]; assert!(file_reader.read_chunk(i, &mut buf).is_ok()); } Ok(()) } #[test] fn fsverity_verify_full_read_4m() -> Result<()> { let (file_reader, file_size) = new_reader_with_fsverity("testdata/input.4m", "testdata/input.4m.fsv_meta")?; for i in 0..total_chunk_number(file_size) { let mut buf = [0u8; 4096]; assert!(file_reader.read_chunk(i, &mut buf).is_ok()); } Ok(()) } #[test] fn fsverity_verify_bad_merkle_tree() -> Result<()> { let (file_reader, _) = new_reader_with_fsverity( "testdata/input.4m", "testdata/input.4m.fsv_meta.bad_merkle", // First leaf node is corrupted. )?; // A lowest broken node (a 4K chunk that contains 128 sha256 hashes) will fail the read // failure of the underlying chunks, but not before or after. let mut buf = [0u8; 4096]; let num_hashes = 4096 / 32; let last_index = num_hashes; for i in 0..last_index { assert!(file_reader.read_chunk(i, &mut buf).is_err()); } assert!(file_reader.read_chunk(last_index, &mut buf).is_ok()); Ok(()) } }