/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "fdevent/fdevent.h" #include #include #include #include #include #include #include #include #include "adb.h" #include "adb_io.h" #include "fdevent/fdevent_test.h" #include "socket.h" #include "sysdeps.h" #include "sysdeps/chrono.h" #include "test_utils/test_utils.h" using namespace std::string_literals; using namespace std::string_view_literals; struct ThreadArg { int first_read_fd; int last_write_fd; size_t middle_pipe_count; }; class LocalSocketTest : public FdeventTest {}; TEST_F(LocalSocketTest, smoke) { // Join two socketpairs with a chain of intermediate socketpairs. int first[2]; std::vector> intermediates; int last[2]; constexpr size_t INTERMEDIATE_COUNT = 50; constexpr size_t MESSAGE_LOOP_COUNT = 100; const std::string MESSAGE = "socket_test"; intermediates.resize(INTERMEDIATE_COUNT); ASSERT_EQ(0, adb_socketpair(first)) << strerror(errno); ASSERT_EQ(0, adb_socketpair(last)) << strerror(errno); asocket* prev_tail = create_local_socket(unique_fd(first[1])); ASSERT_NE(nullptr, prev_tail); auto connect = [](asocket* tail, asocket* head) { tail->peer = head; head->peer = tail; tail->ready(tail); }; for (auto& intermediate : intermediates) { ASSERT_EQ(0, adb_socketpair(intermediate.data())) << strerror(errno); asocket* head = create_local_socket(unique_fd(intermediate[0])); ASSERT_NE(nullptr, head); asocket* tail = create_local_socket(unique_fd(intermediate[1])); ASSERT_NE(nullptr, tail); connect(prev_tail, head); prev_tail = tail; } asocket* end = create_local_socket(unique_fd(last[0])); ASSERT_NE(nullptr, end); connect(prev_tail, end); PrepareThread(); for (size_t i = 0; i < MESSAGE_LOOP_COUNT; ++i) { std::string read_buffer = MESSAGE; std::string write_buffer(MESSAGE.size(), 'a'); ASSERT_TRUE(WriteFdExactly(first[0], &read_buffer[0], read_buffer.size())); ASSERT_TRUE(ReadFdExactly(last[1], &write_buffer[0], write_buffer.size())); ASSERT_EQ(read_buffer, write_buffer); } ASSERT_EQ(0, adb_close(first[0])); ASSERT_EQ(0, adb_close(last[1])); // Wait until the local sockets are closed. WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } struct CloseWithPacketArg { unique_fd socket_fd; size_t bytes_written; unique_fd cause_close_fd; }; static void CreateCloser(CloseWithPacketArg* arg) { fdevent_run_on_looper([arg]() { asocket* s = create_local_socket(std::move(arg->socket_fd)); ASSERT_TRUE(s != nullptr); arg->bytes_written = 0; // On platforms that implement sockets via underlying sockets (e.g. Wine), // a socket can appear to be full, and then become available for writes // again without read being called on the other end. Loop and sleep after // each write to give the underlying implementation time to flush. bool socket_filled = false; for (int i = 0; i < 128; ++i) { apacket::payload_type data; data.resize(MAX_PAYLOAD); arg->bytes_written += data.size(); int ret = s->enqueue(s, std::move(data)); // Return value of 0 implies that more data can be accepted. if (ret == 1) { socket_filled = true; break; } ASSERT_NE(-1, ret); std::this_thread::sleep_for(250ms); } ASSERT_TRUE(socket_filled); asocket* cause_close_s = create_local_socket(std::move(arg->cause_close_fd)); ASSERT_TRUE(cause_close_s != nullptr); cause_close_s->peer = s; s->peer = cause_close_s; cause_close_s->ready(cause_close_s); }); WaitForFdeventLoop(); } // This test checks if we can close local socket in the following situation: // The socket is closing but having some packets, so it is not closed. Then // some write error happens in the socket's file handler, e.g., the file // handler is closed. TEST_F(LocalSocketTest, close_socket_with_packet) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd.reset(socket_fd[1]); arg.cause_close_fd.reset(cause_close_fd[1]); PrepareThread(); CreateCloser(&arg); ASSERT_EQ(0, adb_close(cause_close_fd[0])); WaitForFdeventLoop(); EXPECT_EQ(1u, fdevent_installed_count()); ASSERT_EQ(0, adb_close(socket_fd[0])); WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } // This test checks if we can read packets from a closing local socket. TEST_F(LocalSocketTest, read_from_closing_socket) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd.reset(socket_fd[1]); arg.cause_close_fd.reset(cause_close_fd[1]); PrepareThread(); CreateCloser(&arg); WaitForFdeventLoop(); ASSERT_EQ(0, adb_close(cause_close_fd[0])); WaitForFdeventLoop(); EXPECT_EQ(1u, fdevent_installed_count()); // Verify if we can read successfully. std::vector buf(arg.bytes_written); ASSERT_NE(0u, arg.bytes_written); ASSERT_EQ(true, ReadFdExactly(socket_fd[0], buf.data(), buf.size())); // TODO: b/237341044 ASSERT_EQ(0, adb_close(socket_fd[0])); WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } // This test checks if we can close local socket in the following situation: // The socket is not closed and has some packets. When it fails to write to // the socket's file handler because the other end is closed, we check if the // socket is closed. TEST_F(LocalSocketTest, write_error_when_having_packets) { int socket_fd[2]; ASSERT_EQ(0, adb_socketpair(socket_fd)); int cause_close_fd[2]; ASSERT_EQ(0, adb_socketpair(cause_close_fd)); CloseWithPacketArg arg; arg.socket_fd.reset(socket_fd[1]); arg.cause_close_fd.reset(cause_close_fd[1]); PrepareThread(); CreateCloser(&arg); WaitForFdeventLoop(); EXPECT_EQ(2u, fdevent_installed_count()); ASSERT_EQ(0, adb_close(socket_fd[0])); std::this_thread::sleep_for(2s); WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } // Ensure that if we fail to write output to an fd, we will still flush data coming from it. TEST_F(LocalSocketTest, flush_after_shutdown) { int head_fd[2]; int tail_fd[2]; ASSERT_EQ(0, adb_socketpair(head_fd)); ASSERT_EQ(0, adb_socketpair(tail_fd)); asocket* head = create_local_socket(unique_fd(head_fd[1])); asocket* tail = create_local_socket(unique_fd(tail_fd[1])); head->peer = tail; head->ready(head); tail->peer = head; tail->ready(tail); PrepareThread(); EXPECT_TRUE(WriteFdExactly(head_fd[0], "foo", 3)); EXPECT_EQ(0, adb_shutdown(head_fd[0], SHUT_RD)); const char* str = "write succeeds, but local_socket will fail to write"; EXPECT_TRUE(WriteFdExactly(tail_fd[0], str, strlen(str))); EXPECT_TRUE(WriteFdExactly(head_fd[0], "bar", 3)); char buf[6]; EXPECT_TRUE(ReadFdExactly(tail_fd[0], buf, 6)); EXPECT_EQ(0, memcmp(buf, "foobar", 6)); adb_close(head_fd[0]); adb_close(tail_fd[0]); WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } #if defined(__linux__) static void ClientThreadFunc(const int assigned_port) { std::string error; const int fd = network_loopback_client(assigned_port, SOCK_STREAM, &error); ASSERT_GE(fd, 0) << error; std::this_thread::sleep_for(1s); ASSERT_EQ(0, adb_close(fd)); } // This test checks if we can close sockets in CLOSE_WAIT state. TEST_F(LocalSocketTest, close_socket_in_CLOSE_WAIT_state) { std::string error; // Allow the system to allocate an available port. unique_fd listen_fd; const int assigned_port(test_utils::GetUnassignedPort(listen_fd)); std::thread client_thread(ClientThreadFunc, assigned_port); const int accept_fd = adb_socket_accept(listen_fd.get(), nullptr, nullptr); ASSERT_GE(accept_fd, 0); PrepareThread(); fdevent_run_on_looper([accept_fd]() { asocket* s = create_local_socket(unique_fd(accept_fd)); ASSERT_TRUE(s != nullptr); }); WaitForFdeventLoop(); EXPECT_EQ(1u, fdevent_installed_count()); // Wait until the client closes its socket. client_thread.join(); WaitForFdeventLoop(); ASSERT_EQ(0u, fdevent_installed_count()); TerminateThread(); } #endif // defined(__linux__) #if ADB_HOST #define VerifyParseHostServiceFailed(s) \ do { \ std::string service(s); \ std::string_view serial, command; \ bool result = internal::parse_host_service(&serial, &command, service); \ EXPECT_FALSE(result); \ } while (0) #define VerifyParseHostService(s, expected_serial, expected_command) \ do { \ std::string service(s); \ std::string_view serial, command; \ bool result = internal::parse_host_service(&serial, &command, service); \ EXPECT_TRUE(result); \ EXPECT_EQ(std::string(expected_serial), std::string(serial)); \ EXPECT_EQ(std::string(expected_command), std::string(command)); \ } while (0); // Check [tcp:|udp:][:]: format. TEST(socket_test, test_parse_host_service) { for (const std::string& protocol : {"", "tcp:", "udp:"}) { VerifyParseHostServiceFailed(protocol); VerifyParseHostServiceFailed(protocol + "foo"); { std::string serial = protocol + "foo"; VerifyParseHostService(serial + ":bar", serial, "bar"); VerifyParseHostService(serial + " :bar:baz", serial, "bar:baz"); } { // With port. std::string serial = protocol + "foo:123"; VerifyParseHostService(serial + ":bar", serial, "bar"); VerifyParseHostService(serial + ":456", serial, "456"); VerifyParseHostService(serial + ":bar:baz", serial, "bar:baz"); } // Don't register a port unless it's all numbers and ends with ':'. VerifyParseHostService(protocol + "foo:123", protocol + "foo", "123"); VerifyParseHostService(protocol + "foo:123bar:baz", protocol + "foo", "123bar:baz"); std::string addresses[] = {"100.100.100.100", "[0123:4567:89ab:CDEF:0:9:a:f]", "[::1]"}; for (const std::string& address : addresses) { std::string serial = protocol + address; std::string serial_with_port = protocol + address + ":5555"; VerifyParseHostService(serial + ":foo", serial, "foo"); VerifyParseHostService(serial_with_port + ":foo", serial_with_port, "foo"); } // If we can't find both [] then treat it as a normal serial with [ in it. VerifyParseHostService(protocol + "[0123:foo", protocol + "[0123", "foo"); // Don't be fooled by random IPv6 addresses in the command string. VerifyParseHostService(protocol + "foo:ping [0123:4567:89ab:CDEF:0:9:a:f]:5555", protocol + "foo", "ping [0123:4567:89ab:CDEF:0:9:a:f]:5555"); // Handle embedded NULs properly. VerifyParseHostService(protocol + "foo:echo foo\0bar"s, protocol + "foo", "echo foo\0bar"sv); } } // Check :: format. TEST(socket_test, test_parse_host_service_prefix) { for (const std::string& prefix : {"usb:", "product:", "model:", "device:"}) { VerifyParseHostServiceFailed(prefix); VerifyParseHostServiceFailed(prefix + "foo"); VerifyParseHostService(prefix + "foo:bar", prefix + "foo", "bar"); VerifyParseHostService(prefix + "foo:bar:baz", prefix + "foo", "bar:baz"); VerifyParseHostService(prefix + "foo:123:bar", prefix + "foo", "123:bar"); } } #endif // ADB_HOST