/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_PACKAGE_MANAGER #include "apexd_loop.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "apexd_utils.h" using android::base::Basename; using android::base::ErrnoError; using android::base::Error; using android::base::GetBoolProperty; using android::base::ParseUint; using android::base::ReadFileToString; using android::base::Result; using android::base::StartsWith; using android::base::StringPrintf; using android::base::unique_fd; using android::dm::DeviceMapper; namespace android { namespace apex { namespace loop { static constexpr const char* kApexLoopIdPrefix = "apex:"; // 128 kB read-ahead, which we currently use for /system as well static constexpr const char* kReadAheadKb = "128"; void LoopbackDeviceUniqueFd::MaybeCloseBad() { if (device_fd.get() != -1) { // Disassociate any files. if (ioctl(device_fd.get(), LOOP_CLR_FD) == -1) { PLOG(ERROR) << "Unable to clear fd for loopback device"; } } } Result ConfigureScheduler(const std::string& device_path) { ATRACE_NAME("ConfigureScheduler"); if (!StartsWith(device_path, "/dev/")) { return Error() << "Invalid argument " << device_path; } const std::string device_name = Basename(device_path); const std::string sysfs_path = StringPrintf("/sys/block/%s/queue/scheduler", device_name.c_str()); unique_fd sysfs_fd(open(sysfs_path.c_str(), O_RDWR | O_CLOEXEC)); if (sysfs_fd.get() == -1) { return ErrnoError() << "Failed to open " << sysfs_path; } // Kernels before v4.1 only support 'noop'. Kernels [v4.1, v5.0) support // 'noop' and 'none'. Kernels v5.0 and later only support 'none'. static constexpr const std::array kNoScheduler = { "none", "noop"}; int ret = 0; std::string cur_sched_str; if (!ReadFileToString(sysfs_path, &cur_sched_str)) { return ErrnoError() << "Failed to read " << sysfs_path; } cur_sched_str = android::base::Trim(cur_sched_str); if (std::count(kNoScheduler.begin(), kNoScheduler.end(), cur_sched_str)) { return {}; } for (const std::string_view& scheduler : kNoScheduler) { ret = write(sysfs_fd.get(), scheduler.data(), scheduler.size()); if (ret > 0) { break; } } if (ret <= 0) { return ErrnoError() << "Failed to write to " << sysfs_path; } return {}; } // Return the parent device of a partition. Converts e.g. "sda26" into "sda". static Result PartitionParent(const std::string& blockdev) { if (blockdev.find('/') != std::string::npos) { return Error() << "Invalid argument " << blockdev; } std::error_code ec; for (const auto& entry : std::filesystem::directory_iterator("/sys/class/block", ec)) { const std::string path = entry.path().string(); if (std::filesystem::exists( StringPrintf("%s/%s", path.c_str(), blockdev.c_str()))) { return Basename(path); } } return blockdev; } // Convert a major:minor pair into a block device name. static std::string BlockdevName(dev_t dev) { std::error_code ec; for (const auto& entry : std::filesystem::directory_iterator("/dev/block", ec)) { struct stat statbuf; if (stat(entry.path().string().c_str(), &statbuf) < 0) { continue; } if (dev == statbuf.st_rdev) { return Basename(entry.path().string()); } } return {}; } // For file `file_path`, retrieve the block device backing the filesystem on // which the file exists and return the queue depth of the block device. The // loop in this function may e.g. traverse the following hierarchy: // /dev/block/dm-9 (system-verity; dm-verity) // -> /dev/block/dm-1 (system_b; dm-linear) // -> /dev/sda26 static Result BlockDeviceQueueDepth(const std::string& file_path) { struct stat statbuf; int res = stat(file_path.c_str(), &statbuf); if (res < 0) { return ErrnoErrorf("stat({})", file_path.c_str()); } std::string blockdev = "/dev/block/" + BlockdevName(statbuf.st_dev); LOG(VERBOSE) << file_path << " -> " << blockdev; if (blockdev.empty()) { return Errorf("Failed to convert {}:{} (path {})", major(statbuf.st_dev), minor(statbuf.st_dev), file_path.c_str()); } auto& dm = DeviceMapper::Instance(); for (;;) { std::optional child = dm.GetParentBlockDeviceByPath(blockdev); if (!child) { break; } LOG(VERBOSE) << blockdev << " -> " << *child; blockdev = *child; } std::optional maybe_blockdev = android::dm::ExtractBlockDeviceName(blockdev); if (!maybe_blockdev) { return Error() << "Failed to remove /dev/block/ prefix from " << blockdev; } Result maybe_parent = PartitionParent(*maybe_blockdev); if (!maybe_parent.ok()) { return Error() << "Failed to determine parent of " << *maybe_blockdev; } blockdev = *maybe_parent; LOG(VERBOSE) << "Partition parent: " << blockdev; const std::string nr_tags_path = StringPrintf("/sys/class/block/%s/mq/0/nr_tags", blockdev.c_str()); std::string nr_tags; if (!ReadFileToString(nr_tags_path, &nr_tags)) { return ErrnoError() << "Failed to read " << nr_tags_path; } nr_tags = android::base::Trim(nr_tags); LOG(VERBOSE) << file_path << " is backed by /dev/" << blockdev << " and that block device supports queue depth " << nr_tags; return strtol(nr_tags.c_str(), NULL, 0); } // Set 'nr_requests' of `loop_device_path` equal to the queue depth of // the block device backing `file_path`. Result ConfigureQueueDepth(const std::string& loop_device_path, const std::string& file_path) { ATRACE_NAME("ConfigureQueueDepth"); if (!StartsWith(loop_device_path, "/dev/")) { return Error() << "Invalid argument " << loop_device_path; } const std::string loop_device_name = Basename(loop_device_path); const std::string sysfs_path = StringPrintf("/sys/block/%s/queue/nr_requests", loop_device_name.c_str()); std::string cur_nr_requests_str; if (!ReadFileToString(sysfs_path, &cur_nr_requests_str)) { return ErrnoError() << "Failed to read " << sysfs_path; } cur_nr_requests_str = android::base::Trim(cur_nr_requests_str); uint32_t cur_nr_requests = 0; if (!ParseUint(cur_nr_requests_str.c_str(), &cur_nr_requests)) { return Error() << "Failed to parse " << cur_nr_requests_str; } unique_fd sysfs_fd(open(sysfs_path.c_str(), O_RDWR | O_CLOEXEC)); if (sysfs_fd.get() == -1) { return ErrnoErrorf("Failed to open {}", sysfs_path); } const auto qd = BlockDeviceQueueDepth(file_path); if (!qd.ok()) { return qd.error(); } if (*qd == cur_nr_requests) { return {}; } // Only report write failures if reducing the queue depth. Attempts to // increase the queue depth are rejected by the kernel if no I/O scheduler // is associated with the request queue. if (!WriteStringToFd(StringPrintf("%u", *qd), sysfs_fd) && *qd < cur_nr_requests) { return ErrnoErrorf("Failed to write {} to {}", *qd, sysfs_path); } return {}; } Result ConfigureReadAhead(const std::string& device_path) { ATRACE_NAME("ConfigureReadAhead"); CHECK(StartsWith(device_path, "/dev/")); std::string device_name = Basename(device_path); std::string sysfs_device = StringPrintf("/sys/block/%s/queue/read_ahead_kb", device_name.c_str()); unique_fd sysfs_fd(open(sysfs_device.c_str(), O_RDWR | O_CLOEXEC)); if (sysfs_fd.get() == -1) { return ErrnoError() << "Failed to open " << sysfs_device; } int ret = TEMP_FAILURE_RETRY( write(sysfs_fd.get(), kReadAheadKb, strlen(kReadAheadKb) + 1)); if (ret < 0) { return ErrnoError() << "Failed to write to " << sysfs_device; } return {}; } Result PreAllocateLoopDevices(size_t num) { Result loop_ready = WaitForFile("/dev/loop-control", 20s); if (!loop_ready.ok()) { return loop_ready; } unique_fd ctl_fd( TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC))); if (ctl_fd.get() == -1) { return ErrnoError() << "Failed to open loop-control"; } int new_allocations = 0; // for logging purpose // Assumption: loop device ID [0..num) is valid. // This is because pre-allocation happens during bootstrap. // Anyway Kernel pre-allocated loop devices // as many as CONFIG_BLK_DEV_LOOP_MIN_COUNT, // Within the amount of kernel-pre-allocation, // LOOP_CTL_ADD will fail with EEXIST for (size_t id = 0ul, cnt = 0; cnt < num; ++id) { int ret = ioctl(ctl_fd.get(), LOOP_CTL_ADD, id); if (ret > 0) { new_allocations++; cnt++; } else if (errno == EEXIST) { // When LOOP_CTL_ADD failed with EEXIST, it can check // whether it is already in use. // Otherwise, the loop devices pre-allocated by the kernel can be used. std::string loop_device = StringPrintf("/sys/block/loop%zu/loop", id); if (access(loop_device.c_str(), F_OK) == 0) { LOG(WARNING) << "Loop device " << id << " already in use"; } else { cnt++; } } else { return ErrnoError() << "Failed LOOP_CTL_ADD id = " << id; } } // Don't wait until the dev nodes are actually created, which // will delay the boot. By simply returing here, the creation of the dev // nodes will be done in parallel with other boot processes, and we // just optimistally hope that they are all created when we actually // access them for activating APEXes. If the dev nodes are not ready // even then, we wait 50ms and warning message will be printed (see below // CreateLoopDevice()). LOG(INFO) << "Found " << (num - new_allocations) << " idle loopback devices that were " << "pre-allocated by kernel. Allocated " << new_allocations << " more."; return {}; } Result ConfigureLoopDevice(const int device_fd, const std::string& target, const uint32_t image_offset, const size_t image_size) { static bool use_loop_configure; static std::once_flag once_flag; std::call_once(once_flag, [&]() { // LOOP_CONFIGURE is a new ioctl in Linux 5.8 (and backported in Android // common) that allows atomically configuring a loop device. It is a lot // faster than the traditional LOOP_SET_FD/LOOP_SET_STATUS64 combo, but // it may not be available on updating devices, so try once before // deciding. struct loop_config config; memset(&config, 0, sizeof(config)); config.fd = -1; if (ioctl(device_fd, LOOP_CONFIGURE, &config) == -1 && errno == EBADF) { // If the IOCTL exists, it will fail with EBADF for the -1 fd use_loop_configure = true; } }); /* * Using O_DIRECT will tell the kernel that we want to use Direct I/O * on the underlying file, which we want to do to avoid double caching. * Note that Direct I/O won't be enabled immediately, because the block * size of the underlying block device may not match the default loop * device block size (512); when we call LOOP_SET_BLOCK_SIZE below, the * kernel driver will automatically enable Direct I/O when it sees that * condition is now met. */ bool use_buffered_io = false; unique_fd target_fd(open(target.c_str(), O_RDONLY | O_CLOEXEC | O_DIRECT)); if (target_fd.get() == -1) { struct statfs stbuf; int saved_errno = errno; // let's give another try with buffered I/O for EROFS and squashfs if (statfs(target.c_str(), &stbuf) != 0 || (stbuf.f_type != EROFS_SUPER_MAGIC_V1 && stbuf.f_type != SQUASHFS_MAGIC && stbuf.f_type != OVERLAYFS_SUPER_MAGIC)) { return Error(saved_errno) << "Failed to open " << target; } LOG(WARNING) << "Fallback to buffered I/O for " << target; use_buffered_io = true; target_fd.reset(open(target.c_str(), O_RDONLY | O_CLOEXEC)); if (target_fd.get() == -1) { return ErrnoError() << "Failed to open " << target; } } struct loop_info64 li; memset(&li, 0, sizeof(li)); strlcpy((char*)li.lo_crypt_name, kApexLoopIdPrefix, LO_NAME_SIZE); li.lo_offset = image_offset; li.lo_sizelimit = image_size; // Automatically free loop device on last close. li.lo_flags |= LO_FLAGS_AUTOCLEAR; if (use_loop_configure) { struct loop_config config; memset(&config, 0, sizeof(config)); config.fd = target_fd.get(); config.info = li; config.block_size = 4096; if (!use_buffered_io) { li.lo_flags |= LO_FLAGS_DIRECT_IO; } if (ioctl(device_fd, LOOP_CONFIGURE, &config) == -1) { return ErrnoError() << "Failed to LOOP_CONFIGURE"; } return {}; } else { if (ioctl(device_fd, LOOP_SET_FD, target_fd.get()) == -1) { return ErrnoError() << "Failed to LOOP_SET_FD"; } if (ioctl(device_fd, LOOP_SET_STATUS64, &li) == -1) { return ErrnoError() << "Failed to LOOP_SET_STATUS64"; } if (ioctl(device_fd, BLKFLSBUF, 0) == -1) { // This works around a kernel bug where the following happens. // 1) The device runs with a value of loop.max_part > 0 // 2) As part of LOOP_SET_FD above, we do a partition scan, which loads // the first 2 pages of the underlying file into the buffer cache // 3) When we then change the offset with LOOP_SET_STATUS64, those pages // are not invalidated from the cache. // 4) When we try to mount an ext4 filesystem on the loop device, the ext4 // code will try to find a superblock by reading 4k at offset 0; but, // because we still have the old pages at offset 0 lying in the cache, // those pages will be returned directly. However, those pages contain // the data at offset 0 in the underlying file, not at the offset that // we configured // 5) the ext4 driver fails to find a superblock in the (wrong) data, and // fails to mount the filesystem. // // To work around this, explicitly flush the block device, which will // flush the buffer cache and make sure we actually read the data at the // correct offset. return ErrnoError() << "Failed to flush buffers on the loop device"; } // Direct-IO requires the loop device to have the same block size as the // underlying filesystem. if (ioctl(device_fd, LOOP_SET_BLOCK_SIZE, 4096) == -1) { PLOG(WARNING) << "Failed to LOOP_SET_BLOCK_SIZE"; } } return {}; } Result WaitForDevice(int num) { const std::vector candidate_devices = { StringPrintf("/dev/block/loop%d", num), StringPrintf("/dev/loop%d", num), }; // apexd-bootstrap runs in parallel with ueventd to optimize boot time. In // rare cases apexd would try attempt to mount an apex before ueventd created // a loop device for it. To work around this we keep polling for loop device // to be created until ueventd's cold boot sequence is done. bool cold_boot_done = GetBoolProperty("ro.cold_boot_done", false); // Even though the kernel has created the loop device, we still depend on // ueventd to run to actually create the device node in userspace. To solve // this properly we should listen on the netlink socket for uevents, or use // inotify. For now, this will have to do. size_t attempts = android::sysprop::ApexProperties::loop_wait_attempts().value_or(3u); for (size_t i = 0; i != attempts; ++i) { if (!cold_boot_done) { cold_boot_done = GetBoolProperty("ro.cold_boot_done", false); } for (const auto& device : candidate_devices) { unique_fd sysfs_fd(open(device.c_str(), O_RDWR | O_CLOEXEC)); if (sysfs_fd.get() != -1) { return LoopbackDeviceUniqueFd(std::move(sysfs_fd), device); } } PLOG(WARNING) << "Loopback device " << num << " not ready. Waiting 50ms..."; usleep(50000); if (!cold_boot_done) { // ueventd hasn't finished cold boot yet, keep trying. i = 0; } } return Error() << "Failed to open loopback device " << num; } Result CreateLoopDevice(const std::string& target, uint32_t image_offset, size_t image_size) { ATRACE_NAME("CreateLoopDevice"); unique_fd ctl_fd(open("/dev/loop-control", O_RDWR | O_CLOEXEC)); if (ctl_fd.get() == -1) { return ErrnoError() << "Failed to open loop-control"; } static std::mutex mtx; std::lock_guard lock(mtx); int num = ioctl(ctl_fd.get(), LOOP_CTL_GET_FREE); if (num == -1) { return ErrnoError() << "Failed LOOP_CTL_GET_FREE"; } Result loop_device = WaitForDevice(num); if (!loop_device.ok()) { return loop_device.error(); } CHECK_NE(loop_device->device_fd.get(), -1); Result configure_status = ConfigureLoopDevice( loop_device->device_fd.get(), target, image_offset, image_size); if (!configure_status.ok() && configure_status.error().code() == EBUSY) { // EBUSY means that loop device was bound to a different process. We need to call // CloseGood() here to ensure that when destroying LoopbackDeviceUniqueFd we // don't call LOOP_CLR_FD ioctl on this loop device, essentially clearing the // loop device while other process is using it. loop_device->CloseGood(); return configure_status.error(); } return loop_device; } Result CreateAndConfigureLoopDevice( const std::string& target, uint32_t image_offset, size_t image_size) { ATRACE_NAME("CreateAndConfigureLoopDevice"); // Do minimal amount of work while holding a mutex. We need it because // acquiring + configuring a loop device is not atomic. Ideally we should // pre-acquire all the loop devices in advance, so that when we run APEX // activation in-parallel, we can do it without holding any lock. // Unfortunately, this will require some refactoring of how we manage loop // devices, and probably some new loop-control ioctls, so for the time being // we just limit the scope that requires locking. android::base::Timer timer; Result loop_device; while (timer.duration() < 1s) { loop_device = CreateLoopDevice(target, image_offset, image_size); if (loop_device.ok()) { break; } std::this_thread::sleep_for(5ms); } if (!loop_device.ok()) { return loop_device.error(); } Result sched_status = ConfigureScheduler(loop_device->name); if (!sched_status.ok()) { LOG(WARNING) << "Configuring I/O scheduler failed: " << sched_status.error(); } Result qd_status = ConfigureQueueDepth(loop_device->name, target); if (!qd_status.ok()) { LOG(WARNING) << qd_status.error(); } Result read_ahead_status = ConfigureReadAhead(loop_device->name); if (!read_ahead_status.ok()) { return read_ahead_status.error(); } return loop_device; } void DestroyLoopDevice(const std::string& path, const DestroyLoopFn& extra) { unique_fd fd(open(path.c_str(), O_RDWR | O_CLOEXEC)); if (fd.get() == -1) { if (errno != ENOENT) { PLOG(WARNING) << "Failed to open " << path; } return; } struct loop_info64 li; if (ioctl(fd.get(), LOOP_GET_STATUS64, &li) < 0) { if (errno != ENXIO) { PLOG(WARNING) << "Failed to LOOP_GET_STATUS64 " << path; } return; } auto id = std::string((char*)li.lo_crypt_name); if (StartsWith(id, kApexLoopIdPrefix)) { extra(path, id); if (ioctl(fd.get(), LOOP_CLR_FD, 0) < 0) { PLOG(WARNING) << "Failed to LOOP_CLR_FD " << path; } } } } // namespace loop } // namespace apex } // namespace android