/* ** ** Copyright 2017, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace keymaster { static uint8_t SWROT[2] = {'S', 'W'}; KeymasterBlob softwareRootOfTrust(SWROT); namespace { bool UpgradeIntegerTag(keymaster_tag_t tag, uint32_t value, AuthorizationSet* set, bool* set_changed) { int index = set->find(tag); if (index == -1) { keymaster_key_param_t param; param.tag = tag; param.integer = value; set->push_back(param); *set_changed = true; return true; } if (set->params[index].integer > value) return false; if (set->params[index].integer != value) { set->params[index].integer = value; *set_changed = true; } return true; } keymaster_error_t TranslateAuthorizationSetError(AuthorizationSet::Error err) { switch (err) { case AuthorizationSet::OK: return KM_ERROR_OK; case AuthorizationSet::ALLOCATION_FAILURE: return KM_ERROR_MEMORY_ALLOCATION_FAILED; case AuthorizationSet::MALFORMED_DATA: return KM_ERROR_UNKNOWN_ERROR; } return KM_ERROR_OK; } } // anonymous namespace keymaster_error_t BuildHiddenAuthorizations(const AuthorizationSet& input_set, AuthorizationSet* hidden, const KeymasterBlob& root_of_trust) { keymaster_blob_t entry; if (input_set.GetTagValue(TAG_APPLICATION_ID, &entry)) hidden->push_back(TAG_APPLICATION_ID, entry.data, entry.data_length); if (input_set.GetTagValue(TAG_APPLICATION_DATA, &entry)) hidden->push_back(TAG_APPLICATION_DATA, entry.data, entry.data_length); hidden->push_back(TAG_ROOT_OF_TRUST, root_of_trust); return TranslateAuthorizationSetError(hidden->is_valid()); } keymaster_error_t FakeKeyAuthorizations(EVP_PKEY* pubkey, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) { hw_enforced->Clear(); sw_enforced->Clear(); switch (EVP_PKEY_id(pubkey)) { case EVP_PKEY_RSA: { hw_enforced->push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_NONE); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_MD5); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA1); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_224); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_512); hw_enforced->push_back(TAG_PADDING, KM_PAD_NONE); hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_SIGN); hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PKCS1_1_5_ENCRYPT); hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_PSS); hw_enforced->push_back(TAG_PADDING, KM_PAD_RSA_OAEP); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_ENCRYPT); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_DECRYPT); RSA_Ptr rsa(EVP_PKEY_get1_RSA(pubkey)); if (!rsa) return TranslateLastOpenSslError(); hw_enforced->push_back(TAG_KEY_SIZE, RSA_size(rsa.get()) * 8); uint64_t public_exponent; if (!BN_get_u64(RSA_get0_e(rsa.get()), &public_exponent)) return KM_ERROR_INVALID_KEY_BLOB; hw_enforced->push_back(TAG_RSA_PUBLIC_EXPONENT, public_exponent); break; } case EVP_PKEY_EC: { hw_enforced->push_back(TAG_ALGORITHM, KM_ALGORITHM_RSA); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_NONE); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_MD5); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA1); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_224); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_256); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_384); hw_enforced->push_back(TAG_DIGEST, KM_DIGEST_SHA_2_512); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_SIGN); sw_enforced->push_back(TAG_PURPOSE, KM_PURPOSE_VERIFY); UniquePtr ec_key(EVP_PKEY_get1_EC_KEY(pubkey)); if (!ec_key.get()) return TranslateLastOpenSslError(); size_t key_size_bits; keymaster_error_t error = ec_get_group_size(EC_KEY_get0_group(ec_key.get()), &key_size_bits); if (error != KM_ERROR_OK) return error; hw_enforced->push_back(TAG_KEY_SIZE, key_size_bits); break; } default: return KM_ERROR_UNSUPPORTED_ALGORITHM; } sw_enforced->push_back(TAG_ALL_USERS); sw_enforced->push_back(TAG_NO_AUTH_REQUIRED); return KM_ERROR_OK; } // Note: This parsing code in below is from system/security/softkeymaster/keymaster_openssl.cpp's // unwrap_key function, modified for the preferred function signature and formatting. It does some // odd things, but they have been left unchanged to avoid breaking compatibility. static const uint8_t SOFT_KEY_MAGIC[] = {'P', 'K', '#', '8'}; keymaster_error_t ParseOldSoftkeymasterBlob(const KeymasterKeyBlob& blob, KeymasterKeyBlob* key_material, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) { long publicLen = 0; // NOLINT(google-runtime-int) long privateLen = 0; // NOLINT(google-runtime-int) const uint8_t* p = blob.key_material; const uint8_t* end = blob.key_material + blob.key_material_size; int type = 0; ptrdiff_t min_size = sizeof(SOFT_KEY_MAGIC) + sizeof(type) + sizeof(publicLen) + 1 + sizeof(privateLen) + 1; if (end - p < min_size) { LOG_W("key blob appears to be truncated (if an old SW key)"); return KM_ERROR_INVALID_KEY_BLOB; } if (memcmp(p, SOFT_KEY_MAGIC, sizeof(SOFT_KEY_MAGIC)) != 0) return KM_ERROR_INVALID_KEY_BLOB; p += sizeof(SOFT_KEY_MAGIC); for (size_t i = 0; i < sizeof(type); i++) { type = (type << 8) | *p++; } for (size_t i = 0; i < sizeof(type); i++) { publicLen = (publicLen << 8) | *p++; } if (p + publicLen > end) { LOG_W("public key length encoding error: size=%ld, end=%td", publicLen, end - p); return KM_ERROR_INVALID_KEY_BLOB; } p += publicLen; if (end - p < sizeof(type)) { LOG_W("key blob appears to be truncated (if an old SW key)"); return KM_ERROR_INVALID_KEY_BLOB; } for (size_t i = 0; i < sizeof(type); i++) privateLen = (privateLen << 8) | *p++; if (p + privateLen > end) { LOG_W("private key length encoding error: size=%ld, end=%td", privateLen, end - p); return KM_ERROR_INVALID_KEY_BLOB; } // Just to be sure, make sure that the ASN.1 structure parses correctly. We don't actually use // the EVP_PKEY here. const uint8_t* key_start = p; EVP_PKEY_Ptr pkey(d2i_PrivateKey(type, nullptr, &p, privateLen)); if (pkey.get() == nullptr) { LOG_W("Failed to parse PKCS#8 key material (if old SW key)"); return KM_ERROR_INVALID_KEY_BLOB; } // All auths go into sw_enforced, including those that would be HW-enforced if we were faking // auths for a HW-backed key. hw_enforced->Clear(); keymaster_error_t error = FakeKeyAuthorizations(pkey.get(), sw_enforced, sw_enforced); if (error != KM_ERROR_OK) return error; if (!key_material->Reset(privateLen)) return KM_ERROR_MEMORY_ALLOCATION_FAILED; memcpy(key_material->writable_data(), key_start, privateLen); return KM_ERROR_OK; } static uint8_t master_key_bytes[AES_BLOCK_SIZE] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; const KeymasterKeyBlob MASTER_KEY(master_key_bytes, array_length(master_key_bytes)); keymaster_error_t ParseAuthEncryptedBlob(const KeymasterKeyBlob& blob, const AuthorizationSet& hidden, KeymasterKeyBlob* key_material, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced) { KmErrorOr key = DeserializeAuthEncryptedBlob(blob); if (!key) return key.error(); KmErrorOr decrypted = DecryptKey(*key, hidden, SecureDeletionData(), MASTER_KEY); if (!decrypted) return decrypted.error(); *key_material = std::move(*decrypted); *hw_enforced = std::move(key->hw_enforced); *sw_enforced = std::move(key->sw_enforced); return KM_ERROR_OK; } keymaster_error_t SetKeyBlobAuthorizations(const AuthorizationSet& key_description, keymaster_key_origin_t origin, uint32_t os_version, uint32_t os_patchlevel, AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced, KmVersion version) { sw_enforced->Clear(); for (auto& entry : key_description) { switch (entry.tag) { // These cannot be specified by the client. case KM_TAG_BOOT_PATCHLEVEL: case KM_TAG_ORIGIN: case KM_TAG_OS_PATCHLEVEL: case KM_TAG_OS_VERSION: case KM_TAG_ROOT_OF_TRUST: case KM_TAG_VENDOR_PATCHLEVEL: LOG_E("Root of trust and origin tags may not be specified"); return KM_ERROR_INVALID_TAG; case KM_TAG_ALLOW_WHILE_ON_BODY: // Not supported, but is specified to noop in that case (vs error). LOG_W("No on-body detection supported, skipping tag %d", entry.tag); break; // These aren't supported by SoftKeymaster. case KM_TAG_DEVICE_UNIQUE_ATTESTATION: case KM_TAG_ECIES_SINGLE_HASH_MODE: case KM_TAG_EXPORTABLE: case KM_TAG_IDENTITY_CREDENTIAL_KEY: case KM_TAG_KDF: case KM_TAG_ROLLBACK_RESISTANT: case KM_TAG_STORAGE_KEY: LOG_E("Tag %d not supported by SoftKeymaster", entry.tag); return KM_ERROR_UNSUPPORTED_TAG; // If the hardware enforce list contains this tag, means we are // pretending to be some secure hardware which has secure storage. case KM_TAG_ROLLBACK_RESISTANCE: if (hw_enforced->GetTagCount(entry.tag) != 0) break; else { LOG_E("Tag %d not supported by SoftKeymaster", entry.tag); return KM_ERROR_UNSUPPORTED_TAG; } // These are hidden. case KM_TAG_APPLICATION_DATA: case KM_TAG_APPLICATION_ID: break; // These should not be in key descriptions because they're for operation parameters. case KM_TAG_ASSOCIATED_DATA: case KM_TAG_AUTH_TOKEN: case KM_TAG_CONFIRMATION_TOKEN: case KM_TAG_INVALID: case KM_TAG_MAC_LENGTH: case KM_TAG_NONCE: LOG_E("Tag %d not allowed in key generation/import", entry.tag); break; // These are provided to support attestation key generation, but should not be included in // the key characteristics. case KM_TAG_ATTESTATION_APPLICATION_ID: case KM_TAG_ATTESTATION_CHALLENGE: case KM_TAG_ATTESTATION_ID_BRAND: case KM_TAG_ATTESTATION_ID_DEVICE: case KM_TAG_ATTESTATION_ID_IMEI: case KM_TAG_ATTESTATION_ID_SECOND_IMEI: case KM_TAG_ATTESTATION_ID_MANUFACTURER: case KM_TAG_ATTESTATION_ID_MEID: case KM_TAG_ATTESTATION_ID_MODEL: case KM_TAG_ATTESTATION_ID_PRODUCT: case KM_TAG_ATTESTATION_ID_SERIAL: case KM_TAG_CERTIFICATE_SERIAL: case KM_TAG_CERTIFICATE_SUBJECT: case KM_TAG_CERTIFICATE_NOT_BEFORE: case KM_TAG_CERTIFICATE_NOT_AFTER: case KM_TAG_INCLUDE_UNIQUE_ID: case KM_TAG_RESET_SINCE_ID_ROTATION: break; // Everything else we just copy into sw_enforced, unless the KeyFactory has placed it in // hw_enforced, in which case we defer to its decision. case KM_TAG_ACTIVE_DATETIME: case KM_TAG_ALGORITHM: case KM_TAG_ALL_APPLICATIONS: case KM_TAG_ALL_USERS: case KM_TAG_AUTH_TIMEOUT: case KM_TAG_BLOB_USAGE_REQUIREMENTS: case KM_TAG_BLOCK_MODE: case KM_TAG_BOOTLOADER_ONLY: case KM_TAG_CALLER_NONCE: case KM_TAG_CREATION_DATETIME: case KM_TAG_DIGEST: case KM_TAG_EARLY_BOOT_ONLY: case KM_TAG_EC_CURVE: case KM_TAG_KEY_SIZE: case KM_TAG_MAX_BOOT_LEVEL: case KM_TAG_MAX_USES_PER_BOOT: case KM_TAG_MIN_MAC_LENGTH: case KM_TAG_MIN_SECONDS_BETWEEN_OPS: case KM_TAG_NO_AUTH_REQUIRED: case KM_TAG_ORIGINATION_EXPIRE_DATETIME: case KM_TAG_PADDING: case KM_TAG_PURPOSE: case KM_TAG_RSA_OAEP_MGF_DIGEST: case KM_TAG_RSA_PUBLIC_EXPONENT: case KM_TAG_TRUSTED_CONFIRMATION_REQUIRED: case KM_TAG_TRUSTED_USER_PRESENCE_REQUIRED: case KM_TAG_UNIQUE_ID: case KM_TAG_UNLOCKED_DEVICE_REQUIRED: case KM_TAG_USAGE_COUNT_LIMIT: case KM_TAG_USAGE_EXPIRE_DATETIME: case KM_TAG_USER_AUTH_TYPE: case KM_TAG_USER_ID: case KM_TAG_USER_SECURE_ID: if (hw_enforced->GetTagCount(entry.tag) == 0) sw_enforced->push_back(entry); break; } } // If hw_enforced is non-empty, we're pretending to be some sort of secure hardware. AuthorizationSet* pseudo_hw_enforced = (hw_enforced->empty()) ? sw_enforced : hw_enforced; pseudo_hw_enforced->push_back(TAG_ORIGIN, origin); pseudo_hw_enforced->push_back(TAG_OS_VERSION, os_version); pseudo_hw_enforced->push_back(TAG_OS_PATCHLEVEL, os_patchlevel); // For KeyMaster implementations (but not KeyMint implementations), we need to add a // CREATION_DATETIME into software-enforced if one was not provided. if (version < KmVersion::KEYMINT_1 && !sw_enforced->Contains(TAG_CREATION_DATETIME)) { sw_enforced->push_back(TAG_CREATION_DATETIME, java_time(time(nullptr))); } return TranslateAuthorizationSetError(sw_enforced->is_valid()); } keymaster_error_t ExtendKeyBlobAuthorizations(AuthorizationSet* hw_enforced, AuthorizationSet* sw_enforced, std::optional vendor_patchlevel, std::optional boot_patchlevel) { // If hw_enforced is non-empty, we're pretending to be some sort of secure hardware. AuthorizationSet* pseudo_hw_enforced = (hw_enforced->empty()) ? sw_enforced : hw_enforced; if (vendor_patchlevel.has_value()) { pseudo_hw_enforced->push_back(TAG_VENDOR_PATCHLEVEL, vendor_patchlevel.value()); } if (boot_patchlevel.has_value()) { pseudo_hw_enforced->push_back(TAG_BOOT_PATCHLEVEL, boot_patchlevel.value()); } return TranslateAuthorizationSetError(sw_enforced->is_valid()); } keymaster_error_t UpgradeSoftKeyBlob(const UniquePtr& key, const uint32_t os_version, const uint32_t os_patchlevel, const AuthorizationSet& upgrade_params, KeymasterKeyBlob* upgraded_key) { return FullUpgradeSoftKeyBlob(key, os_version, os_patchlevel, /* vendor_patchlevel= */ std::nullopt, /* boot_patchlevel= */ std::nullopt, // upgrade_params, upgraded_key); } keymaster_error_t FullUpgradeSoftKeyBlob(const UniquePtr& key, const uint32_t os_version, uint32_t os_patchlevel, std::optional vendor_patchlevel, std::optional boot_patchlevel, const AuthorizationSet& upgrade_params, KeymasterKeyBlob* upgraded_key) { bool set_changed = false; if (os_version == 0) { // We need to allow "upgrading" OS version to zero, to support upgrading from proper // numbered releases to unnumbered development and preview releases. int key_os_version_pos = key->sw_enforced().find(TAG_OS_VERSION); if (key_os_version_pos != -1) { uint32_t key_os_version = key->sw_enforced()[key_os_version_pos].integer; if (key_os_version != 0) { key->sw_enforced()[key_os_version_pos].integer = os_version; set_changed = true; } } } if (!UpgradeIntegerTag(TAG_OS_VERSION, os_version, &key->sw_enforced(), &set_changed) || !UpgradeIntegerTag(TAG_OS_PATCHLEVEL, os_patchlevel, &key->sw_enforced(), &set_changed) || (vendor_patchlevel.has_value() && !UpgradeIntegerTag(TAG_VENDOR_PATCHLEVEL, vendor_patchlevel.value(), &key->sw_enforced(), &set_changed)) || (boot_patchlevel.has_value() && !UpgradeIntegerTag(TAG_BOOT_PATCHLEVEL, boot_patchlevel.value(), &key->sw_enforced(), &set_changed))) { // One of the version fields would have been a downgrade. Not allowed. return KM_ERROR_INVALID_ARGUMENT; } if (!set_changed) { // Dont' need an upgrade. return KM_ERROR_OK; } AuthorizationSet hidden; auto error = BuildHiddenAuthorizations(upgrade_params, &hidden, softwareRootOfTrust); if (error != KM_ERROR_OK) return error; return SerializeIntegrityAssuredBlob(key->key_material(), hidden, key->hw_enforced(), key->sw_enforced(), upgraded_key); } } // namespace keymaster