// Copyright 2020, The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! This is the Keystore 2.0 database module. //! The database module provides a connection to the backing SQLite store. //! We have two databases one for persistent key blob storage and one for //! items that have a per boot life cycle. //! //! ## Persistent database //! The persistent database has tables for key blobs. They are organized //! as follows: //! The `keyentry` table is the primary table for key entries. It is //! accompanied by two tables for blobs and parameters. //! Each key entry occupies exactly one row in the `keyentry` table and //! zero or more rows in the tables `blobentry` and `keyparameter`. //! //! ## Per boot database //! The per boot database stores items with a per boot lifecycle. //! Currently, there is only the `grant` table in this database. //! Grants are references to a key that can be used to access a key by //! clients that don't own that key. Grants can only be created by the //! owner of a key. And only certain components can create grants. //! This is governed by SEPolicy. //! //! ## Access control //! Some database functions that load keys or create grants perform //! access control. This is because in some cases access control //! can only be performed after some information about the designated //! key was loaded from the database. To decouple the permission checks //! from the database module these functions take permission check //! callbacks. mod perboot; pub(crate) mod utils; mod versioning; use crate::gc::Gc; use crate::impl_metadata; // This is in db_utils.rs use crate::key_parameter::{KeyParameter, KeyParameterValue, Tag}; use crate::ks_err; use crate::permission::KeyPermSet; use crate::utils::{get_current_time_in_milliseconds, watchdog as wd, AID_USER_OFFSET}; use crate::{ error::{Error as KsError, ErrorCode, ResponseCode}, super_key::SuperKeyType, }; use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{ HardwareAuthToken::HardwareAuthToken, HardwareAuthenticatorType::HardwareAuthenticatorType, SecurityLevel::SecurityLevel, }; use android_security_metrics::aidl::android::security::metrics::{ Storage::Storage as MetricsStorage, StorageStats::StorageStats, }; use android_system_keystore2::aidl::android::system::keystore2::{ Domain::Domain, KeyDescriptor::KeyDescriptor, }; use anyhow::{anyhow, Context, Result}; use keystore2_flags; use std::{convert::TryFrom, convert::TryInto, ops::Deref, time::SystemTimeError}; use utils as db_utils; use utils::SqlField; use keystore2_crypto::ZVec; use lazy_static::lazy_static; use log::error; #[cfg(not(test))] use rand::prelude::random; use rusqlite::{ params, params_from_iter, types::FromSql, types::FromSqlResult, types::ToSqlOutput, types::{FromSqlError, Value, ValueRef}, Connection, OptionalExtension, ToSql, Transaction, }; use std::{ collections::{HashMap, HashSet}, path::Path, sync::{Arc, Condvar, Mutex}, time::{Duration, SystemTime}, }; use TransactionBehavior::Immediate; #[cfg(test)] use tests::random; /// Wrapper for `rusqlite::TransactionBehavior` which includes information about the transaction /// being performed. #[derive(Clone, Copy)] enum TransactionBehavior { Deferred, Immediate(&'static str), } impl From for rusqlite::TransactionBehavior { fn from(val: TransactionBehavior) -> Self { match val { TransactionBehavior::Deferred => rusqlite::TransactionBehavior::Deferred, TransactionBehavior::Immediate(_) => rusqlite::TransactionBehavior::Immediate, } } } impl TransactionBehavior { fn name(&self) -> Option<&'static str> { match self { TransactionBehavior::Deferred => None, TransactionBehavior::Immediate(v) => Some(v), } } } /// If the database returns a busy error code, retry after this interval. const DB_BUSY_RETRY_INTERVAL: Duration = Duration::from_micros(500); /// If the database returns a busy error code, keep retrying for this long. const MAX_DB_BUSY_RETRY_PERIOD: Duration = Duration::from_secs(15); /// Check whether a database lock has timed out. fn check_lock_timeout(start: &std::time::Instant, timeout: Duration) -> Result<()> { if keystore2_flags::database_loop_timeout() { let elapsed = start.elapsed(); if elapsed >= timeout { error!("Abandon locked DB after {elapsed:?}"); return Err(&KsError::Rc(ResponseCode::BACKEND_BUSY)) .context(ks_err!("Abandon locked DB after {elapsed:?}",)); } } Ok(()) } impl_metadata!( /// A set of metadata for key entries. #[derive(Debug, Default, Eq, PartialEq)] pub struct KeyMetaData; /// A metadata entry for key entries. #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)] pub enum KeyMetaEntry { /// Date of the creation of the key entry. CreationDate(DateTime) with accessor creation_date, /// Expiration date for attestation keys. AttestationExpirationDate(DateTime) with accessor attestation_expiration_date, /// CBOR Blob that represents a COSE_Key and associated metadata needed for remote /// provisioning AttestationMacedPublicKey(Vec) with accessor attestation_maced_public_key, /// Vector representing the raw public key so results from the server can be matched /// to the right entry AttestationRawPubKey(Vec) with accessor attestation_raw_pub_key, /// SEC1 public key for ECDH encryption Sec1PublicKey(Vec) with accessor sec1_public_key, // --- ADD NEW META DATA FIELDS HERE --- // For backwards compatibility add new entries only to // end of this list and above this comment. }; ); impl KeyMetaData { fn load_from_db(key_id: i64, tx: &Transaction) -> Result { let mut stmt = tx .prepare( "SELECT tag, data from persistent.keymetadata WHERE keyentryid = ?;", ) .context(ks_err!("KeyMetaData::load_from_db: prepare statement failed."))?; let mut metadata: HashMap = Default::default(); let mut rows = stmt .query(params![key_id]) .context(ks_err!("KeyMetaData::load_from_db: query failed."))?; db_utils::with_rows_extract_all(&mut rows, |row| { let db_tag: i64 = row.get(0).context("Failed to read tag.")?; metadata.insert( db_tag, KeyMetaEntry::new_from_sql(db_tag, &SqlField::new(1, row)) .context("Failed to read KeyMetaEntry.")?, ); Ok(()) }) .context(ks_err!("KeyMetaData::load_from_db."))?; Ok(Self { data: metadata }) } fn store_in_db(&self, key_id: i64, tx: &Transaction) -> Result<()> { let mut stmt = tx .prepare( "INSERT or REPLACE INTO persistent.keymetadata (keyentryid, tag, data) VALUES (?, ?, ?);", ) .context(ks_err!("KeyMetaData::store_in_db: Failed to prepare statement."))?; let iter = self.data.iter(); for (tag, entry) in iter { stmt.insert(params![key_id, tag, entry,]).with_context(|| { ks_err!("KeyMetaData::store_in_db: Failed to insert {:?}", entry) })?; } Ok(()) } } impl_metadata!( /// A set of metadata for key blobs. #[derive(Debug, Default, Eq, PartialEq)] pub struct BlobMetaData; /// A metadata entry for key blobs. #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)] pub enum BlobMetaEntry { /// If present, indicates that the blob is encrypted with another key or a key derived /// from a password. EncryptedBy(EncryptedBy) with accessor encrypted_by, /// If the blob is password encrypted this field is set to the /// salt used for the key derivation. Salt(Vec) with accessor salt, /// If the blob is encrypted, this field is set to the initialization vector. Iv(Vec) with accessor iv, /// If the blob is encrypted, this field holds the AEAD TAG. AeadTag(Vec) with accessor aead_tag, /// The uuid of the owning KeyMint instance. KmUuid(Uuid) with accessor km_uuid, /// If the key is ECDH encrypted, this is the ephemeral public key PublicKey(Vec) with accessor public_key, /// If the key is encrypted with a MaxBootLevel key, this is the boot level /// of that key MaxBootLevel(i32) with accessor max_boot_level, // --- ADD NEW META DATA FIELDS HERE --- // For backwards compatibility add new entries only to // end of this list and above this comment. }; ); impl BlobMetaData { fn load_from_db(blob_id: i64, tx: &Transaction) -> Result { let mut stmt = tx .prepare( "SELECT tag, data from persistent.blobmetadata WHERE blobentryid = ?;", ) .context(ks_err!("BlobMetaData::load_from_db: prepare statement failed."))?; let mut metadata: HashMap = Default::default(); let mut rows = stmt.query(params![blob_id]).context(ks_err!("query failed."))?; db_utils::with_rows_extract_all(&mut rows, |row| { let db_tag: i64 = row.get(0).context("Failed to read tag.")?; metadata.insert( db_tag, BlobMetaEntry::new_from_sql(db_tag, &SqlField::new(1, row)) .context("Failed to read BlobMetaEntry.")?, ); Ok(()) }) .context(ks_err!("BlobMetaData::load_from_db"))?; Ok(Self { data: metadata }) } fn store_in_db(&self, blob_id: i64, tx: &Transaction) -> Result<()> { let mut stmt = tx .prepare( "INSERT or REPLACE INTO persistent.blobmetadata (blobentryid, tag, data) VALUES (?, ?, ?);", ) .context(ks_err!("BlobMetaData::store_in_db: Failed to prepare statement.",))?; let iter = self.data.iter(); for (tag, entry) in iter { stmt.insert(params![blob_id, tag, entry,]).with_context(|| { ks_err!("BlobMetaData::store_in_db: Failed to insert {:?}", entry) })?; } Ok(()) } } /// Indicates the type of the keyentry. #[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd)] pub enum KeyType { /// This is a client key type. These keys are created or imported through the Keystore 2.0 /// AIDL interface android.system.keystore2. Client, /// This is a super key type. These keys are created by keystore itself and used to encrypt /// other key blobs to provide LSKF binding. Super, } impl ToSql for KeyType { fn to_sql(&self) -> rusqlite::Result { Ok(ToSqlOutput::Owned(Value::Integer(match self { KeyType::Client => 0, KeyType::Super => 1, }))) } } impl FromSql for KeyType { fn column_result(value: ValueRef) -> FromSqlResult { match i64::column_result(value)? { 0 => Ok(KeyType::Client), 1 => Ok(KeyType::Super), v => Err(FromSqlError::OutOfRange(v)), } } } /// Uuid representation that can be stored in the database. /// Right now it can only be initialized from SecurityLevel. /// Once KeyMint provides a UUID type a corresponding From impl shall be added. #[derive(Debug, Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Uuid([u8; 16]); impl Deref for Uuid { type Target = [u8; 16]; fn deref(&self) -> &Self::Target { &self.0 } } impl From for Uuid { fn from(sec_level: SecurityLevel) -> Self { Self((sec_level.0 as u128).to_be_bytes()) } } impl ToSql for Uuid { fn to_sql(&self) -> rusqlite::Result { self.0.to_sql() } } impl FromSql for Uuid { fn column_result(value: ValueRef<'_>) -> FromSqlResult { let blob = Vec::::column_result(value)?; if blob.len() != 16 { return Err(FromSqlError::OutOfRange(blob.len() as i64)); } let mut arr = [0u8; 16]; arr.copy_from_slice(&blob); Ok(Self(arr)) } } /// Key entries that are not associated with any KeyMint instance, such as pure certificate /// entries are associated with this UUID. pub static KEYSTORE_UUID: Uuid = Uuid([ 0x41, 0xe3, 0xb9, 0xce, 0x27, 0x58, 0x4e, 0x91, 0xbc, 0xfd, 0xa5, 0x5d, 0x91, 0x85, 0xab, 0x11, ]); /// Indicates how the sensitive part of this key blob is encrypted. #[derive(Debug, Eq, PartialEq, Ord, PartialOrd)] pub enum EncryptedBy { /// The keyblob is encrypted by a user password. /// In the database this variant is represented as NULL. Password, /// The keyblob is encrypted by another key with wrapped key id. /// In the database this variant is represented as non NULL value /// that is convertible to i64, typically NUMERIC. KeyId(i64), } impl ToSql for EncryptedBy { fn to_sql(&self) -> rusqlite::Result { match self { Self::Password => Ok(ToSqlOutput::Owned(Value::Null)), Self::KeyId(id) => id.to_sql(), } } } impl FromSql for EncryptedBy { fn column_result(value: ValueRef) -> FromSqlResult { match value { ValueRef::Null => Ok(Self::Password), _ => Ok(Self::KeyId(i64::column_result(value)?)), } } } /// A database representation of wall clock time. DateTime stores unix epoch time as /// i64 in milliseconds. #[derive(Debug, Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd)] pub struct DateTime(i64); /// Error type returned when creating DateTime or converting it from and to /// SystemTime. #[derive(thiserror::Error, Debug)] pub enum DateTimeError { /// This is returned when SystemTime and Duration computations fail. #[error(transparent)] SystemTimeError(#[from] SystemTimeError), /// This is returned when type conversions fail. #[error(transparent)] TypeConversion(#[from] std::num::TryFromIntError), /// This is returned when checked time arithmetic failed. #[error("Time arithmetic failed.")] TimeArithmetic, } impl DateTime { /// Constructs a new DateTime object denoting the current time. This may fail during /// conversion to unix epoch time and during conversion to the internal i64 representation. pub fn now() -> Result { Ok(Self(SystemTime::now().duration_since(SystemTime::UNIX_EPOCH)?.as_millis().try_into()?)) } /// Constructs a new DateTime object from milliseconds. pub fn from_millis_epoch(millis: i64) -> Self { Self(millis) } /// Returns unix epoch time in milliseconds. pub fn to_millis_epoch(self) -> i64 { self.0 } } impl ToSql for DateTime { fn to_sql(&self) -> rusqlite::Result { Ok(ToSqlOutput::Owned(Value::Integer(self.0))) } } impl FromSql for DateTime { fn column_result(value: ValueRef) -> FromSqlResult { Ok(Self(i64::column_result(value)?)) } } impl TryInto for DateTime { type Error = DateTimeError; fn try_into(self) -> Result { // We want to construct a SystemTime representation equivalent to self, denoting // a point in time THEN, but we cannot set the time directly. We can only construct // a SystemTime denoting NOW, and we can get the duration between EPOCH and NOW, // and between EPOCH and THEN. With this common reference we can construct the // duration between NOW and THEN which we can add to our SystemTime representation // of NOW to get a SystemTime representation of THEN. // Durations can only be positive, thus the if statement below. let now = SystemTime::now(); let now_epoch = now.duration_since(SystemTime::UNIX_EPOCH)?; let then_epoch = Duration::from_millis(self.0.try_into()?); Ok(if now_epoch > then_epoch { // then = now - (now_epoch - then_epoch) now_epoch .checked_sub(then_epoch) .and_then(|d| now.checked_sub(d)) .ok_or(DateTimeError::TimeArithmetic)? } else { // then = now + (then_epoch - now_epoch) then_epoch .checked_sub(now_epoch) .and_then(|d| now.checked_add(d)) .ok_or(DateTimeError::TimeArithmetic)? }) } } impl TryFrom for DateTime { type Error = DateTimeError; fn try_from(t: SystemTime) -> Result { Ok(Self(t.duration_since(SystemTime::UNIX_EPOCH)?.as_millis().try_into()?)) } } #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone)] enum KeyLifeCycle { /// Existing keys have a key ID but are not fully populated yet. /// This is a transient state. If Keystore finds any such keys when it starts up, it must move /// them to Unreferenced for garbage collection. Existing, /// A live key is fully populated and usable by clients. Live, /// An unreferenced key is scheduled for garbage collection. Unreferenced, } impl ToSql for KeyLifeCycle { fn to_sql(&self) -> rusqlite::Result { match self { Self::Existing => Ok(ToSqlOutput::Owned(Value::Integer(0))), Self::Live => Ok(ToSqlOutput::Owned(Value::Integer(1))), Self::Unreferenced => Ok(ToSqlOutput::Owned(Value::Integer(2))), } } } impl FromSql for KeyLifeCycle { fn column_result(value: ValueRef) -> FromSqlResult { match i64::column_result(value)? { 0 => Ok(KeyLifeCycle::Existing), 1 => Ok(KeyLifeCycle::Live), 2 => Ok(KeyLifeCycle::Unreferenced), v => Err(FromSqlError::OutOfRange(v)), } } } /// Keys have a KeyMint blob component and optional public certificate and /// certificate chain components. /// KeyEntryLoadBits is a bitmap that indicates to `KeystoreDB::load_key_entry` /// which components shall be loaded from the database if present. #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd)] pub struct KeyEntryLoadBits(u32); impl KeyEntryLoadBits { /// Indicate to `KeystoreDB::load_key_entry` that no component shall be loaded. pub const NONE: KeyEntryLoadBits = Self(0); /// Indicate to `KeystoreDB::load_key_entry` that the KeyMint component shall be loaded. pub const KM: KeyEntryLoadBits = Self(1); /// Indicate to `KeystoreDB::load_key_entry` that the Public components shall be loaded. pub const PUBLIC: KeyEntryLoadBits = Self(2); /// Indicate to `KeystoreDB::load_key_entry` that both components shall be loaded. pub const BOTH: KeyEntryLoadBits = Self(3); /// Returns true if this object indicates that the public components shall be loaded. pub const fn load_public(&self) -> bool { self.0 & Self::PUBLIC.0 != 0 } /// Returns true if the object indicates that the KeyMint component shall be loaded. pub const fn load_km(&self) -> bool { self.0 & Self::KM.0 != 0 } } lazy_static! { static ref KEY_ID_LOCK: KeyIdLockDb = KeyIdLockDb::new(); } struct KeyIdLockDb { locked_keys: Mutex>, cond_var: Condvar, } /// A locked key. While a guard exists for a given key id, the same key cannot be loaded /// from the database a second time. Most functions manipulating the key blob database /// require a KeyIdGuard. #[derive(Debug)] pub struct KeyIdGuard(i64); impl KeyIdLockDb { fn new() -> Self { Self { locked_keys: Mutex::new(HashSet::new()), cond_var: Condvar::new() } } /// This function blocks until an exclusive lock for the given key entry id can /// be acquired. It returns a guard object, that represents the lifecycle of the /// acquired lock. fn get(&self, key_id: i64) -> KeyIdGuard { let mut locked_keys = self.locked_keys.lock().unwrap(); while locked_keys.contains(&key_id) { locked_keys = self.cond_var.wait(locked_keys).unwrap(); } locked_keys.insert(key_id); KeyIdGuard(key_id) } /// This function attempts to acquire an exclusive lock on a given key id. If the /// given key id is already taken the function returns None immediately. If a lock /// can be acquired this function returns a guard object, that represents the /// lifecycle of the acquired lock. fn try_get(&self, key_id: i64) -> Option { let mut locked_keys = self.locked_keys.lock().unwrap(); if locked_keys.insert(key_id) { Some(KeyIdGuard(key_id)) } else { None } } } impl KeyIdGuard { /// Get the numeric key id of the locked key. pub fn id(&self) -> i64 { self.0 } } impl Drop for KeyIdGuard { fn drop(&mut self) { let mut locked_keys = KEY_ID_LOCK.locked_keys.lock().unwrap(); locked_keys.remove(&self.0); drop(locked_keys); KEY_ID_LOCK.cond_var.notify_all(); } } /// This type represents a certificate and certificate chain entry for a key. #[derive(Debug, Default)] pub struct CertificateInfo { cert: Option>, cert_chain: Option>, } /// This type represents a Blob with its metadata and an optional superseded blob. #[derive(Debug)] pub struct BlobInfo<'a> { blob: &'a [u8], metadata: &'a BlobMetaData, /// Superseded blobs are an artifact of legacy import. In some rare occasions /// the key blob needs to be upgraded during import. In that case two /// blob are imported, the superseded one will have to be imported first, /// so that the garbage collector can reap it. superseded_blob: Option<(&'a [u8], &'a BlobMetaData)>, } impl<'a> BlobInfo<'a> { /// Create a new instance of blob info with blob and corresponding metadata /// and no superseded blob info. pub fn new(blob: &'a [u8], metadata: &'a BlobMetaData) -> Self { Self { blob, metadata, superseded_blob: None } } /// Create a new instance of blob info with blob and corresponding metadata /// as well as superseded blob info. pub fn new_with_superseded( blob: &'a [u8], metadata: &'a BlobMetaData, superseded_blob: Option<(&'a [u8], &'a BlobMetaData)>, ) -> Self { Self { blob, metadata, superseded_blob } } } impl CertificateInfo { /// Constructs a new CertificateInfo object from `cert` and `cert_chain` pub fn new(cert: Option>, cert_chain: Option>) -> Self { Self { cert, cert_chain } } /// Take the cert pub fn take_cert(&mut self) -> Option> { self.cert.take() } /// Take the cert chain pub fn take_cert_chain(&mut self) -> Option> { self.cert_chain.take() } } /// This type represents a certificate chain with a private key corresponding to the leaf /// certificate. TODO(jbires): This will be used in a follow-on CL, for now it's used in the tests. pub struct CertificateChain { /// A KM key blob pub private_key: ZVec, /// A batch cert for private_key pub batch_cert: Vec, /// A full certificate chain from root signing authority to private_key, including batch_cert /// for convenience. pub cert_chain: Vec, } /// This type represents a Keystore 2.0 key entry. /// An entry has a unique `id` by which it can be found in the database. /// It has a security level field, key parameters, and three optional fields /// for the KeyMint blob, public certificate and a public certificate chain. #[derive(Debug, Default, Eq, PartialEq)] pub struct KeyEntry { id: i64, key_blob_info: Option<(Vec, BlobMetaData)>, cert: Option>, cert_chain: Option>, km_uuid: Uuid, parameters: Vec, metadata: KeyMetaData, pure_cert: bool, } impl KeyEntry { /// Returns the unique id of the Key entry. pub fn id(&self) -> i64 { self.id } /// Exposes the optional KeyMint blob. pub fn key_blob_info(&self) -> &Option<(Vec, BlobMetaData)> { &self.key_blob_info } /// Extracts the Optional KeyMint blob including its metadata. pub fn take_key_blob_info(&mut self) -> Option<(Vec, BlobMetaData)> { self.key_blob_info.take() } /// Exposes the optional public certificate. pub fn cert(&self) -> &Option> { &self.cert } /// Extracts the optional public certificate. pub fn take_cert(&mut self) -> Option> { self.cert.take() } /// Extracts the optional public certificate_chain. pub fn take_cert_chain(&mut self) -> Option> { self.cert_chain.take() } /// Returns the uuid of the owning KeyMint instance. pub fn km_uuid(&self) -> &Uuid { &self.km_uuid } /// Consumes this key entry and extracts the keyparameters from it. pub fn into_key_parameters(self) -> Vec { self.parameters } /// Exposes the key metadata of this key entry. pub fn metadata(&self) -> &KeyMetaData { &self.metadata } /// This returns true if the entry is a pure certificate entry with no /// private key component. pub fn pure_cert(&self) -> bool { self.pure_cert } } /// Indicates the sub component of a key entry for persistent storage. #[derive(Debug, Clone, Copy, Eq, PartialEq, Ord, PartialOrd)] pub struct SubComponentType(u32); impl SubComponentType { /// Persistent identifier for a key blob. pub const KEY_BLOB: SubComponentType = Self(0); /// Persistent identifier for a certificate blob. pub const CERT: SubComponentType = Self(1); /// Persistent identifier for a certificate chain blob. pub const CERT_CHAIN: SubComponentType = Self(2); } impl ToSql for SubComponentType { fn to_sql(&self) -> rusqlite::Result { self.0.to_sql() } } impl FromSql for SubComponentType { fn column_result(value: ValueRef) -> FromSqlResult { Ok(Self(u32::column_result(value)?)) } } /// This trait is private to the database module. It is used to convey whether or not the garbage /// collector shall be invoked after a database access. All closures passed to /// `KeystoreDB::with_transaction` return a tuple (bool, T) where the bool indicates if the /// gc needs to be triggered. This convenience function allows to turn any anyhow::Result /// into anyhow::Result<(bool, T)> by simply appending one of `.do_gc(bool)`, `.no_gc()`, or /// `.need_gc()`. trait DoGc { fn do_gc(self, need_gc: bool) -> Result<(bool, T)>; fn no_gc(self) -> Result<(bool, T)>; fn need_gc(self) -> Result<(bool, T)>; } impl DoGc for Result { fn do_gc(self, need_gc: bool) -> Result<(bool, T)> { self.map(|r| (need_gc, r)) } fn no_gc(self) -> Result<(bool, T)> { self.do_gc(false) } fn need_gc(self) -> Result<(bool, T)> { self.do_gc(true) } } /// KeystoreDB wraps a connection to an SQLite database and tracks its /// ownership. It also implements all of Keystore 2.0's database functionality. pub struct KeystoreDB { conn: Connection, gc: Option>, perboot: Arc, } /// Database representation of the monotonic time retrieved from the system call clock_gettime with /// CLOCK_BOOTTIME. Stores monotonic time as i64 in milliseconds. #[derive(Debug, Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd)] pub struct BootTime(i64); impl BootTime { /// Constructs a new BootTime pub fn now() -> Self { Self(get_current_time_in_milliseconds()) } /// Returns the value of BootTime in milliseconds as i64 pub fn milliseconds(&self) -> i64 { self.0 } /// Returns the integer value of BootTime as i64 pub fn seconds(&self) -> i64 { self.0 / 1000 } /// Like i64::checked_sub. pub fn checked_sub(&self, other: &Self) -> Option { self.0.checked_sub(other.0).map(Self) } } impl ToSql for BootTime { fn to_sql(&self) -> rusqlite::Result { Ok(ToSqlOutput::Owned(Value::Integer(self.0))) } } impl FromSql for BootTime { fn column_result(value: ValueRef) -> FromSqlResult { Ok(Self(i64::column_result(value)?)) } } /// This struct encapsulates the information to be stored in the database about the auth tokens /// received by keystore. #[derive(Clone)] pub struct AuthTokenEntry { auth_token: HardwareAuthToken, // Time received in milliseconds time_received: BootTime, } impl AuthTokenEntry { fn new(auth_token: HardwareAuthToken, time_received: BootTime) -> Self { AuthTokenEntry { auth_token, time_received } } /// Checks if this auth token satisfies the given authentication information. pub fn satisfies(&self, user_secure_ids: &[i64], auth_type: HardwareAuthenticatorType) -> bool { user_secure_ids.iter().any(|&sid| { (sid == self.auth_token.userId || sid == self.auth_token.authenticatorId) && ((auth_type.0 & self.auth_token.authenticatorType.0) != 0) }) } /// Returns the auth token wrapped by the AuthTokenEntry pub fn auth_token(&self) -> &HardwareAuthToken { &self.auth_token } /// Returns the auth token wrapped by the AuthTokenEntry pub fn take_auth_token(self) -> HardwareAuthToken { self.auth_token } /// Returns the time that this auth token was received. pub fn time_received(&self) -> BootTime { self.time_received } /// Returns the challenge value of the auth token. pub fn challenge(&self) -> i64 { self.auth_token.challenge } } impl KeystoreDB { const UNASSIGNED_KEY_ID: i64 = -1i64; const CURRENT_DB_VERSION: u32 = 1; const UPGRADERS: &'static [fn(&Transaction) -> Result] = &[Self::from_0_to_1]; /// Name of the file that holds the cross-boot persistent database. pub const PERSISTENT_DB_FILENAME: &'static str = "persistent.sqlite"; /// This will create a new database connection connecting the two /// files persistent.sqlite and perboot.sqlite in the given directory. /// It also attempts to initialize all of the tables. /// KeystoreDB cannot be used by multiple threads. /// Each thread should open their own connection using `thread_local!`. pub fn new(db_root: &Path, gc: Option>) -> Result { let _wp = wd::watch("KeystoreDB::new"); let persistent_path = Self::make_persistent_path(db_root)?; let conn = Self::make_connection(&persistent_path)?; let mut db = Self { conn, gc, perboot: perboot::PERBOOT_DB.clone() }; db.with_transaction(Immediate("TX_new"), |tx| { versioning::upgrade_database(tx, Self::CURRENT_DB_VERSION, Self::UPGRADERS) .context(ks_err!("KeystoreDB::new: trying to upgrade database."))?; Self::init_tables(tx).context("Trying to initialize tables.").no_gc() })?; Ok(db) } // This upgrade function deletes all MAX_BOOT_LEVEL keys, that were generated before // cryptographic binding to the boot level keys was implemented. fn from_0_to_1(tx: &Transaction) -> Result { tx.execute( "UPDATE persistent.keyentry SET state = ? WHERE id IN (SELECT keyentryid FROM persistent.keyparameter WHERE tag = ?) AND id NOT IN ( SELECT keyentryid FROM persistent.blobentry WHERE id IN ( SELECT blobentryid FROM persistent.blobmetadata WHERE tag = ? ) );", params![KeyLifeCycle::Unreferenced, Tag::MAX_BOOT_LEVEL.0, BlobMetaData::MaxBootLevel], ) .context(ks_err!("Failed to delete logical boot level keys."))?; Ok(1) } fn init_tables(tx: &Transaction) -> Result<()> { tx.execute( "CREATE TABLE IF NOT EXISTS persistent.keyentry ( id INTEGER UNIQUE, key_type INTEGER, domain INTEGER, namespace INTEGER, alias BLOB, state INTEGER, km_uuid BLOB);", [], ) .context("Failed to initialize \"keyentry\" table.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.keyentry_id_index ON keyentry(id);", [], ) .context("Failed to create index keyentry_id_index.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.keyentry_domain_namespace_index ON keyentry(domain, namespace, alias);", [], ) .context("Failed to create index keyentry_domain_namespace_index.")?; tx.execute( "CREATE TABLE IF NOT EXISTS persistent.blobentry ( id INTEGER PRIMARY KEY, subcomponent_type INTEGER, keyentryid INTEGER, blob BLOB);", [], ) .context("Failed to initialize \"blobentry\" table.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.blobentry_keyentryid_index ON blobentry(keyentryid);", [], ) .context("Failed to create index blobentry_keyentryid_index.")?; tx.execute( "CREATE TABLE IF NOT EXISTS persistent.blobmetadata ( id INTEGER PRIMARY KEY, blobentryid INTEGER, tag INTEGER, data ANY, UNIQUE (blobentryid, tag));", [], ) .context("Failed to initialize \"blobmetadata\" table.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.blobmetadata_blobentryid_index ON blobmetadata(blobentryid);", [], ) .context("Failed to create index blobmetadata_blobentryid_index.")?; tx.execute( "CREATE TABLE IF NOT EXISTS persistent.keyparameter ( keyentryid INTEGER, tag INTEGER, data ANY, security_level INTEGER);", [], ) .context("Failed to initialize \"keyparameter\" table.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.keyparameter_keyentryid_index ON keyparameter(keyentryid);", [], ) .context("Failed to create index keyparameter_keyentryid_index.")?; tx.execute( "CREATE TABLE IF NOT EXISTS persistent.keymetadata ( keyentryid INTEGER, tag INTEGER, data ANY, UNIQUE (keyentryid, tag));", [], ) .context("Failed to initialize \"keymetadata\" table.")?; tx.execute( "CREATE INDEX IF NOT EXISTS persistent.keymetadata_keyentryid_index ON keymetadata(keyentryid);", [], ) .context("Failed to create index keymetadata_keyentryid_index.")?; tx.execute( "CREATE TABLE IF NOT EXISTS persistent.grant ( id INTEGER UNIQUE, grantee INTEGER, keyentryid INTEGER, access_vector INTEGER);", [], ) .context("Failed to initialize \"grant\" table.")?; Ok(()) } fn make_persistent_path(db_root: &Path) -> Result { // Build the path to the sqlite file. let mut persistent_path = db_root.to_path_buf(); persistent_path.push(Self::PERSISTENT_DB_FILENAME); // Now convert them to strings prefixed with "file:" let mut persistent_path_str = "file:".to_owned(); persistent_path_str.push_str(&persistent_path.to_string_lossy()); // Connect to database in specific mode let persistent_path_mode = if keystore2_flags::wal_db_journalmode_v3() { "?journal_mode=WAL".to_owned() } else { "?journal_mode=DELETE".to_owned() }; persistent_path_str.push_str(&persistent_path_mode); Ok(persistent_path_str) } fn make_connection(persistent_file: &str) -> Result { let conn = Connection::open_in_memory().context("Failed to initialize SQLite connection.")?; loop { if let Err(e) = conn .execute("ATTACH DATABASE ? as persistent;", params![persistent_file]) .context("Failed to attach database persistent.") { if Self::is_locked_error(&e) { std::thread::sleep(DB_BUSY_RETRY_INTERVAL); continue; } else { return Err(e); } } break; } // Drop the cache size from default (2M) to 0.5M conn.execute("PRAGMA persistent.cache_size = -500;", params![]) .context("Failed to decrease cache size for persistent db")?; Ok(conn) } fn do_table_size_query( &mut self, storage_type: MetricsStorage, query: &str, params: &[&str], ) -> Result { let (total, unused) = self.with_transaction(TransactionBehavior::Deferred, |tx| { tx.query_row(query, params_from_iter(params), |row| Ok((row.get(0)?, row.get(1)?))) .with_context(|| { ks_err!("get_storage_stat: Error size of storage type {}", storage_type.0) }) .no_gc() })?; Ok(StorageStats { storage_type, size: total, unused_size: unused }) } fn get_total_size(&mut self) -> Result { self.do_table_size_query( MetricsStorage::DATABASE, "SELECT page_count * page_size, freelist_count * page_size FROM pragma_page_count('persistent'), pragma_page_size('persistent'), persistent.pragma_freelist_count();", &[], ) } fn get_table_size( &mut self, storage_type: MetricsStorage, schema: &str, table: &str, ) -> Result { self.do_table_size_query( storage_type, "SELECT pgsize,unused FROM dbstat(?1) WHERE name=?2 AND aggregate=TRUE;", &[schema, table], ) } /// Fetches a storage statisitics atom for a given storage type. For storage /// types that map to a table, information about the table's storage is /// returned. Requests for storage types that are not DB tables return None. pub fn get_storage_stat(&mut self, storage_type: MetricsStorage) -> Result { let _wp = wd::watch("KeystoreDB::get_storage_stat"); match storage_type { MetricsStorage::DATABASE => self.get_total_size(), MetricsStorage::KEY_ENTRY => { self.get_table_size(storage_type, "persistent", "keyentry") } MetricsStorage::KEY_ENTRY_ID_INDEX => { self.get_table_size(storage_type, "persistent", "keyentry_id_index") } MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX => { self.get_table_size(storage_type, "persistent", "keyentry_domain_namespace_index") } MetricsStorage::BLOB_ENTRY => { self.get_table_size(storage_type, "persistent", "blobentry") } MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX => { self.get_table_size(storage_type, "persistent", "blobentry_keyentryid_index") } MetricsStorage::KEY_PARAMETER => { self.get_table_size(storage_type, "persistent", "keyparameter") } MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX => { self.get_table_size(storage_type, "persistent", "keyparameter_keyentryid_index") } MetricsStorage::KEY_METADATA => { self.get_table_size(storage_type, "persistent", "keymetadata") } MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX => { self.get_table_size(storage_type, "persistent", "keymetadata_keyentryid_index") } MetricsStorage::GRANT => self.get_table_size(storage_type, "persistent", "grant"), MetricsStorage::AUTH_TOKEN => { // Since the table is actually a BTreeMap now, unused_size is not meaningfully // reportable // Size provided is only an approximation Ok(StorageStats { storage_type, size: (self.perboot.auth_tokens_len() * std::mem::size_of::()) as i32, unused_size: 0, }) } MetricsStorage::BLOB_METADATA => { self.get_table_size(storage_type, "persistent", "blobmetadata") } MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX => { self.get_table_size(storage_type, "persistent", "blobmetadata_blobentryid_index") } _ => Err(anyhow::Error::msg(format!("Unsupported storage type: {}", storage_type.0))), } } /// This function is intended to be used by the garbage collector. /// It deletes the blobs given by `blob_ids_to_delete`. It then tries to find up to `max_blobs` /// superseded key blobs that might need special handling by the garbage collector. /// If no further superseded blobs can be found it deletes all other superseded blobs that don't /// need special handling and returns None. pub fn handle_next_superseded_blobs( &mut self, blob_ids_to_delete: &[i64], max_blobs: usize, ) -> Result, BlobMetaData)>> { let _wp = wd::watch("KeystoreDB::handle_next_superseded_blob"); self.with_transaction(Immediate("TX_handle_next_superseded_blob"), |tx| { // Delete the given blobs. for blob_id in blob_ids_to_delete { tx.execute( "DELETE FROM persistent.blobmetadata WHERE blobentryid = ?;", params![blob_id], ) .context(ks_err!("Trying to delete blob metadata: {:?}", blob_id))?; tx.execute("DELETE FROM persistent.blobentry WHERE id = ?;", params![blob_id]) .context(ks_err!("Trying to delete blob: {:?}", blob_id))?; } Self::cleanup_unreferenced(tx).context("Trying to cleanup unreferenced.")?; // Find up to max_blobx more superseded key blobs, load their metadata and return it. let result: Vec<(i64, Vec)> = { let mut stmt = tx .prepare( "SELECT id, blob FROM persistent.blobentry WHERE subcomponent_type = ? AND ( id NOT IN ( SELECT MAX(id) FROM persistent.blobentry WHERE subcomponent_type = ? GROUP BY keyentryid, subcomponent_type ) OR keyentryid NOT IN (SELECT id FROM persistent.keyentry) ) LIMIT ?;", ) .context("Trying to prepare query for superseded blobs.")?; let rows = stmt .query_map( params![ SubComponentType::KEY_BLOB, SubComponentType::KEY_BLOB, max_blobs as i64, ], |row| Ok((row.get(0)?, row.get(1)?)), ) .context("Trying to query superseded blob.")?; rows.collect::)>, rusqlite::Error>>() .context("Trying to extract superseded blobs.")? }; let result = result .into_iter() .map(|(blob_id, blob)| { Ok((blob_id, blob, BlobMetaData::load_from_db(blob_id, tx)?)) }) .collect::, BlobMetaData)>>>() .context("Trying to load blob metadata.")?; if !result.is_empty() { return Ok(result).no_gc(); } // We did not find any superseded key blob, so let's remove other superseded blob in // one transaction. tx.execute( "DELETE FROM persistent.blobentry WHERE NOT subcomponent_type = ? AND ( id NOT IN ( SELECT MAX(id) FROM persistent.blobentry WHERE NOT subcomponent_type = ? GROUP BY keyentryid, subcomponent_type ) OR keyentryid NOT IN (SELECT id FROM persistent.keyentry) );", params![SubComponentType::KEY_BLOB, SubComponentType::KEY_BLOB], ) .context("Trying to purge superseded blobs.")?; Ok(vec![]).no_gc() }) .context(ks_err!()) } /// This maintenance function should be called only once before the database is used for the /// first time. It restores the invariant that `KeyLifeCycle::Existing` is a transient state. /// The function transitions all key entries from Existing to Unreferenced unconditionally and /// returns the number of rows affected. If this returns a value greater than 0, it means that /// Keystore crashed at some point during key generation. Callers may want to log such /// occurrences. /// Unlike with `mark_unreferenced`, we don't need to purge grants, because only keys that made /// it to `KeyLifeCycle::Live` may have grants. pub fn cleanup_leftovers(&mut self) -> Result { let _wp = wd::watch("KeystoreDB::cleanup_leftovers"); self.with_transaction(Immediate("TX_cleanup_leftovers"), |tx| { tx.execute( "UPDATE persistent.keyentry SET state = ? WHERE state = ?;", params![KeyLifeCycle::Unreferenced, KeyLifeCycle::Existing], ) .context("Failed to execute query.") .need_gc() }) .context(ks_err!()) } /// Checks if a key exists with given key type and key descriptor properties. pub fn key_exists( &mut self, domain: Domain, nspace: i64, alias: &str, key_type: KeyType, ) -> Result { let _wp = wd::watch("KeystoreDB::key_exists"); self.with_transaction(Immediate("TX_key_exists"), |tx| { let key_descriptor = KeyDescriptor { domain, nspace, alias: Some(alias.to_string()), blob: None }; let result = Self::load_key_entry_id(tx, &key_descriptor, key_type); match result { Ok(_) => Ok(true), Err(error) => match error.root_cause().downcast_ref::() { Some(KsError::Rc(ResponseCode::KEY_NOT_FOUND)) => Ok(false), _ => Err(error).context(ks_err!("Failed to find if the key exists.")), }, } .no_gc() }) .context(ks_err!()) } /// Stores a super key in the database. pub fn store_super_key( &mut self, user_id: u32, key_type: &SuperKeyType, blob: &[u8], blob_metadata: &BlobMetaData, key_metadata: &KeyMetaData, ) -> Result { let _wp = wd::watch("KeystoreDB::store_super_key"); self.with_transaction(Immediate("TX_store_super_key"), |tx| { let key_id = Self::insert_with_retry(|id| { tx.execute( "INSERT into persistent.keyentry (id, key_type, domain, namespace, alias, state, km_uuid) VALUES(?, ?, ?, ?, ?, ?, ?);", params![ id, KeyType::Super, Domain::APP.0, user_id as i64, key_type.alias, KeyLifeCycle::Live, &KEYSTORE_UUID, ], ) }) .context("Failed to insert into keyentry table.")?; key_metadata.store_in_db(key_id, tx).context("KeyMetaData::store_in_db failed")?; Self::set_blob_internal( tx, key_id, SubComponentType::KEY_BLOB, Some(blob), Some(blob_metadata), ) .context("Failed to store key blob.")?; Self::load_key_components(tx, KeyEntryLoadBits::KM, key_id) .context("Trying to load key components.") .no_gc() }) .context(ks_err!()) } /// Loads super key of a given user, if exists pub fn load_super_key( &mut self, key_type: &SuperKeyType, user_id: u32, ) -> Result> { let _wp = wd::watch("KeystoreDB::load_super_key"); self.with_transaction(Immediate("TX_load_super_key"), |tx| { let key_descriptor = KeyDescriptor { domain: Domain::APP, nspace: user_id as i64, alias: Some(key_type.alias.into()), blob: None, }; let id = Self::load_key_entry_id(tx, &key_descriptor, KeyType::Super); match id { Ok(id) => { let key_entry = Self::load_key_components(tx, KeyEntryLoadBits::KM, id) .context(ks_err!("Failed to load key entry."))?; Ok(Some((KEY_ID_LOCK.get(id), key_entry))) } Err(error) => match error.root_cause().downcast_ref::() { Some(KsError::Rc(ResponseCode::KEY_NOT_FOUND)) => Ok(None), _ => Err(error).context(ks_err!()), }, } .no_gc() }) .context(ks_err!()) } /// Creates a transaction with the given behavior and executes f with the new transaction. /// The transaction is committed only if f returns Ok and retried if DatabaseBusy /// or DatabaseLocked is encountered. fn with_transaction(&mut self, behavior: TransactionBehavior, f: F) -> Result where F: Fn(&Transaction) -> Result<(bool, T)>, { self.with_transaction_timeout(behavior, MAX_DB_BUSY_RETRY_PERIOD, f) } fn with_transaction_timeout( &mut self, behavior: TransactionBehavior, timeout: Duration, f: F, ) -> Result where F: Fn(&Transaction) -> Result<(bool, T)>, { let start = std::time::Instant::now(); let name = behavior.name(); loop { let result = self .conn .transaction_with_behavior(behavior.into()) .context(ks_err!()) .and_then(|tx| { let _wp = name.map(wd::watch); f(&tx).map(|result| (result, tx)) }) .and_then(|(result, tx)| { tx.commit().context(ks_err!("Failed to commit transaction."))?; Ok(result) }); match result { Ok(result) => break Ok(result), Err(e) => { if Self::is_locked_error(&e) { check_lock_timeout(&start, timeout)?; std::thread::sleep(DB_BUSY_RETRY_INTERVAL); continue; } else { return Err(e).context(ks_err!()); } } } } .map(|(need_gc, result)| { if need_gc { if let Some(ref gc) = self.gc { gc.notify_gc(); } } result }) } fn is_locked_error(e: &anyhow::Error) -> bool { matches!( e.root_cause().downcast_ref::(), Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseBusy, .. }) | Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseLocked, .. }) ) } fn create_key_entry_internal( tx: &Transaction, domain: &Domain, namespace: &i64, key_type: KeyType, km_uuid: &Uuid, ) -> Result { match *domain { Domain::APP | Domain::SELINUX => {} _ => { return Err(KsError::sys()) .context(ks_err!("Domain {:?} must be either App or SELinux.", domain)); } } Ok(KEY_ID_LOCK.get( Self::insert_with_retry(|id| { tx.execute( "INSERT into persistent.keyentry (id, key_type, domain, namespace, alias, state, km_uuid) VALUES(?, ?, ?, ?, NULL, ?, ?);", params![ id, key_type, domain.0 as u32, *namespace, KeyLifeCycle::Existing, km_uuid, ], ) }) .context(ks_err!())?, )) } /// Set a new blob and associates it with the given key id. Each blob /// has a sub component type. /// Each key can have one of each sub component type associated. If more /// are added only the most recent can be retrieved, and superseded blobs /// will get garbage collected. /// Components SubComponentType::CERT and SubComponentType::CERT_CHAIN can be /// removed by setting blob to None. pub fn set_blob( &mut self, key_id: &KeyIdGuard, sc_type: SubComponentType, blob: Option<&[u8]>, blob_metadata: Option<&BlobMetaData>, ) -> Result<()> { let _wp = wd::watch("KeystoreDB::set_blob"); self.with_transaction(Immediate("TX_set_blob"), |tx| { Self::set_blob_internal(tx, key_id.0, sc_type, blob, blob_metadata).need_gc() }) .context(ks_err!()) } /// Why would we insert a deleted blob? This weird function is for the purpose of legacy /// key migration in the case where we bulk delete all the keys of an app or even a user. /// We use this to insert key blobs into the database which can then be garbage collected /// lazily by the key garbage collector. pub fn set_deleted_blob(&mut self, blob: &[u8], blob_metadata: &BlobMetaData) -> Result<()> { let _wp = wd::watch("KeystoreDB::set_deleted_blob"); self.with_transaction(Immediate("TX_set_deleted_blob"), |tx| { Self::set_blob_internal( tx, Self::UNASSIGNED_KEY_ID, SubComponentType::KEY_BLOB, Some(blob), Some(blob_metadata), ) .need_gc() }) .context(ks_err!()) } fn set_blob_internal( tx: &Transaction, key_id: i64, sc_type: SubComponentType, blob: Option<&[u8]>, blob_metadata: Option<&BlobMetaData>, ) -> Result<()> { match (blob, sc_type) { (Some(blob), _) => { tx.execute( "INSERT INTO persistent.blobentry (subcomponent_type, keyentryid, blob) VALUES (?, ?, ?);", params![sc_type, key_id, blob], ) .context(ks_err!("Failed to insert blob."))?; if let Some(blob_metadata) = blob_metadata { let blob_id = tx .query_row("SELECT MAX(id) FROM persistent.blobentry;", [], |row| { row.get(0) }) .context(ks_err!("Failed to get new blob id."))?; blob_metadata .store_in_db(blob_id, tx) .context(ks_err!("Trying to store blob metadata."))?; } } (None, SubComponentType::CERT) | (None, SubComponentType::CERT_CHAIN) => { tx.execute( "DELETE FROM persistent.blobentry WHERE subcomponent_type = ? AND keyentryid = ?;", params![sc_type, key_id], ) .context(ks_err!("Failed to delete blob."))?; } (None, _) => { return Err(KsError::sys()) .context(ks_err!("Other blobs cannot be deleted in this way.")); } } Ok(()) } /// Inserts a collection of key parameters into the `persistent.keyparameter` table /// and associates them with the given `key_id`. #[cfg(test)] fn insert_keyparameter(&mut self, key_id: &KeyIdGuard, params: &[KeyParameter]) -> Result<()> { self.with_transaction(Immediate("TX_insert_keyparameter"), |tx| { Self::insert_keyparameter_internal(tx, key_id, params).no_gc() }) .context(ks_err!()) } fn insert_keyparameter_internal( tx: &Transaction, key_id: &KeyIdGuard, params: &[KeyParameter], ) -> Result<()> { let mut stmt = tx .prepare( "INSERT into persistent.keyparameter (keyentryid, tag, data, security_level) VALUES (?, ?, ?, ?);", ) .context(ks_err!("Failed to prepare statement."))?; for p in params.iter() { stmt.insert(params![ key_id.0, p.get_tag().0, p.key_parameter_value(), p.security_level().0 ]) .with_context(|| ks_err!("Failed to insert {:?}", p))?; } Ok(()) } /// Insert a set of key entry specific metadata into the database. #[cfg(test)] fn insert_key_metadata(&mut self, key_id: &KeyIdGuard, metadata: &KeyMetaData) -> Result<()> { self.with_transaction(Immediate("TX_insert_key_metadata"), |tx| { metadata.store_in_db(key_id.0, tx).no_gc() }) .context(ks_err!()) } /// Updates the alias column of the given key id `newid` with the given alias, /// and atomically, removes the alias, domain, and namespace from another row /// with the same alias-domain-namespace tuple if such row exits. /// Returns Ok(true) if an old key was marked unreferenced as a hint to the garbage /// collector. fn rebind_alias( tx: &Transaction, newid: &KeyIdGuard, alias: &str, domain: &Domain, namespace: &i64, key_type: KeyType, ) -> Result { match *domain { Domain::APP | Domain::SELINUX => {} _ => { return Err(KsError::sys()) .context(ks_err!("Domain {:?} must be either App or SELinux.", domain)); } } let updated = tx .execute( "UPDATE persistent.keyentry SET alias = NULL, domain = NULL, namespace = NULL, state = ? WHERE alias = ? AND domain = ? AND namespace = ? AND key_type = ?;", params![KeyLifeCycle::Unreferenced, alias, domain.0 as u32, namespace, key_type], ) .context(ks_err!("Failed to rebind existing entry."))?; let result = tx .execute( "UPDATE persistent.keyentry SET alias = ?, state = ? WHERE id = ? AND domain = ? AND namespace = ? AND state = ? AND key_type = ?;", params![ alias, KeyLifeCycle::Live, newid.0, domain.0 as u32, *namespace, KeyLifeCycle::Existing, key_type, ], ) .context(ks_err!("Failed to set alias."))?; if result != 1 { return Err(KsError::sys()).context(ks_err!( "Expected to update a single entry but instead updated {}.", result )); } Ok(updated != 0) } /// Moves the key given by KeyIdGuard to the new location at `destination`. If the destination /// is already occupied by a key, this function fails with `ResponseCode::INVALID_ARGUMENT`. pub fn migrate_key_namespace( &mut self, key_id_guard: KeyIdGuard, destination: &KeyDescriptor, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor) -> Result<()>, ) -> Result<()> { let _wp = wd::watch("KeystoreDB::migrate_key_namespace"); let destination = match destination.domain { Domain::APP => KeyDescriptor { nspace: caller_uid as i64, ..(*destination).clone() }, Domain::SELINUX => (*destination).clone(), domain => { return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)) .context(format!("Domain {:?} must be either APP or SELINUX.", domain)); } }; // Security critical: Must return immediately on failure. Do not remove the '?'; check_permission(&destination).context(ks_err!("Trying to check permission."))?; let alias = destination .alias .as_ref() .ok_or(KsError::Rc(ResponseCode::INVALID_ARGUMENT)) .context(ks_err!("Alias must be specified."))?; self.with_transaction(Immediate("TX_migrate_key_namespace"), |tx| { // Query the destination location. If there is a key, the migration request fails. if tx .query_row( "SELECT id FROM persistent.keyentry WHERE alias = ? AND domain = ? AND namespace = ?;", params![alias, destination.domain.0, destination.nspace], |_| Ok(()), ) .optional() .context("Failed to query destination.")? .is_some() { return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)) .context("Target already exists."); } let updated = tx .execute( "UPDATE persistent.keyentry SET alias = ?, domain = ?, namespace = ? WHERE id = ?;", params![alias, destination.domain.0, destination.nspace, key_id_guard.id()], ) .context("Failed to update key entry.")?; if updated != 1 { return Err(KsError::sys()) .context(format!("Update succeeded, but {} rows were updated.", updated)); } Ok(()).no_gc() }) .context(ks_err!()) } /// Store a new key in a single transaction. /// The function creates a new key entry, populates the blob, key parameter, and metadata /// fields, and rebinds the given alias to the new key. /// The boolean returned is a hint for the garbage collector. If true, a key was replaced, /// is now unreferenced and needs to be collected. #[allow(clippy::too_many_arguments)] pub fn store_new_key( &mut self, key: &KeyDescriptor, key_type: KeyType, params: &[KeyParameter], blob_info: &BlobInfo, cert_info: &CertificateInfo, metadata: &KeyMetaData, km_uuid: &Uuid, ) -> Result { let _wp = wd::watch("KeystoreDB::store_new_key"); let (alias, domain, namespace) = match key { KeyDescriptor { alias: Some(alias), domain: Domain::APP, nspace, blob: None } | KeyDescriptor { alias: Some(alias), domain: Domain::SELINUX, nspace, blob: None } => { (alias, key.domain, nspace) } _ => { return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)) .context(ks_err!("Need alias and domain must be APP or SELINUX.")); } }; self.with_transaction(Immediate("TX_store_new_key"), |tx| { let key_id = Self::create_key_entry_internal(tx, &domain, namespace, key_type, km_uuid) .context("Trying to create new key entry.")?; let BlobInfo { blob, metadata: blob_metadata, superseded_blob } = *blob_info; // In some occasions the key blob is already upgraded during the import. // In order to make sure it gets properly deleted it is inserted into the // database here and then immediately replaced by the superseding blob. // The garbage collector will then subject the blob to deleteKey of the // KM back end to permanently invalidate the key. let need_gc = if let Some((blob, blob_metadata)) = superseded_blob { Self::set_blob_internal( tx, key_id.id(), SubComponentType::KEY_BLOB, Some(blob), Some(blob_metadata), ) .context("Trying to insert superseded key blob.")?; true } else { false }; Self::set_blob_internal( tx, key_id.id(), SubComponentType::KEY_BLOB, Some(blob), Some(blob_metadata), ) .context("Trying to insert the key blob.")?; if let Some(cert) = &cert_info.cert { Self::set_blob_internal(tx, key_id.id(), SubComponentType::CERT, Some(cert), None) .context("Trying to insert the certificate.")?; } if let Some(cert_chain) = &cert_info.cert_chain { Self::set_blob_internal( tx, key_id.id(), SubComponentType::CERT_CHAIN, Some(cert_chain), None, ) .context("Trying to insert the certificate chain.")?; } Self::insert_keyparameter_internal(tx, &key_id, params) .context("Trying to insert key parameters.")?; metadata.store_in_db(key_id.id(), tx).context("Trying to insert key metadata.")?; let need_gc = Self::rebind_alias(tx, &key_id, alias, &domain, namespace, key_type) .context("Trying to rebind alias.")? || need_gc; Ok(key_id).do_gc(need_gc) }) .context(ks_err!()) } /// Store a new certificate /// The function creates a new key entry, populates the blob field and metadata, and rebinds /// the given alias to the new cert. pub fn store_new_certificate( &mut self, key: &KeyDescriptor, key_type: KeyType, cert: &[u8], km_uuid: &Uuid, ) -> Result { let _wp = wd::watch("KeystoreDB::store_new_certificate"); let (alias, domain, namespace) = match key { KeyDescriptor { alias: Some(alias), domain: Domain::APP, nspace, blob: None } | KeyDescriptor { alias: Some(alias), domain: Domain::SELINUX, nspace, blob: None } => { (alias, key.domain, nspace) } _ => { return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)) .context(ks_err!("Need alias and domain must be APP or SELINUX.")); } }; self.with_transaction(Immediate("TX_store_new_certificate"), |tx| { let key_id = Self::create_key_entry_internal(tx, &domain, namespace, key_type, km_uuid) .context("Trying to create new key entry.")?; Self::set_blob_internal( tx, key_id.id(), SubComponentType::CERT_CHAIN, Some(cert), None, ) .context("Trying to insert certificate.")?; let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate( DateTime::now().context("Trying to make creation time.")?, )); metadata.store_in_db(key_id.id(), tx).context("Trying to insert key metadata.")?; let need_gc = Self::rebind_alias(tx, &key_id, alias, &domain, namespace, key_type) .context("Trying to rebind alias.")?; Ok(key_id).do_gc(need_gc) }) .context(ks_err!()) } // Helper function loading the key_id given the key descriptor // tuple comprising domain, namespace, and alias. // Requires a valid transaction. fn load_key_entry_id(tx: &Transaction, key: &KeyDescriptor, key_type: KeyType) -> Result { let alias = key .alias .as_ref() .map_or_else(|| Err(KsError::sys()), Ok) .context("In load_key_entry_id: Alias must be specified.")?; let mut stmt = tx .prepare( "SELECT id FROM persistent.keyentry WHERE key_type = ? AND domain = ? AND namespace = ? AND alias = ? AND state = ?;", ) .context("In load_key_entry_id: Failed to select from keyentry table.")?; let mut rows = stmt .query(params![key_type, key.domain.0 as u32, key.nspace, alias, KeyLifeCycle::Live]) .context("In load_key_entry_id: Failed to read from keyentry table.")?; db_utils::with_rows_extract_one(&mut rows, |row| { row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)? .get(0) .context("Failed to unpack id.") }) .context(ks_err!()) } /// This helper function completes the access tuple of a key, which is required /// to perform access control. The strategy depends on the `domain` field in the /// key descriptor. /// * Domain::SELINUX: The access tuple is complete and this function only loads /// the key_id for further processing. /// * Domain::APP: Like Domain::SELINUX, but the tuple is completed by `caller_uid` /// which serves as the namespace. /// * Domain::GRANT: The grant table is queried for the `key_id` and the /// `access_vector`. /// * Domain::KEY_ID: The keyentry table is queried for the owning `domain` and /// `namespace`. /// In each case the information returned is sufficient to perform the access /// check and the key id can be used to load further key artifacts. fn load_access_tuple( tx: &Transaction, key: &KeyDescriptor, key_type: KeyType, caller_uid: u32, ) -> Result<(i64, KeyDescriptor, Option)> { match key.domain { // Domain App or SELinux. In this case we load the key_id from // the keyentry database for further loading of key components. // We already have the full access tuple to perform access control. // The only distinction is that we use the caller_uid instead // of the caller supplied namespace if the domain field is // Domain::APP. Domain::APP | Domain::SELINUX => { let mut access_key = key.clone(); if access_key.domain == Domain::APP { access_key.nspace = caller_uid as i64; } let key_id = Self::load_key_entry_id(tx, &access_key, key_type) .with_context(|| format!("With key.domain = {:?}.", access_key.domain))?; Ok((key_id, access_key, None)) } // Domain::GRANT. In this case we load the key_id and the access_vector // from the grant table. Domain::GRANT => { let mut stmt = tx .prepare( "SELECT keyentryid, access_vector FROM persistent.grant WHERE grantee = ? AND id = ? AND (SELECT state FROM persistent.keyentry WHERE id = keyentryid) = ?;", ) .context("Domain::GRANT prepare statement failed")?; let mut rows = stmt .query(params![caller_uid as i64, key.nspace, KeyLifeCycle::Live]) .context("Domain:Grant: query failed.")?; let (key_id, access_vector): (i64, i32) = db_utils::with_rows_extract_one(&mut rows, |row| { let r = row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?; Ok(( r.get(0).context("Failed to unpack key_id.")?, r.get(1).context("Failed to unpack access_vector.")?, )) }) .context("Domain::GRANT.")?; Ok((key_id, key.clone(), Some(access_vector.into()))) } // Domain::KEY_ID. In this case we load the domain and namespace from the // keyentry database because we need them for access control. Domain::KEY_ID => { let (domain, namespace): (Domain, i64) = { let mut stmt = tx .prepare( "SELECT domain, namespace FROM persistent.keyentry WHERE id = ? AND state = ?;", ) .context("Domain::KEY_ID: prepare statement failed")?; let mut rows = stmt .query(params![key.nspace, KeyLifeCycle::Live]) .context("Domain::KEY_ID: query failed.")?; db_utils::with_rows_extract_one(&mut rows, |row| { let r = row.map_or_else(|| Err(KsError::Rc(ResponseCode::KEY_NOT_FOUND)), Ok)?; Ok(( Domain(r.get(0).context("Failed to unpack domain.")?), r.get(1).context("Failed to unpack namespace.")?, )) }) .context("Domain::KEY_ID.")? }; // We may use a key by id after loading it by grant. // In this case we have to check if the caller has a grant for this particular // key. We can skip this if we already know that the caller is the owner. // But we cannot know this if domain is anything but App. E.g. in the case // of Domain::SELINUX we have to speculatively check for grants because we have to // consult the SEPolicy before we know if the caller is the owner. let access_vector: Option = if domain != Domain::APP || namespace != caller_uid as i64 { let access_vector: Option = tx .query_row( "SELECT access_vector FROM persistent.grant WHERE grantee = ? AND keyentryid = ?;", params![caller_uid as i64, key.nspace], |row| row.get(0), ) .optional() .context("Domain::KEY_ID: query grant failed.")?; access_vector.map(|p| p.into()) } else { None }; let key_id = key.nspace; let mut access_key: KeyDescriptor = key.clone(); access_key.domain = domain; access_key.nspace = namespace; Ok((key_id, access_key, access_vector)) } _ => Err(anyhow!(KsError::Rc(ResponseCode::INVALID_ARGUMENT))), } } fn load_blob_components( key_id: i64, load_bits: KeyEntryLoadBits, tx: &Transaction, ) -> Result<(bool, Option<(Vec, BlobMetaData)>, Option>, Option>)> { let mut stmt = tx .prepare( "SELECT MAX(id), subcomponent_type, blob FROM persistent.blobentry WHERE keyentryid = ? GROUP BY subcomponent_type;", ) .context(ks_err!("prepare statement failed."))?; let mut rows = stmt.query(params![key_id]).context(ks_err!("query failed."))?; let mut key_blob: Option<(i64, Vec)> = None; let mut cert_blob: Option> = None; let mut cert_chain_blob: Option> = None; let mut has_km_blob: bool = false; db_utils::with_rows_extract_all(&mut rows, |row| { let sub_type: SubComponentType = row.get(1).context("Failed to extract subcomponent_type.")?; has_km_blob = has_km_blob || sub_type == SubComponentType::KEY_BLOB; match (sub_type, load_bits.load_public(), load_bits.load_km()) { (SubComponentType::KEY_BLOB, _, true) => { key_blob = Some(( row.get(0).context("Failed to extract key blob id.")?, row.get(2).context("Failed to extract key blob.")?, )); } (SubComponentType::CERT, true, _) => { cert_blob = Some(row.get(2).context("Failed to extract public certificate blob.")?); } (SubComponentType::CERT_CHAIN, true, _) => { cert_chain_blob = Some(row.get(2).context("Failed to extract certificate chain blob.")?); } (SubComponentType::CERT, _, _) | (SubComponentType::CERT_CHAIN, _, _) | (SubComponentType::KEY_BLOB, _, _) => {} _ => Err(KsError::sys()).context("Unknown subcomponent type.")?, } Ok(()) }) .context(ks_err!())?; let blob_info = key_blob.map_or::, _>(Ok(None), |(blob_id, blob)| { Ok(Some(( blob, BlobMetaData::load_from_db(blob_id, tx) .context(ks_err!("Trying to load blob_metadata."))?, ))) })?; Ok((has_km_blob, blob_info, cert_blob, cert_chain_blob)) } fn load_key_parameters(key_id: i64, tx: &Transaction) -> Result> { let mut stmt = tx .prepare( "SELECT tag, data, security_level from persistent.keyparameter WHERE keyentryid = ?;", ) .context("In load_key_parameters: prepare statement failed.")?; let mut parameters: Vec = Vec::new(); let mut rows = stmt.query(params![key_id]).context("In load_key_parameters: query failed.")?; db_utils::with_rows_extract_all(&mut rows, |row| { let tag = Tag(row.get(0).context("Failed to read tag.")?); let sec_level = SecurityLevel(row.get(2).context("Failed to read sec_level.")?); parameters.push( KeyParameter::new_from_sql(tag, &SqlField::new(1, row), sec_level) .context("Failed to read KeyParameter.")?, ); Ok(()) }) .context(ks_err!())?; Ok(parameters) } /// Decrements the usage count of a limited use key. This function first checks whether the /// usage has been exhausted, if not, decreases the usage count. If the usage count reaches /// zero, the key also gets marked unreferenced and scheduled for deletion. /// Returns Ok(true) if the key was marked unreferenced as a hint to the garbage collector. pub fn check_and_update_key_usage_count(&mut self, key_id: i64) -> Result<()> { let _wp = wd::watch("KeystoreDB::check_and_update_key_usage_count"); self.with_transaction(Immediate("TX_check_and_update_key_usage_count"), |tx| { let limit: Option = tx .query_row( "SELECT data FROM persistent.keyparameter WHERE keyentryid = ? AND tag = ?;", params![key_id, Tag::USAGE_COUNT_LIMIT.0], |row| row.get(0), ) .optional() .context("Trying to load usage count")?; let limit = limit .ok_or(KsError::Km(ErrorCode::INVALID_KEY_BLOB)) .context("The Key no longer exists. Key is exhausted.")?; tx.execute( "UPDATE persistent.keyparameter SET data = data - 1 WHERE keyentryid = ? AND tag = ? AND data > 0;", params![key_id, Tag::USAGE_COUNT_LIMIT.0], ) .context("Failed to update key usage count.")?; match limit { 1 => Self::mark_unreferenced(tx, key_id) .map(|need_gc| (need_gc, ())) .context("Trying to mark limited use key for deletion."), 0 => Err(KsError::Km(ErrorCode::INVALID_KEY_BLOB)).context("Key is exhausted."), _ => Ok(()).no_gc(), } }) .context(ks_err!()) } /// Load a key entry by the given key descriptor. /// It uses the `check_permission` callback to verify if the access is allowed /// given the key access tuple read from the database using `load_access_tuple`. /// With `load_bits` the caller may specify which blobs shall be loaded from /// the blob database. pub fn load_key_entry( &mut self, key: &KeyDescriptor, key_type: KeyType, load_bits: KeyEntryLoadBits, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor, Option) -> Result<()>, ) -> Result<(KeyIdGuard, KeyEntry)> { let _wp = wd::watch("KeystoreDB::load_key_entry"); let start = std::time::Instant::now(); loop { match self.load_key_entry_internal( key, key_type, load_bits, caller_uid, &check_permission, ) { Ok(result) => break Ok(result), Err(e) => { if Self::is_locked_error(&e) { check_lock_timeout(&start, MAX_DB_BUSY_RETRY_PERIOD)?; std::thread::sleep(DB_BUSY_RETRY_INTERVAL); continue; } else { return Err(e).context(ks_err!()); } } } } } fn load_key_entry_internal( &mut self, key: &KeyDescriptor, key_type: KeyType, load_bits: KeyEntryLoadBits, caller_uid: u32, check_permission: &impl Fn(&KeyDescriptor, Option) -> Result<()>, ) -> Result<(KeyIdGuard, KeyEntry)> { // KEY ID LOCK 1/2 // If we got a key descriptor with a key id we can get the lock right away. // Otherwise we have to defer it until we know the key id. let key_id_guard = match key.domain { Domain::KEY_ID => Some(KEY_ID_LOCK.get(key.nspace)), _ => None, }; let tx = self .conn .unchecked_transaction() .context(ks_err!("Failed to initialize transaction."))?; // Load the key_id and complete the access control tuple. let (key_id, access_key_descriptor, access_vector) = Self::load_access_tuple(&tx, key, key_type, caller_uid).context(ks_err!())?; // Perform access control. It is vital that we return here if the permission is denied. // So do not touch that '?' at the end. check_permission(&access_key_descriptor, access_vector).context(ks_err!())?; // KEY ID LOCK 2/2 // If we did not get a key id lock by now, it was because we got a key descriptor // without a key id. At this point we got the key id, so we can try and get a lock. // However, we cannot block here, because we are in the middle of the transaction. // So first we try to get the lock non blocking. If that fails, we roll back the // transaction and block until we get the lock. After we successfully got the lock, // we start a new transaction and load the access tuple again. // // We don't need to perform access control again, because we already established // that the caller had access to the given key. But we need to make sure that the // key id still exists. So we have to load the key entry by key id this time. let (key_id_guard, tx) = match key_id_guard { None => match KEY_ID_LOCK.try_get(key_id) { None => { // Roll back the transaction. tx.rollback().context(ks_err!("Failed to roll back transaction."))?; // Block until we have a key id lock. let key_id_guard = KEY_ID_LOCK.get(key_id); // Create a new transaction. let tx = self .conn .unchecked_transaction() .context(ks_err!("Failed to initialize transaction."))?; Self::load_access_tuple( &tx, // This time we have to load the key by the retrieved key id, because the // alias may have been rebound after we rolled back the transaction. &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, ..Default::default() }, key_type, caller_uid, ) .context(ks_err!("(deferred key lock)"))?; (key_id_guard, tx) } Some(l) => (l, tx), }, Some(key_id_guard) => (key_id_guard, tx), }; let key_entry = Self::load_key_components(&tx, load_bits, key_id_guard.id()).context(ks_err!())?; tx.commit().context(ks_err!("Failed to commit transaction."))?; Ok((key_id_guard, key_entry)) } fn mark_unreferenced(tx: &Transaction, key_id: i64) -> Result { let updated = tx .execute("DELETE FROM persistent.keyentry WHERE id = ?;", params![key_id]) .context("Trying to delete keyentry.")?; tx.execute("DELETE FROM persistent.keymetadata WHERE keyentryid = ?;", params![key_id]) .context("Trying to delete keymetadata.")?; tx.execute("DELETE FROM persistent.keyparameter WHERE keyentryid = ?;", params![key_id]) .context("Trying to delete keyparameters.")?; tx.execute("DELETE FROM persistent.grant WHERE keyentryid = ?;", params![key_id]) .context("Trying to delete grants.")?; Ok(updated != 0) } /// Marks the given key as unreferenced and removes all of the grants to this key. /// Returns Ok(true) if a key was marked unreferenced as a hint for the garbage collector. pub fn unbind_key( &mut self, key: &KeyDescriptor, key_type: KeyType, caller_uid: u32, check_permission: impl Fn(&KeyDescriptor, Option) -> Result<()>, ) -> Result<()> { let _wp = wd::watch("KeystoreDB::unbind_key"); self.with_transaction(Immediate("TX_unbind_key"), |tx| { let (key_id, access_key_descriptor, access_vector) = Self::load_access_tuple(tx, key, key_type, caller_uid) .context("Trying to get access tuple.")?; // Perform access control. It is vital that we return here if the permission is denied. // So do not touch that '?' at the end. check_permission(&access_key_descriptor, access_vector) .context("While checking permission.")?; Self::mark_unreferenced(tx, key_id) .map(|need_gc| (need_gc, ())) .context("Trying to mark the key unreferenced.") }) .context(ks_err!()) } fn get_key_km_uuid(tx: &Transaction, key_id: i64) -> Result { tx.query_row( "SELECT km_uuid FROM persistent.keyentry WHERE id = ?", params![key_id], |row| row.get(0), ) .context(ks_err!()) } /// Delete all artifacts belonging to the namespace given by the domain-namespace tuple. /// This leaves all of the blob entries orphaned for subsequent garbage collection. pub fn unbind_keys_for_namespace(&mut self, domain: Domain, namespace: i64) -> Result<()> { let _wp = wd::watch("KeystoreDB::unbind_keys_for_namespace"); if !(domain == Domain::APP || domain == Domain::SELINUX) { return Err(KsError::Rc(ResponseCode::INVALID_ARGUMENT)).context(ks_err!()); } self.with_transaction(Immediate("TX_unbind_keys_for_namespace"), |tx| { tx.execute( "DELETE FROM persistent.keymetadata WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND key_type = ? );", params![domain.0, namespace, KeyType::Client], ) .context("Trying to delete keymetadata.")?; tx.execute( "DELETE FROM persistent.keyparameter WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND key_type = ? );", params![domain.0, namespace, KeyType::Client], ) .context("Trying to delete keyparameters.")?; tx.execute( "DELETE FROM persistent.grant WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND key_type = ? );", params![domain.0, namespace, KeyType::Client], ) .context("Trying to delete grants.")?; tx.execute( "DELETE FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND key_type = ?;", params![domain.0, namespace, KeyType::Client], ) .context("Trying to delete keyentry.")?; Ok(()).need_gc() }) .context(ks_err!()) } fn cleanup_unreferenced(tx: &Transaction) -> Result<()> { let _wp = wd::watch("KeystoreDB::cleanup_unreferenced"); { tx.execute( "DELETE FROM persistent.keymetadata WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE state = ? );", params![KeyLifeCycle::Unreferenced], ) .context("Trying to delete keymetadata.")?; tx.execute( "DELETE FROM persistent.keyparameter WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE state = ? );", params![KeyLifeCycle::Unreferenced], ) .context("Trying to delete keyparameters.")?; tx.execute( "DELETE FROM persistent.grant WHERE keyentryid IN ( SELECT id FROM persistent.keyentry WHERE state = ? );", params![KeyLifeCycle::Unreferenced], ) .context("Trying to delete grants.")?; tx.execute( "DELETE FROM persistent.keyentry WHERE state = ?;", params![KeyLifeCycle::Unreferenced], ) .context("Trying to delete keyentry.")?; Result::<()>::Ok(()) } .context(ks_err!()) } /// Delete the keys created on behalf of the user, denoted by the user id. /// Delete all the keys unless 'keep_non_super_encrypted_keys' set to true. /// Returned boolean is to hint the garbage collector to delete the unbound keys. /// The caller of this function should notify the gc if the returned value is true. pub fn unbind_keys_for_user( &mut self, user_id: u32, keep_non_super_encrypted_keys: bool, ) -> Result<()> { let _wp = wd::watch("KeystoreDB::unbind_keys_for_user"); self.with_transaction(Immediate("TX_unbind_keys_for_user"), |tx| { let mut stmt = tx .prepare(&format!( "SELECT id from persistent.keyentry WHERE ( key_type = ? AND domain = ? AND cast ( (namespace/{aid_user_offset}) as int) = ? AND state = ? ) OR ( key_type = ? AND namespace = ? AND state = ? );", aid_user_offset = AID_USER_OFFSET )) .context(concat!( "In unbind_keys_for_user. ", "Failed to prepare the query to find the keys created by apps." ))?; let mut rows = stmt .query(params![ // WHERE client key: KeyType::Client, Domain::APP.0 as u32, user_id, KeyLifeCycle::Live, // OR super key: KeyType::Super, user_id, KeyLifeCycle::Live ]) .context(ks_err!("Failed to query the keys created by apps."))?; let mut key_ids: Vec = Vec::new(); db_utils::with_rows_extract_all(&mut rows, |row| { key_ids .push(row.get(0).context("Failed to read key id of a key created by an app.")?); Ok(()) }) .context(ks_err!())?; let mut notify_gc = false; for key_id in key_ids { if keep_non_super_encrypted_keys { // Load metadata and filter out non-super-encrypted keys. if let (_, Some((_, blob_metadata)), _, _) = Self::load_blob_components(key_id, KeyEntryLoadBits::KM, tx) .context(ks_err!("Trying to load blob info."))? { if blob_metadata.encrypted_by().is_none() { continue; } } } notify_gc = Self::mark_unreferenced(tx, key_id) .context("In unbind_keys_for_user.")? || notify_gc; } Ok(()).do_gc(notify_gc) }) .context(ks_err!()) } /// Deletes all auth-bound keys, i.e. keys that require user authentication, for the given user. /// This runs when the user's lock screen is being changed to Swipe or None. /// /// This intentionally does *not* delete keys that require that the device be unlocked, unless /// such keys also require user authentication. Keystore's concept of user authentication is /// fairly strong, and it requires that keys that require authentication be deleted as soon as /// authentication is no longer possible. In contrast, keys that just require that the device /// be unlocked should remain usable when the lock screen is set to Swipe or None, as the device /// is always considered "unlocked" in that case. pub fn unbind_auth_bound_keys_for_user(&mut self, user_id: u32) -> Result<()> { let _wp = wd::watch("KeystoreDB::unbind_auth_bound_keys_for_user"); self.with_transaction(Immediate("TX_unbind_auth_bound_keys_for_user"), |tx| { let mut stmt = tx .prepare(&format!( "SELECT id from persistent.keyentry WHERE key_type = ? AND domain = ? AND cast ( (namespace/{aid_user_offset}) as int) = ? AND state = ?;", aid_user_offset = AID_USER_OFFSET )) .context(concat!( "In unbind_auth_bound_keys_for_user. ", "Failed to prepare the query to find the keys created by apps." ))?; let mut rows = stmt .query(params![KeyType::Client, Domain::APP.0 as u32, user_id, KeyLifeCycle::Live,]) .context(ks_err!("Failed to query the keys created by apps."))?; let mut key_ids: Vec = Vec::new(); db_utils::with_rows_extract_all(&mut rows, |row| { key_ids .push(row.get(0).context("Failed to read key id of a key created by an app.")?); Ok(()) }) .context(ks_err!())?; let mut notify_gc = false; let mut num_unbound = 0; for key_id in key_ids { // Load the key parameters and filter out non-auth-bound keys. To identify // auth-bound keys, use the presence of UserSecureID. The absence of NoAuthRequired // could also be used, but UserSecureID is what Keystore treats as authoritative // when actually enforcing the key parameters (it might not matter, though). let params = Self::load_key_parameters(key_id, tx) .context("Failed to load key parameters.")?; let is_auth_bound_key = params.iter().any(|kp| { matches!(kp.key_parameter_value(), KeyParameterValue::UserSecureID(_)) }); if is_auth_bound_key { notify_gc = Self::mark_unreferenced(tx, key_id) .context("In unbind_auth_bound_keys_for_user.")? || notify_gc; num_unbound += 1; } } log::info!("Deleting {num_unbound} auth-bound keys for user {user_id}"); Ok(()).do_gc(notify_gc) }) .context(ks_err!()) } fn load_key_components( tx: &Transaction, load_bits: KeyEntryLoadBits, key_id: i64, ) -> Result { let metadata = KeyMetaData::load_from_db(key_id, tx).context("In load_key_components.")?; let (has_km_blob, key_blob_info, cert_blob, cert_chain_blob) = Self::load_blob_components(key_id, load_bits, tx).context("In load_key_components.")?; let parameters = Self::load_key_parameters(key_id, tx) .context("In load_key_components: Trying to load key parameters.")?; let km_uuid = Self::get_key_km_uuid(tx, key_id) .context("In load_key_components: Trying to get KM uuid.")?; Ok(KeyEntry { id: key_id, key_blob_info, cert: cert_blob, cert_chain: cert_chain_blob, km_uuid, parameters, metadata, pure_cert: !has_km_blob, }) } /// Returns a list of KeyDescriptors in the selected domain/namespace whose /// aliases are greater than the specified 'start_past_alias'. If no value /// is provided, returns all KeyDescriptors. /// The key descriptors will have the domain, nspace, and alias field set. /// The returned list will be sorted by alias. /// Domain must be APP or SELINUX, the caller must make sure of that. pub fn list_past_alias( &mut self, domain: Domain, namespace: i64, key_type: KeyType, start_past_alias: Option<&str>, ) -> Result> { let _wp = wd::watch("KeystoreDB::list_past_alias"); let query = format!( "SELECT DISTINCT alias FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND alias IS NOT NULL AND state = ? AND key_type = ? {} ORDER BY alias ASC;", if start_past_alias.is_some() { " AND alias > ?" } else { "" } ); self.with_transaction(TransactionBehavior::Deferred, |tx| { let mut stmt = tx.prepare(&query).context(ks_err!("Failed to prepare."))?; let mut rows = match start_past_alias { Some(past_alias) => stmt .query(params![ domain.0 as u32, namespace, KeyLifeCycle::Live, key_type, past_alias ]) .context(ks_err!("Failed to query."))?, None => stmt .query(params![domain.0 as u32, namespace, KeyLifeCycle::Live, key_type,]) .context(ks_err!("Failed to query."))?, }; let mut descriptors: Vec = Vec::new(); db_utils::with_rows_extract_all(&mut rows, |row| { descriptors.push(KeyDescriptor { domain, nspace: namespace, alias: Some(row.get(0).context("Trying to extract alias.")?), blob: None, }); Ok(()) }) .context(ks_err!("Failed to extract rows."))?; Ok(descriptors).no_gc() }) } /// Returns a number of KeyDescriptors in the selected domain/namespace. /// Domain must be APP or SELINUX, the caller must make sure of that. pub fn count_keys( &mut self, domain: Domain, namespace: i64, key_type: KeyType, ) -> Result { let _wp = wd::watch("KeystoreDB::countKeys"); let num_keys = self.with_transaction(TransactionBehavior::Deferred, |tx| { tx.query_row( "SELECT COUNT(alias) FROM persistent.keyentry WHERE domain = ? AND namespace = ? AND alias IS NOT NULL AND state = ? AND key_type = ?;", params![domain.0 as u32, namespace, KeyLifeCycle::Live, key_type], |row| row.get(0), ) .context(ks_err!("Failed to count number of keys.")) .no_gc() })?; Ok(num_keys) } /// Adds a grant to the grant table. /// Like `load_key_entry` this function loads the access tuple before /// it uses the callback for a permission check. Upon success, /// it inserts the `grantee_uid`, `key_id`, and `access_vector` into the /// grant table. The new row will have a randomized id, which is used as /// grant id in the namespace field of the resulting KeyDescriptor. pub fn grant( &mut self, key: &KeyDescriptor, caller_uid: u32, grantee_uid: u32, access_vector: KeyPermSet, check_permission: impl Fn(&KeyDescriptor, &KeyPermSet) -> Result<()>, ) -> Result { let _wp = wd::watch("KeystoreDB::grant"); self.with_transaction(Immediate("TX_grant"), |tx| { // Load the key_id and complete the access control tuple. // We ignore the access vector here because grants cannot be granted. // The access vector returned here expresses the permissions the // grantee has if key.domain == Domain::GRANT. But this vector // cannot include the grant permission by design, so there is no way the // subsequent permission check can pass. // We could check key.domain == Domain::GRANT and fail early. // But even if we load the access tuple by grant here, the permission // check denies the attempt to create a grant by grant descriptor. let (key_id, access_key_descriptor, _) = Self::load_access_tuple(tx, key, KeyType::Client, caller_uid).context(ks_err!())?; // Perform access control. It is vital that we return here if the permission // was denied. So do not touch that '?' at the end of the line. // This permission check checks if the caller has the grant permission // for the given key and in addition to all of the permissions // expressed in `access_vector`. check_permission(&access_key_descriptor, &access_vector) .context(ks_err!("check_permission failed"))?; let grant_id = if let Some(grant_id) = tx .query_row( "SELECT id FROM persistent.grant WHERE keyentryid = ? AND grantee = ?;", params![key_id, grantee_uid], |row| row.get(0), ) .optional() .context(ks_err!("Failed get optional existing grant id."))? { tx.execute( "UPDATE persistent.grant SET access_vector = ? WHERE id = ?;", params![i32::from(access_vector), grant_id], ) .context(ks_err!("Failed to update existing grant."))?; grant_id } else { Self::insert_with_retry(|id| { tx.execute( "INSERT INTO persistent.grant (id, grantee, keyentryid, access_vector) VALUES (?, ?, ?, ?);", params![id, grantee_uid, key_id, i32::from(access_vector)], ) }) .context(ks_err!())? }; Ok(KeyDescriptor { domain: Domain::GRANT, nspace: grant_id, alias: None, blob: None }) .no_gc() }) } /// This function checks permissions like `grant` and `load_key_entry` /// before removing a grant from the grant table. pub fn ungrant( &mut self, key: &KeyDescriptor, caller_uid: u32, grantee_uid: u32, check_permission: impl Fn(&KeyDescriptor) -> Result<()>, ) -> Result<()> { let _wp = wd::watch("KeystoreDB::ungrant"); self.with_transaction(Immediate("TX_ungrant"), |tx| { // Load the key_id and complete the access control tuple. // We ignore the access vector here because grants cannot be granted. let (key_id, access_key_descriptor, _) = Self::load_access_tuple(tx, key, KeyType::Client, caller_uid).context(ks_err!())?; // Perform access control. We must return here if the permission // was denied. So do not touch the '?' at the end of this line. check_permission(&access_key_descriptor) .context(ks_err!("check_permission failed."))?; tx.execute( "DELETE FROM persistent.grant WHERE keyentryid = ? AND grantee = ?;", params![key_id, grantee_uid], ) .context("Failed to delete grant.")?; Ok(()).no_gc() }) } // Generates a random id and passes it to the given function, which will // try to insert it into a database. If that insertion fails, retry; // otherwise return the id. fn insert_with_retry(inserter: impl Fn(i64) -> rusqlite::Result) -> Result { loop { let newid: i64 = match random() { Self::UNASSIGNED_KEY_ID => continue, // UNASSIGNED_KEY_ID cannot be assigned. i => i, }; match inserter(newid) { // If the id already existed, try again. Err(rusqlite::Error::SqliteFailure( libsqlite3_sys::Error { code: libsqlite3_sys::ErrorCode::ConstraintViolation, extended_code: libsqlite3_sys::SQLITE_CONSTRAINT_UNIQUE, }, _, )) => (), Err(e) => { return Err(e).context(ks_err!("failed to insert into database.")); } _ => return Ok(newid), } } } /// Insert or replace the auth token based on (user_id, auth_id, auth_type) pub fn insert_auth_token(&mut self, auth_token: &HardwareAuthToken) { self.perboot .insert_auth_token_entry(AuthTokenEntry::new(auth_token.clone(), BootTime::now())) } /// Find the newest auth token matching the given predicate. pub fn find_auth_token_entry(&self, p: F) -> Option where F: Fn(&AuthTokenEntry) -> bool, { self.perboot.find_auth_token_entry(p) } /// Load descriptor of a key by key id pub fn load_key_descriptor(&mut self, key_id: i64) -> Result> { let _wp = wd::watch("KeystoreDB::load_key_descriptor"); self.with_transaction(TransactionBehavior::Deferred, |tx| { tx.query_row( "SELECT domain, namespace, alias FROM persistent.keyentry WHERE id = ?;", params![key_id], |row| { Ok(KeyDescriptor { domain: Domain(row.get(0)?), nspace: row.get(1)?, alias: row.get(2)?, blob: None, }) }, ) .optional() .context("Trying to load key descriptor") .no_gc() }) .context(ks_err!()) } /// Returns a list of app UIDs that have keys authenticated by the given secure_user_id /// (for the given user_id). /// This is helpful for finding out which apps will have their keys invalidated when /// the user changes biometrics enrollment or removes their LSKF. pub fn get_app_uids_affected_by_sid( &mut self, user_id: i32, secure_user_id: i64, ) -> Result> { let _wp = wd::watch("KeystoreDB::get_app_uids_affected_by_sid"); let ids = self.with_transaction(Immediate("TX_get_app_uids_affected_by_sid"), |tx| { let mut stmt = tx .prepare(&format!( "SELECT id, namespace from persistent.keyentry WHERE key_type = ? AND domain = ? AND cast ( (namespace/{AID_USER_OFFSET}) as int) = ? AND state = ?;", )) .context(concat!( "In get_app_uids_affected_by_sid, ", "failed to prepare the query to find the keys created by apps." ))?; let mut rows = stmt .query(params![KeyType::Client, Domain::APP.0 as u32, user_id, KeyLifeCycle::Live,]) .context(ks_err!("Failed to query the keys created by apps."))?; let mut key_ids_and_app_uids: HashMap = Default::default(); db_utils::with_rows_extract_all(&mut rows, |row| { key_ids_and_app_uids.insert( row.get(0).context("Failed to read key id of a key created by an app.")?, row.get(1).context("Failed to read the app uid")?, ); Ok(()) })?; Ok(key_ids_and_app_uids).no_gc() })?; let mut app_uids_affected_by_sid: HashSet = Default::default(); for (key_id, app_uid) in ids { // Read the key parameters for each key in its own transaction. It is OK to ignore // an error to get the properties of a particular key since it might have been deleted // under our feet after the previous transaction concluded. If the key was deleted // then it is no longer applicable if it was auth-bound or not. if let Ok(is_key_bound_to_sid) = self.with_transaction(Immediate("TX_get_app_uids_affects_by_sid 2"), |tx| { let params = Self::load_key_parameters(key_id, tx) .context("Failed to load key parameters.")?; // Check if the key is bound to this secure user ID. let is_key_bound_to_sid = params.iter().any(|kp| { matches!( kp.key_parameter_value(), KeyParameterValue::UserSecureID(sid) if *sid == secure_user_id ) }); Ok(is_key_bound_to_sid).no_gc() }) { if is_key_bound_to_sid { app_uids_affected_by_sid.insert(app_uid); } } } let app_uids_vec: Vec = app_uids_affected_by_sid.into_iter().collect(); Ok(app_uids_vec) } } #[cfg(test)] pub mod tests { use super::*; use crate::key_parameter::{ Algorithm, BlockMode, Digest, EcCurve, HardwareAuthenticatorType, KeyOrigin, KeyParameter, KeyParameterValue, KeyPurpose, PaddingMode, SecurityLevel, }; use crate::key_perm_set; use crate::permission::{KeyPerm, KeyPermSet}; use crate::super_key::{SuperKeyManager, USER_AFTER_FIRST_UNLOCK_SUPER_KEY, SuperEncryptionAlgorithm, SuperKeyType}; use keystore2_test_utils::TempDir; use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{ HardwareAuthToken::HardwareAuthToken, HardwareAuthenticatorType::HardwareAuthenticatorType as kmhw_authenticator_type, }; use android_hardware_security_secureclock::aidl::android::hardware::security::secureclock::{ Timestamp::Timestamp, }; use std::cell::RefCell; use std::collections::BTreeMap; use std::fmt::Write; use std::sync::atomic::{AtomicU8, Ordering}; use std::sync::Arc; use std::thread; use std::time::{Duration, SystemTime}; use crate::utils::AesGcm; #[cfg(disabled)] use std::time::Instant; pub fn new_test_db() -> Result { let conn = KeystoreDB::make_connection("file::memory:")?; let mut db = KeystoreDB { conn, gc: None, perboot: Arc::new(perboot::PerbootDB::new()) }; db.with_transaction(Immediate("TX_new_test_db"), |tx| { KeystoreDB::init_tables(tx).context("Failed to initialize tables.").no_gc() })?; Ok(db) } fn rebind_alias( db: &mut KeystoreDB, newid: &KeyIdGuard, alias: &str, domain: Domain, namespace: i64, ) -> Result { db.with_transaction(Immediate("TX_rebind_alias"), |tx| { KeystoreDB::rebind_alias(tx, newid, alias, &domain, &namespace, KeyType::Client).no_gc() }) .context(ks_err!()) } #[test] fn datetime() -> Result<()> { let conn = Connection::open_in_memory()?; conn.execute("CREATE TABLE test (ts DATETIME);", [])?; let now = SystemTime::now(); let duration = Duration::from_secs(1000); let then = now.checked_sub(duration).unwrap(); let soon = now.checked_add(duration).unwrap(); conn.execute( "INSERT INTO test (ts) VALUES (?), (?), (?);", params![DateTime::try_from(now)?, DateTime::try_from(then)?, DateTime::try_from(soon)?], )?; let mut stmt = conn.prepare("SELECT ts FROM test ORDER BY ts ASC;")?; let mut rows = stmt.query([])?; assert_eq!(DateTime::try_from(then)?, rows.next()?.unwrap().get(0)?); assert_eq!(DateTime::try_from(now)?, rows.next()?.unwrap().get(0)?); assert_eq!(DateTime::try_from(soon)?, rows.next()?.unwrap().get(0)?); assert!(rows.next()?.is_none()); assert!(DateTime::try_from(then)? < DateTime::try_from(now)?); assert!(DateTime::try_from(then)? < DateTime::try_from(soon)?); assert!(DateTime::try_from(now)? < DateTime::try_from(soon)?); Ok(()) } // Ensure that we're using the "injected" random function, not the real one. #[test] fn test_mocked_random() { let rand1 = random(); let rand2 = random(); let rand3 = random(); if rand1 == rand2 { assert_eq!(rand2 + 1, rand3); } else { assert_eq!(rand1 + 1, rand2); assert_eq!(rand2, rand3); } } // Test that we have the correct tables. #[test] fn test_tables() -> Result<()> { let db = new_test_db()?; let tables = db .conn .prepare("SELECT name from persistent.sqlite_master WHERE type='table' ORDER BY name;")? .query_map(params![], |row| row.get(0))? .collect::>>()?; assert_eq!(tables.len(), 6); assert_eq!(tables[0], "blobentry"); assert_eq!(tables[1], "blobmetadata"); assert_eq!(tables[2], "grant"); assert_eq!(tables[3], "keyentry"); assert_eq!(tables[4], "keymetadata"); assert_eq!(tables[5], "keyparameter"); Ok(()) } #[test] fn test_auth_token_table_invariant() -> Result<()> { let mut db = new_test_db()?; let auth_token1 = HardwareAuthToken { challenge: i64::MAX, userId: 200, authenticatorId: 200, authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0), timestamp: Timestamp { milliSeconds: 500 }, mac: String::from("mac").into_bytes(), }; db.insert_auth_token(&auth_token1); let auth_tokens_returned = get_auth_tokens(&db); assert_eq!(auth_tokens_returned.len(), 1); // insert another auth token with the same values for the columns in the UNIQUE constraint // of the auth token table and different value for timestamp let auth_token2 = HardwareAuthToken { challenge: i64::MAX, userId: 200, authenticatorId: 200, authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0), timestamp: Timestamp { milliSeconds: 600 }, mac: String::from("mac").into_bytes(), }; db.insert_auth_token(&auth_token2); let mut auth_tokens_returned = get_auth_tokens(&db); assert_eq!(auth_tokens_returned.len(), 1); if let Some(auth_token) = auth_tokens_returned.pop() { assert_eq!(auth_token.auth_token.timestamp.milliSeconds, 600); } // insert another auth token with the different values for the columns in the UNIQUE // constraint of the auth token table let auth_token3 = HardwareAuthToken { challenge: i64::MAX, userId: 201, authenticatorId: 200, authenticatorType: kmhw_authenticator_type(kmhw_authenticator_type::PASSWORD.0), timestamp: Timestamp { milliSeconds: 600 }, mac: String::from("mac").into_bytes(), }; db.insert_auth_token(&auth_token3); let auth_tokens_returned = get_auth_tokens(&db); assert_eq!(auth_tokens_returned.len(), 2); Ok(()) } // utility function for test_auth_token_table_invariant() fn get_auth_tokens(db: &KeystoreDB) -> Vec { db.perboot.get_all_auth_token_entries() } fn create_key_entry( db: &mut KeystoreDB, domain: &Domain, namespace: &i64, key_type: KeyType, km_uuid: &Uuid, ) -> Result { db.with_transaction(Immediate("TX_create_key_entry"), |tx| { KeystoreDB::create_key_entry_internal(tx, domain, namespace, key_type, km_uuid).no_gc() }) } #[test] fn test_persistence_for_files() -> Result<()> { let temp_dir = TempDir::new("persistent_db_test")?; let mut db = KeystoreDB::new(temp_dir.path(), None)?; create_key_entry(&mut db, &Domain::APP, &100, KeyType::Client, &KEYSTORE_UUID)?; let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 1); let db = KeystoreDB::new(temp_dir.path(), None)?; let entries_new = get_keyentry(&db)?; assert_eq!(entries, entries_new); Ok(()) } #[test] fn test_create_key_entry() -> Result<()> { fn extractor(ke: &KeyEntryRow) -> (Domain, i64, Option<&str>, Uuid) { (ke.domain.unwrap(), ke.namespace.unwrap(), ke.alias.as_deref(), ke.km_uuid.unwrap()) } let mut db = new_test_db()?; create_key_entry(&mut db, &Domain::APP, &100, KeyType::Client, &KEYSTORE_UUID)?; create_key_entry(&mut db, &Domain::SELINUX, &101, KeyType::Client, &KEYSTORE_UUID)?; let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 2); assert_eq!(extractor(&entries[0]), (Domain::APP, 100, None, KEYSTORE_UUID)); assert_eq!(extractor(&entries[1]), (Domain::SELINUX, 101, None, KEYSTORE_UUID)); // Test that we must pass in a valid Domain. check_result_is_error_containing_string( create_key_entry(&mut db, &Domain::GRANT, &102, KeyType::Client, &KEYSTORE_UUID), &format!("Domain {:?} must be either App or SELinux.", Domain::GRANT), ); check_result_is_error_containing_string( create_key_entry(&mut db, &Domain::BLOB, &103, KeyType::Client, &KEYSTORE_UUID), &format!("Domain {:?} must be either App or SELinux.", Domain::BLOB), ); check_result_is_error_containing_string( create_key_entry(&mut db, &Domain::KEY_ID, &104, KeyType::Client, &KEYSTORE_UUID), &format!("Domain {:?} must be either App or SELinux.", Domain::KEY_ID), ); Ok(()) } #[test] fn test_rebind_alias() -> Result<()> { fn extractor( ke: &KeyEntryRow, ) -> (Option, Option, Option<&str>, Option) { (ke.domain, ke.namespace, ke.alias.as_deref(), ke.km_uuid) } let mut db = new_test_db()?; create_key_entry(&mut db, &Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?; create_key_entry(&mut db, &Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?; let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 2); assert_eq!( extractor(&entries[0]), (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID)) ); assert_eq!( extractor(&entries[1]), (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID)) ); // Test that the first call to rebind_alias sets the alias. rebind_alias(&mut db, &KEY_ID_LOCK.get(entries[0].id), "foo", Domain::APP, 42)?; let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 2); assert_eq!( extractor(&entries[0]), (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID)) ); assert_eq!( extractor(&entries[1]), (Some(Domain::APP), Some(42), None, Some(KEYSTORE_UUID)) ); // Test that the second call to rebind_alias also empties the old one. rebind_alias(&mut db, &KEY_ID_LOCK.get(entries[1].id), "foo", Domain::APP, 42)?; let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 2); assert_eq!(extractor(&entries[0]), (None, None, None, Some(KEYSTORE_UUID))); assert_eq!( extractor(&entries[1]), (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID)) ); // Test that we must pass in a valid Domain. check_result_is_error_containing_string( rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::GRANT, 42), &format!("Domain {:?} must be either App or SELinux.", Domain::GRANT), ); check_result_is_error_containing_string( rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::BLOB, 42), &format!("Domain {:?} must be either App or SELinux.", Domain::BLOB), ); check_result_is_error_containing_string( rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::KEY_ID, 42), &format!("Domain {:?} must be either App or SELinux.", Domain::KEY_ID), ); // Test that we correctly handle setting an alias for something that does not exist. check_result_is_error_containing_string( rebind_alias(&mut db, &KEY_ID_LOCK.get(0), "foo", Domain::SELINUX, 42), "Expected to update a single entry but instead updated 0", ); // Test that we correctly abort the transaction in this case. let entries = get_keyentry(&db)?; assert_eq!(entries.len(), 2); assert_eq!(extractor(&entries[0]), (None, None, None, Some(KEYSTORE_UUID))); assert_eq!( extractor(&entries[1]), (Some(Domain::APP), Some(42), Some("foo"), Some(KEYSTORE_UUID)) ); Ok(()) } #[test] fn test_grant_ungrant() -> Result<()> { const CALLER_UID: u32 = 15; const GRANTEE_UID: u32 = 12; const SELINUX_NAMESPACE: i64 = 7; let mut db = new_test_db()?; db.conn.execute( "INSERT INTO persistent.keyentry (id, key_type, domain, namespace, alias, state, km_uuid) VALUES (1, 0, 0, 15, 'key', 1, ?), (2, 0, 2, 7, 'yek', 1, ?);", params![KEYSTORE_UUID, KEYSTORE_UUID], )?; let app_key = KeyDescriptor { domain: super::Domain::APP, nspace: 0, alias: Some("key".to_string()), blob: None, }; const PVEC1: KeyPermSet = key_perm_set![KeyPerm::Use, KeyPerm::GetInfo]; const PVEC2: KeyPermSet = key_perm_set![KeyPerm::Use]; // Reset totally predictable random number generator in case we // are not the first test running on this thread. reset_random(); let next_random = 0i64; let app_granted_key = db .grant(&app_key, CALLER_UID, GRANTEE_UID, PVEC1, |k, a| { assert_eq!(*a, PVEC1); assert_eq!( *k, KeyDescriptor { domain: super::Domain::APP, // namespace must be set to the caller_uid. nspace: CALLER_UID as i64, alias: Some("key".to_string()), blob: None, } ); Ok(()) }) .unwrap(); assert_eq!( app_granted_key, KeyDescriptor { domain: super::Domain::GRANT, // The grantid is next_random due to the mock random number generator. nspace: next_random, alias: None, blob: None, } ); let selinux_key = KeyDescriptor { domain: super::Domain::SELINUX, nspace: SELINUX_NAMESPACE, alias: Some("yek".to_string()), blob: None, }; let selinux_granted_key = db .grant(&selinux_key, CALLER_UID, 12, PVEC1, |k, a| { assert_eq!(*a, PVEC1); assert_eq!( *k, KeyDescriptor { domain: super::Domain::SELINUX, // namespace must be the supplied SELinux // namespace. nspace: SELINUX_NAMESPACE, alias: Some("yek".to_string()), blob: None, } ); Ok(()) }) .unwrap(); assert_eq!( selinux_granted_key, KeyDescriptor { domain: super::Domain::GRANT, // The grantid is next_random + 1 due to the mock random number generator. nspace: next_random + 1, alias: None, blob: None, } ); // This should update the existing grant with PVEC2. let selinux_granted_key = db .grant(&selinux_key, CALLER_UID, 12, PVEC2, |k, a| { assert_eq!(*a, PVEC2); assert_eq!( *k, KeyDescriptor { domain: super::Domain::SELINUX, // namespace must be the supplied SELinux // namespace. nspace: SELINUX_NAMESPACE, alias: Some("yek".to_string()), blob: None, } ); Ok(()) }) .unwrap(); assert_eq!( selinux_granted_key, KeyDescriptor { domain: super::Domain::GRANT, // Same grant id as before. The entry was only updated. nspace: next_random + 1, alias: None, blob: None, } ); { // Limiting scope of stmt, because it borrows db. let mut stmt = db .conn .prepare("SELECT id, grantee, keyentryid, access_vector FROM persistent.grant;")?; let mut rows = stmt.query_map::<(i64, u32, i64, KeyPermSet), _, _>([], |row| { Ok((row.get(0)?, row.get(1)?, row.get(2)?, KeyPermSet::from(row.get::<_, i32>(3)?))) })?; let r = rows.next().unwrap().unwrap(); assert_eq!(r, (next_random, GRANTEE_UID, 1, PVEC1)); let r = rows.next().unwrap().unwrap(); assert_eq!(r, (next_random + 1, GRANTEE_UID, 2, PVEC2)); assert!(rows.next().is_none()); } debug_dump_keyentry_table(&mut db)?; println!("app_key {:?}", app_key); println!("selinux_key {:?}", selinux_key); db.ungrant(&app_key, CALLER_UID, GRANTEE_UID, |_| Ok(()))?; db.ungrant(&selinux_key, CALLER_UID, GRANTEE_UID, |_| Ok(()))?; Ok(()) } static TEST_KEY_BLOB: &[u8] = b"my test blob"; static TEST_CERT_BLOB: &[u8] = b"my test cert"; static TEST_CERT_CHAIN_BLOB: &[u8] = b"my test cert_chain"; #[test] fn test_set_blob() -> Result<()> { let key_id = KEY_ID_LOCK.get(3000); let mut db = new_test_db()?; let mut blob_metadata = BlobMetaData::new(); blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); db.set_blob( &key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), Some(&blob_metadata), )?; db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?; db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?; drop(key_id); let mut stmt = db.conn.prepare( "SELECT subcomponent_type, keyentryid, blob, id FROM persistent.blobentry ORDER BY subcomponent_type ASC;", )?; let mut rows = stmt .query_map::<((SubComponentType, i64, Vec), i64), _, _>([], |row| { Ok(((row.get(0)?, row.get(1)?, row.get(2)?), row.get(3)?)) })?; let (r, id) = rows.next().unwrap().unwrap(); assert_eq!(r, (SubComponentType::KEY_BLOB, 3000, TEST_KEY_BLOB.to_vec())); let (r, _) = rows.next().unwrap().unwrap(); assert_eq!(r, (SubComponentType::CERT, 3000, TEST_CERT_BLOB.to_vec())); let (r, _) = rows.next().unwrap().unwrap(); assert_eq!(r, (SubComponentType::CERT_CHAIN, 3000, TEST_CERT_CHAIN_BLOB.to_vec())); drop(rows); drop(stmt); assert_eq!( db.with_transaction(Immediate("TX_test"), |tx| { BlobMetaData::load_from_db(id, tx).no_gc() }) .expect("Should find blob metadata."), blob_metadata ); Ok(()) } static TEST_ALIAS: &str = "my super duper key"; #[test] fn test_insert_and_load_full_keyentry_domain_app() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_domain_app")? .0; let (_key_guard, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, 1, |_k, _av| Ok(()), ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); db.unbind_key( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, 1, |_, _| Ok(()), ) .unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::NONE, 1, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } #[test] fn test_insert_and_load_certificate_entry_domain_app() -> Result<()> { let mut db = new_test_db()?; db.store_new_certificate( &KeyDescriptor { domain: Domain::APP, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, TEST_CERT_BLOB, &KEYSTORE_UUID, ) .expect("Trying to insert cert."); let (_key_guard, mut key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::PUBLIC, 1, |_k, _av| Ok(()), ) .expect("Trying to read certificate entry."); assert!(key_entry.pure_cert()); assert!(key_entry.cert().is_none()); assert_eq!(key_entry.take_cert_chain(), Some(TEST_CERT_BLOB.to_vec())); db.unbind_key( &KeyDescriptor { domain: Domain::APP, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, 1, |_, _| Ok(()), ) .unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::NONE, 1, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } #[test] fn test_insert_and_load_full_keyentry_domain_selinux() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_domain_selinux")? .0; let (_key_guard, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::SELINUX, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, 1, |_k, _av| Ok(()), ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); db.unbind_key( &KeyDescriptor { domain: Domain::SELINUX, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, 1, |_, _| Ok(()), ) .unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &KeyDescriptor { domain: Domain::SELINUX, nspace: 1, alias: Some(TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::NONE, 1, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } #[test] fn test_insert_and_load_full_keyentry_domain_key_id() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_domain_key_id")? .0; let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None }, KeyType::Client, KeyEntryLoadBits::BOTH, 1, |_k, _av| Ok(()), ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); db.unbind_key( &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None }, KeyType::Client, 1, |_, _| Ok(()), ) .unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None }, KeyType::Client, KeyEntryLoadBits::NONE, 1, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } #[test] fn test_check_and_update_key_usage_count_with_limited_use_key() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, Some(123)) .context("test_check_and_update_key_usage_count_with_limited_use_key")? .0; // Update the usage count of the limited use key. db.check_and_update_key_usage_count(key_id)?; let (_key_guard, key_entry) = db.load_key_entry( &KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, alias: None, blob: None }, KeyType::Client, KeyEntryLoadBits::BOTH, 1, |_k, _av| Ok(()), )?; // The usage count is decremented now. assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, Some(122))); Ok(()) } #[test] fn test_check_and_update_key_usage_count_with_exhausted_limited_use_key() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::SELINUX, 1, TEST_ALIAS, Some(1)) .context("test_check_and_update_key_usage_count_with_exhausted_limited_use_key")? .0; // Update the usage count of the limited use key. db.check_and_update_key_usage_count(key_id).expect(concat!( "In test_check_and_update_key_usage_count_with_exhausted_limited_use_key: ", "This should succeed." )); // Try to update the exhausted limited use key. let e = db.check_and_update_key_usage_count(key_id).expect_err(concat!( "In test_check_and_update_key_usage_count_with_exhausted_limited_use_key: ", "This should fail." )); assert_eq!( &KsError::Km(ErrorCode::INVALID_KEY_BLOB), e.root_cause().downcast_ref::().unwrap() ); Ok(()) } #[test] fn test_insert_and_load_full_keyentry_from_grant() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant")? .0; let granted_key = db .grant( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, 1, 2, key_perm_set![KeyPerm::Use], |_k, _av| Ok(()), ) .unwrap(); debug_dump_grant_table(&mut db)?; let (_key_guard, key_entry) = db .load_key_entry(&granted_key, KeyType::Client, KeyEntryLoadBits::BOTH, 2, |k, av| { assert_eq!(Domain::GRANT, k.domain); assert!(av.unwrap().includes(KeyPerm::Use)); Ok(()) }) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); db.unbind_key(&granted_key, KeyType::Client, 2, |_, _| Ok(())).unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &granted_key, KeyType::Client, KeyEntryLoadBits::NONE, 2, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } // This test attempts to load a key by key id while the caller is not the owner // but a grant exists for the given key and the caller. #[test] fn test_insert_and_load_full_keyentry_from_grant_by_key_id() -> Result<()> { let mut db = new_test_db()?; const OWNER_UID: u32 = 1u32; const GRANTEE_UID: u32 = 2u32; const SOMEONE_ELSE_UID: u32 = 3u32; let key_id = make_test_key_entry(&mut db, Domain::APP, OWNER_UID as i64, TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")? .0; db.grant( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, OWNER_UID, GRANTEE_UID, key_perm_set![KeyPerm::Use], |_k, _av| Ok(()), ) .unwrap(); debug_dump_grant_table(&mut db)?; let id_descriptor = KeyDescriptor { domain: Domain::KEY_ID, nspace: key_id, ..Default::default() }; let (_, key_entry) = db .load_key_entry( &id_descriptor, KeyType::Client, KeyEntryLoadBits::BOTH, GRANTEE_UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(OWNER_UID as i64, k.nspace); assert!(av.unwrap().includes(KeyPerm::Use)); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); let (_, key_entry) = db .load_key_entry( &id_descriptor, KeyType::Client, KeyEntryLoadBits::BOTH, SOMEONE_ELSE_UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(OWNER_UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); db.unbind_key(&id_descriptor, KeyType::Client, OWNER_UID, |_, _| Ok(())).unwrap(); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &id_descriptor, KeyType::Client, KeyEntryLoadBits::NONE, GRANTEE_UID, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } // Creates a key migrates it to a different location and then tries to access it by the old // and new location. #[test] fn test_migrate_key_app_to_app() -> Result<()> { let mut db = new_test_db()?; const SOURCE_UID: u32 = 1u32; const DESTINATION_UID: u32 = 2u32; static SOURCE_ALIAS: &str = "SOURCE_ALIAS"; static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS"; let key_id_guard = make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?; let source_descriptor: KeyDescriptor = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(SOURCE_ALIAS.to_string()), blob: None, }; let destination_descriptor: KeyDescriptor = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(DESTINATION_ALIAS.to_string()), blob: None, }; let key_id = key_id_guard.id(); db.migrate_key_namespace(key_id_guard, &destination_descriptor, DESTINATION_UID, |_k| { Ok(()) }) .unwrap(); let (_, key_entry) = db .load_key_entry( &destination_descriptor, KeyType::Client, KeyEntryLoadBits::BOTH, DESTINATION_UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(DESTINATION_UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &source_descriptor, KeyType::Client, KeyEntryLoadBits::NONE, SOURCE_UID, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } // Creates a key migrates it to a different location and then tries to access it by the old // and new location. #[test] fn test_migrate_key_app_to_selinux() -> Result<()> { let mut db = new_test_db()?; const SOURCE_UID: u32 = 1u32; const DESTINATION_UID: u32 = 2u32; const DESTINATION_NAMESPACE: i64 = 1000i64; static SOURCE_ALIAS: &str = "SOURCE_ALIAS"; static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS"; let key_id_guard = make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?; let source_descriptor: KeyDescriptor = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(SOURCE_ALIAS.to_string()), blob: None, }; let destination_descriptor: KeyDescriptor = KeyDescriptor { domain: Domain::SELINUX, nspace: DESTINATION_NAMESPACE, alias: Some(DESTINATION_ALIAS.to_string()), blob: None, }; let key_id = key_id_guard.id(); db.migrate_key_namespace(key_id_guard, &destination_descriptor, DESTINATION_UID, |_k| { Ok(()) }) .unwrap(); let (_, key_entry) = db .load_key_entry( &destination_descriptor, KeyType::Client, KeyEntryLoadBits::BOTH, DESTINATION_UID, |k, av| { assert_eq!(Domain::SELINUX, k.domain); assert_eq!(DESTINATION_NAMESPACE, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &source_descriptor, KeyType::Client, KeyEntryLoadBits::NONE, SOURCE_UID, |_k, _av| Ok(()), ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } // Creates two keys and tries to migrate the first to the location of the second which // is expected to fail. #[test] fn test_migrate_key_destination_occupied() -> Result<()> { let mut db = new_test_db()?; const SOURCE_UID: u32 = 1u32; const DESTINATION_UID: u32 = 2u32; static SOURCE_ALIAS: &str = "SOURCE_ALIAS"; static DESTINATION_ALIAS: &str = "DESTINATION_ALIAS"; let key_id_guard = make_test_key_entry(&mut db, Domain::APP, SOURCE_UID as i64, SOURCE_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?; make_test_key_entry(&mut db, Domain::APP, DESTINATION_UID as i64, DESTINATION_ALIAS, None) .context("test_insert_and_load_full_keyentry_from_grant_by_key_id")?; let destination_descriptor: KeyDescriptor = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(DESTINATION_ALIAS.to_string()), blob: None, }; assert_eq!( Some(&KsError::Rc(ResponseCode::INVALID_ARGUMENT)), db.migrate_key_namespace( key_id_guard, &destination_descriptor, DESTINATION_UID, |_k| Ok(()) ) .unwrap_err() .root_cause() .downcast_ref::() ); Ok(()) } #[test] fn test_upgrade_0_to_1() { const ALIAS1: &str = "test_upgrade_0_to_1_1"; const ALIAS2: &str = "test_upgrade_0_to_1_2"; const ALIAS3: &str = "test_upgrade_0_to_1_3"; const UID: u32 = 33; let temp_dir = Arc::new(TempDir::new("test_upgrade_0_to_1").unwrap()); let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap(); let key_id_untouched1 = make_test_key_entry(&mut db, Domain::APP, UID as i64, ALIAS1, None).unwrap().id(); let key_id_untouched2 = make_bootlevel_key_entry(&mut db, Domain::APP, UID as i64, ALIAS2, false).unwrap().id(); let key_id_deleted = make_bootlevel_key_entry(&mut db, Domain::APP, UID as i64, ALIAS3, true).unwrap().id(); let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS1.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id_untouched1, None)); let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS2.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_untouched2, false)); let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS3.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_deleted, true)); db.with_transaction(Immediate("TX_test"), |tx| KeystoreDB::from_0_to_1(tx).no_gc()) .unwrap(); let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS1.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id_untouched1, None)); let (_, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS2.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap(); assert_eq!(key_entry, make_bootlevel_test_key_entry_test_vector(key_id_untouched2, false)); assert_eq!( Some(&KsError::Rc(ResponseCode::KEY_NOT_FOUND)), db.load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(ALIAS3.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, UID, |k, av| { assert_eq!(Domain::APP, k.domain); assert_eq!(UID as i64, k.nspace); assert!(av.is_none()); Ok(()) }, ) .unwrap_err() .root_cause() .downcast_ref::() ); } static KEY_LOCK_TEST_ALIAS: &str = "my super duper locked key"; #[test] fn test_insert_and_load_full_keyentry_domain_app_concurrently() -> Result<()> { let handle = { let temp_dir = Arc::new(TempDir::new("id_lock_test")?); let temp_dir_clone = temp_dir.clone(); let mut db = KeystoreDB::new(temp_dir.path(), None)?; let key_id = make_test_key_entry(&mut db, Domain::APP, 33, KEY_LOCK_TEST_ALIAS, None) .context("test_insert_and_load_full_keyentry_domain_app")? .0; let (_key_guard, key_entry) = db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(KEY_LOCK_TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, 33, |_k, _av| Ok(()), ) .unwrap(); assert_eq!(key_entry, make_test_key_entry_test_vector(key_id, None)); let state = Arc::new(AtomicU8::new(1)); let state2 = state.clone(); // Spawning a second thread that attempts to acquire the key id lock // for the same key as the primary thread. The primary thread then // waits, thereby forcing the secondary thread into the second stage // of acquiring the lock (see KEY ID LOCK 2/2 above). // The test succeeds if the secondary thread observes the transition // of `state` from 1 to 2, despite having a whole second to overtake // the primary thread. let handle = thread::spawn(move || { let temp_dir = temp_dir_clone; let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap(); assert!(db .load_key_entry( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(KEY_LOCK_TEST_ALIAS.to_string()), blob: None, }, KeyType::Client, KeyEntryLoadBits::BOTH, 33, |_k, _av| Ok(()), ) .is_ok()); // We should only see a 2 here because we can only return // from load_key_entry when the `_key_guard` expires, // which happens at the end of the scope. assert_eq!(2, state2.load(Ordering::Relaxed)); }); thread::sleep(std::time::Duration::from_millis(1000)); assert_eq!(Ok(1), state.compare_exchange(1, 2, Ordering::Relaxed, Ordering::Relaxed)); // Return the handle from this scope so we can join with the // secondary thread after the key id lock has expired. handle // This is where the `_key_guard` goes out of scope, // which is the reason for concurrent load_key_entry on the same key // to unblock. }; // Join with the secondary thread and unwrap, to propagate failing asserts to the // main test thread. We will not see failing asserts in secondary threads otherwise. handle.join().unwrap(); Ok(()) } #[test] fn test_database_busy_error_code() { let temp_dir = TempDir::new("test_database_busy_error_code_").expect("Failed to create temp dir."); let mut db1 = KeystoreDB::new(temp_dir.path(), None).expect("Failed to open database1."); let mut db2 = KeystoreDB::new(temp_dir.path(), None).expect("Failed to open database2."); let _tx1 = db1 .conn .transaction_with_behavior(rusqlite::TransactionBehavior::Immediate) .expect("Failed to create first transaction."); let error = db2 .conn .transaction_with_behavior(rusqlite::TransactionBehavior::Immediate) .context("Transaction begin failed.") .expect_err("This should fail."); let root_cause = error.root_cause(); if let Some(rusqlite::ffi::Error { code: rusqlite::ErrorCode::DatabaseBusy, .. }) = root_cause.downcast_ref::() { return; } panic!( "Unexpected error {:?} \n{:?} \n{:?}", error, root_cause, root_cause.downcast_ref::() ) } #[cfg(disabled)] #[test] fn test_large_number_of_concurrent_db_manipulations() -> Result<()> { let temp_dir = Arc::new( TempDir::new("test_large_number_of_concurrent_db_manipulations_") .expect("Failed to create temp dir."), ); let test_begin = Instant::now(); const KEY_COUNT: u32 = 500u32; let mut db = new_test_db_with_gc(temp_dir.path(), |_, _| Ok(())).expect("Failed to open database."); const OPEN_DB_COUNT: u32 = 50u32; let mut actual_key_count = KEY_COUNT; // First insert KEY_COUNT keys. for count in 0..KEY_COUNT { if Instant::now().duration_since(test_begin) >= Duration::from_secs(15) { actual_key_count = count; break; } let alias = format!("test_alias_{}", count); make_test_key_entry(&mut db, Domain::APP, 1, &alias, None) .expect("Failed to make key entry."); } // Insert more keys from a different thread and into a different namespace. let temp_dir1 = temp_dir.clone(); let handle1 = thread::spawn(move || { let mut db = new_test_db_with_gc(temp_dir1.path(), |_, _| Ok(())) .expect("Failed to open database."); for count in 0..actual_key_count { if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) { return; } let alias = format!("test_alias_{}", count); make_test_key_entry(&mut db, Domain::APP, 2, &alias, None) .expect("Failed to make key entry."); } // then unbind them again. for count in 0..actual_key_count { if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) { return; } let key = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(format!("test_alias_{}", count)), blob: None, }; db.unbind_key(&key, KeyType::Client, 2, |_, _| Ok(())).expect("Unbind Failed."); } }); // And start unbinding the first set of keys. let temp_dir2 = temp_dir.clone(); let handle2 = thread::spawn(move || { let mut db = new_test_db_with_gc(temp_dir2.path(), |_, _| Ok(())) .expect("Failed to open database."); for count in 0..actual_key_count { if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) { return; } let key = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(format!("test_alias_{}", count)), blob: None, }; db.unbind_key(&key, KeyType::Client, 1, |_, _| Ok(())).expect("Unbind Failed."); } }); // While a lot of inserting and deleting is going on we have to open database connections // successfully and use them. // This clone is not redundant, because temp_dir needs to be kept alive until db goes // out of scope. #[allow(clippy::redundant_clone)] let temp_dir4 = temp_dir.clone(); let handle4 = thread::spawn(move || { for count in 0..OPEN_DB_COUNT { if Instant::now().duration_since(test_begin) >= Duration::from_secs(40) { return; } let mut db = new_test_db_with_gc(temp_dir4.path(), |_, _| Ok(())) .expect("Failed to open database."); let alias = format!("test_alias_{}", count); make_test_key_entry(&mut db, Domain::APP, 3, &alias, None) .expect("Failed to make key entry."); let key = KeyDescriptor { domain: Domain::APP, nspace: -1, alias: Some(alias), blob: None, }; db.unbind_key(&key, KeyType::Client, 3, |_, _| Ok(())).expect("Unbind Failed."); } }); handle1.join().expect("Thread 1 panicked."); handle2.join().expect("Thread 2 panicked."); handle4.join().expect("Thread 4 panicked."); Ok(()) } #[test] fn list() -> Result<()> { let temp_dir = TempDir::new("list_test")?; let mut db = KeystoreDB::new(temp_dir.path(), None)?; static LIST_O_ENTRIES: &[(Domain, i64, &str)] = &[ (Domain::APP, 1, "test1"), (Domain::APP, 1, "test2"), (Domain::APP, 1, "test3"), (Domain::APP, 1, "test4"), (Domain::APP, 1, "test5"), (Domain::APP, 1, "test6"), (Domain::APP, 1, "test7"), (Domain::APP, 2, "test1"), (Domain::APP, 2, "test2"), (Domain::APP, 2, "test3"), (Domain::APP, 2, "test4"), (Domain::APP, 2, "test5"), (Domain::APP, 2, "test6"), (Domain::APP, 2, "test8"), (Domain::SELINUX, 100, "test1"), (Domain::SELINUX, 100, "test2"), (Domain::SELINUX, 100, "test3"), (Domain::SELINUX, 100, "test4"), (Domain::SELINUX, 100, "test5"), (Domain::SELINUX, 100, "test6"), (Domain::SELINUX, 100, "test9"), ]; let list_o_keys: Vec<(i64, i64)> = LIST_O_ENTRIES .iter() .map(|(domain, ns, alias)| { let entry = make_test_key_entry(&mut db, *domain, *ns, alias, None).unwrap_or_else(|e| { panic!("Failed to insert {:?} {} {}. Error {:?}", domain, ns, alias, e) }); (entry.id(), *ns) }) .collect(); for (domain, namespace) in &[(Domain::APP, 1i64), (Domain::APP, 2i64), (Domain::SELINUX, 100i64)] { let mut list_o_descriptors: Vec = LIST_O_ENTRIES .iter() .filter_map(|(domain, ns, alias)| match ns { ns if *ns == *namespace => Some(KeyDescriptor { domain: *domain, nspace: *ns, alias: Some(alias.to_string()), blob: None, }), _ => None, }) .collect(); list_o_descriptors.sort(); let mut list_result = db.list_past_alias(*domain, *namespace, KeyType::Client, None)?; list_result.sort(); assert_eq!(list_o_descriptors, list_result); let mut list_o_ids: Vec = list_o_descriptors .into_iter() .map(|d| { let (_, entry) = db .load_key_entry( &d, KeyType::Client, KeyEntryLoadBits::NONE, *namespace as u32, |_, _| Ok(()), ) .unwrap(); entry.id() }) .collect(); list_o_ids.sort_unstable(); let mut loaded_entries: Vec = list_o_keys .iter() .filter_map(|(id, ns)| match ns { ns if *ns == *namespace => Some(*id), _ => None, }) .collect(); loaded_entries.sort_unstable(); assert_eq!(list_o_ids, loaded_entries); } assert_eq!( Vec::::new(), db.list_past_alias(Domain::SELINUX, 101, KeyType::Client, None)? ); Ok(()) } // Helpers // Checks that the given result is an error containing the given string. fn check_result_is_error_containing_string(result: Result, target: &str) { let error_str = format!( "{:#?}", result.err().unwrap_or_else(|| panic!("Expected the error: {}", target)) ); assert!( error_str.contains(target), "The string \"{}\" should contain \"{}\"", error_str, target ); } #[derive(Debug, PartialEq)] struct KeyEntryRow { id: i64, key_type: KeyType, domain: Option, namespace: Option, alias: Option, state: KeyLifeCycle, km_uuid: Option, } fn get_keyentry(db: &KeystoreDB) -> Result> { db.conn .prepare("SELECT * FROM persistent.keyentry;")? .query_map([], |row| { Ok(KeyEntryRow { id: row.get(0)?, key_type: row.get(1)?, domain: row.get::<_, Option<_>>(2)?.map(Domain), namespace: row.get(3)?, alias: row.get(4)?, state: row.get(5)?, km_uuid: row.get(6)?, }) })? .map(|r| r.context("Could not read keyentry row.")) .collect::>>() } fn make_test_params(max_usage_count: Option) -> Vec { make_test_params_with_sids(max_usage_count, &[42]) } // Note: The parameters and SecurityLevel associations are nonsensical. This // collection is only used to check if the parameters are preserved as expected by the // database. fn make_test_params_with_sids( max_usage_count: Option, user_secure_ids: &[i64], ) -> Vec { let mut params = vec![ KeyParameter::new(KeyParameterValue::Invalid, SecurityLevel::TRUSTED_ENVIRONMENT), KeyParameter::new( KeyParameterValue::KeyPurpose(KeyPurpose::SIGN), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::KeyPurpose(KeyPurpose::DECRYPT), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::Algorithm(Algorithm::RSA), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::KeySize(1024), SecurityLevel::TRUSTED_ENVIRONMENT), KeyParameter::new( KeyParameterValue::BlockMode(BlockMode::ECB), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::BlockMode(BlockMode::GCM), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::Digest(Digest::NONE), SecurityLevel::STRONGBOX), KeyParameter::new( KeyParameterValue::Digest(Digest::MD5), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::Digest(Digest::SHA_2_224), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::Digest(Digest::SHA_2_256), SecurityLevel::STRONGBOX, ), KeyParameter::new( KeyParameterValue::PaddingMode(PaddingMode::NONE), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::PaddingMode(PaddingMode::RSA_OAEP), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::PaddingMode(PaddingMode::RSA_PSS), SecurityLevel::STRONGBOX, ), KeyParameter::new( KeyParameterValue::PaddingMode(PaddingMode::RSA_PKCS1_1_5_SIGN), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::CallerNonce, SecurityLevel::TRUSTED_ENVIRONMENT), KeyParameter::new(KeyParameterValue::MinMacLength(256), SecurityLevel::STRONGBOX), KeyParameter::new( KeyParameterValue::EcCurve(EcCurve::P_224), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::EcCurve(EcCurve::P_256), SecurityLevel::STRONGBOX), KeyParameter::new( KeyParameterValue::EcCurve(EcCurve::P_384), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::EcCurve(EcCurve::P_521), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::RSAPublicExponent(3), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::IncludeUniqueID, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::BootLoaderOnly, SecurityLevel::STRONGBOX), KeyParameter::new(KeyParameterValue::RollbackResistance, SecurityLevel::STRONGBOX), KeyParameter::new( KeyParameterValue::ActiveDateTime(1234567890), SecurityLevel::STRONGBOX, ), KeyParameter::new( KeyParameterValue::OriginationExpireDateTime(1234567890), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::UsageExpireDateTime(1234567890), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::MinSecondsBetweenOps(1234567890), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::MaxUsesPerBoot(1234567890), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::UserID(1), SecurityLevel::STRONGBOX), KeyParameter::new( KeyParameterValue::NoAuthRequired, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::HardwareAuthenticatorType(HardwareAuthenticatorType::PASSWORD), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::AuthTimeout(1234567890), SecurityLevel::SOFTWARE), KeyParameter::new(KeyParameterValue::AllowWhileOnBody, SecurityLevel::SOFTWARE), KeyParameter::new( KeyParameterValue::TrustedUserPresenceRequired, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::TrustedConfirmationRequired, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::UnlockedDeviceRequired, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::ApplicationID(vec![1u8, 2u8, 3u8, 4u8]), SecurityLevel::SOFTWARE, ), KeyParameter::new( KeyParameterValue::ApplicationData(vec![4u8, 3u8, 2u8, 1u8]), SecurityLevel::SOFTWARE, ), KeyParameter::new( KeyParameterValue::CreationDateTime(12345677890), SecurityLevel::SOFTWARE, ), KeyParameter::new( KeyParameterValue::KeyOrigin(KeyOrigin::GENERATED), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::RootOfTrust(vec![3u8, 2u8, 1u8, 4u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new(KeyParameterValue::OSVersion(1), SecurityLevel::TRUSTED_ENVIRONMENT), KeyParameter::new(KeyParameterValue::OSPatchLevel(2), SecurityLevel::SOFTWARE), KeyParameter::new( KeyParameterValue::UniqueID(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::SOFTWARE, ), KeyParameter::new( KeyParameterValue::AttestationChallenge(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationApplicationID(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdBrand(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdDevice(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdProduct(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdSerial(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdIMEI(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdSecondIMEI(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdMEID(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdManufacturer(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AttestationIdModel(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::VendorPatchLevel(3), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::BootPatchLevel(4), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::AssociatedData(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::Nonce(vec![4u8, 3u8, 1u8, 2u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::MacLength(256), SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::ResetSinceIdRotation, SecurityLevel::TRUSTED_ENVIRONMENT, ), KeyParameter::new( KeyParameterValue::ConfirmationToken(vec![5u8, 5u8, 5u8, 5u8]), SecurityLevel::TRUSTED_ENVIRONMENT, ), ]; if let Some(value) = max_usage_count { params.push(KeyParameter::new( KeyParameterValue::UsageCountLimit(value), SecurityLevel::SOFTWARE, )); } for sid in user_secure_ids.iter() { params.push(KeyParameter::new( KeyParameterValue::UserSecureID(*sid), SecurityLevel::STRONGBOX, )); } params } pub fn make_test_key_entry( db: &mut KeystoreDB, domain: Domain, namespace: i64, alias: &str, max_usage_count: Option, ) -> Result { make_test_key_entry_with_sids(db, domain, namespace, alias, max_usage_count, &[42]) } pub fn make_test_key_entry_with_sids( db: &mut KeystoreDB, domain: Domain, namespace: i64, alias: &str, max_usage_count: Option, sids: &[i64], ) -> Result { let key_id = create_key_entry(db, &domain, &namespace, KeyType::Client, &KEYSTORE_UUID)?; let mut blob_metadata = BlobMetaData::new(); blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password)); blob_metadata.add(BlobMetaEntry::Salt(vec![1, 2, 3])); blob_metadata.add(BlobMetaEntry::Iv(vec![2, 3, 1])); blob_metadata.add(BlobMetaEntry::AeadTag(vec![3, 1, 2])); blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); db.set_blob( &key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), Some(&blob_metadata), )?; db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?; db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?; let params = make_test_params_with_sids(max_usage_count, sids); db.insert_keyparameter(&key_id, ¶ms)?; let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); db.insert_key_metadata(&key_id, &metadata)?; rebind_alias(db, &key_id, alias, domain, namespace)?; Ok(key_id) } fn make_test_key_entry_test_vector(key_id: i64, max_usage_count: Option) -> KeyEntry { let params = make_test_params(max_usage_count); let mut blob_metadata = BlobMetaData::new(); blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password)); blob_metadata.add(BlobMetaEntry::Salt(vec![1, 2, 3])); blob_metadata.add(BlobMetaEntry::Iv(vec![2, 3, 1])); blob_metadata.add(BlobMetaEntry::AeadTag(vec![3, 1, 2])); blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); KeyEntry { id: key_id, key_blob_info: Some((TEST_KEY_BLOB.to_vec(), blob_metadata)), cert: Some(TEST_CERT_BLOB.to_vec()), cert_chain: Some(TEST_CERT_CHAIN_BLOB.to_vec()), km_uuid: KEYSTORE_UUID, parameters: params, metadata, pure_cert: false, } } pub fn make_bootlevel_key_entry( db: &mut KeystoreDB, domain: Domain, namespace: i64, alias: &str, logical_only: bool, ) -> Result { let key_id = create_key_entry(db, &domain, &namespace, KeyType::Client, &KEYSTORE_UUID)?; let mut blob_metadata = BlobMetaData::new(); if !logical_only { blob_metadata.add(BlobMetaEntry::MaxBootLevel(3)); } blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); db.set_blob( &key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), Some(&blob_metadata), )?; db.set_blob(&key_id, SubComponentType::CERT, Some(TEST_CERT_BLOB), None)?; db.set_blob(&key_id, SubComponentType::CERT_CHAIN, Some(TEST_CERT_CHAIN_BLOB), None)?; let mut params = make_test_params(None); params.push(KeyParameter::new(KeyParameterValue::MaxBootLevel(3), SecurityLevel::KEYSTORE)); db.insert_keyparameter(&key_id, ¶ms)?; let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); db.insert_key_metadata(&key_id, &metadata)?; rebind_alias(db, &key_id, alias, domain, namespace)?; Ok(key_id) } // Creates an app key that is marked as being superencrypted by the given // super key ID and that has the given authentication and unlocked device // parameters. This does not actually superencrypt the key blob. fn make_superencrypted_key_entry( db: &mut KeystoreDB, namespace: i64, alias: &str, requires_authentication: bool, requires_unlocked_device: bool, super_key_id: i64, ) -> Result { let domain = Domain::APP; let key_id = create_key_entry(db, &domain, &namespace, KeyType::Client, &KEYSTORE_UUID)?; let mut blob_metadata = BlobMetaData::new(); blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::KeyId(super_key_id))); db.set_blob( &key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), Some(&blob_metadata), )?; let mut params = vec![]; if requires_unlocked_device { params.push(KeyParameter::new( KeyParameterValue::UnlockedDeviceRequired, SecurityLevel::TRUSTED_ENVIRONMENT, )); } if requires_authentication { params.push(KeyParameter::new( KeyParameterValue::UserSecureID(42), SecurityLevel::TRUSTED_ENVIRONMENT, )); } db.insert_keyparameter(&key_id, ¶ms)?; let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); db.insert_key_metadata(&key_id, &metadata)?; rebind_alias(db, &key_id, alias, domain, namespace)?; Ok(key_id) } fn make_bootlevel_test_key_entry_test_vector(key_id: i64, logical_only: bool) -> KeyEntry { let mut params = make_test_params(None); params.push(KeyParameter::new(KeyParameterValue::MaxBootLevel(3), SecurityLevel::KEYSTORE)); let mut blob_metadata = BlobMetaData::new(); if !logical_only { blob_metadata.add(BlobMetaEntry::MaxBootLevel(3)); } blob_metadata.add(BlobMetaEntry::KmUuid(KEYSTORE_UUID)); let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); KeyEntry { id: key_id, key_blob_info: Some((TEST_KEY_BLOB.to_vec(), blob_metadata)), cert: Some(TEST_CERT_BLOB.to_vec()), cert_chain: Some(TEST_CERT_CHAIN_BLOB.to_vec()), km_uuid: KEYSTORE_UUID, parameters: params, metadata, pure_cert: false, } } fn debug_dump_keyentry_table(db: &mut KeystoreDB) -> Result<()> { let mut stmt = db.conn.prepare( "SELECT id, key_type, domain, namespace, alias, state, km_uuid FROM persistent.keyentry;", )?; let rows = stmt.query_map::<(i64, KeyType, i32, i64, String, KeyLifeCycle, Uuid), _, _>( [], |row| { Ok(( row.get(0)?, row.get(1)?, row.get(2)?, row.get(3)?, row.get(4)?, row.get(5)?, row.get(6)?, )) }, )?; println!("Key entry table rows:"); for r in rows { let (id, key_type, domain, namespace, alias, state, km_uuid) = r.unwrap(); println!( " id: {} KeyType: {:?} Domain: {} Namespace: {} Alias: {} State: {:?} KmUuid: {:?}", id, key_type, domain, namespace, alias, state, km_uuid ); } Ok(()) } fn debug_dump_grant_table(db: &mut KeystoreDB) -> Result<()> { let mut stmt = db .conn .prepare("SELECT id, grantee, keyentryid, access_vector FROM persistent.grant;")?; let rows = stmt.query_map::<(i64, i64, i64, i64), _, _>([], |row| { Ok((row.get(0)?, row.get(1)?, row.get(2)?, row.get(3)?)) })?; println!("Grant table rows:"); for r in rows { let (id, gt, ki, av) = r.unwrap(); println!(" id: {} grantee: {} key_id: {} access_vector: {}", id, gt, ki, av); } Ok(()) } // Use a custom random number generator that repeats each number once. // This allows us to test repeated elements. thread_local! { static RANDOM_COUNTER: RefCell = const { RefCell::new(0) }; } fn reset_random() { RANDOM_COUNTER.with(|counter| { *counter.borrow_mut() = 0; }) } pub fn random() -> i64 { RANDOM_COUNTER.with(|counter| { let result = *counter.borrow() / 2; *counter.borrow_mut() += 1; result }) } #[test] fn test_unbind_keys_for_user() -> Result<()> { let mut db = new_test_db()?; db.unbind_keys_for_user(1, false)?; make_test_key_entry(&mut db, Domain::APP, 210000, TEST_ALIAS, None)?; make_test_key_entry(&mut db, Domain::APP, 110000, TEST_ALIAS, None)?; db.unbind_keys_for_user(2, false)?; assert_eq!(1, db.list_past_alias(Domain::APP, 110000, KeyType::Client, None)?.len()); assert_eq!(0, db.list_past_alias(Domain::APP, 210000, KeyType::Client, None)?.len()); db.unbind_keys_for_user(1, true)?; assert_eq!(0, db.list_past_alias(Domain::APP, 110000, KeyType::Client, None)?.len()); Ok(()) } #[test] fn test_unbind_keys_for_user_removes_superkeys() -> Result<()> { let mut db = new_test_db()?; let super_key = keystore2_crypto::generate_aes256_key()?; let pw: keystore2_crypto::Password = (&b"xyzabc"[..]).into(); let (encrypted_super_key, metadata) = SuperKeyManager::encrypt_with_password(&super_key, &pw)?; let key_name_enc = SuperKeyType { alias: "test_super_key_1", algorithm: SuperEncryptionAlgorithm::Aes256Gcm, name: "test_super_key_1", }; let key_name_nonenc = SuperKeyType { alias: "test_super_key_2", algorithm: SuperEncryptionAlgorithm::Aes256Gcm, name: "test_super_key_2", }; // Install two super keys. db.store_super_key( 1, &key_name_nonenc, &super_key, &BlobMetaData::new(), &KeyMetaData::new(), )?; db.store_super_key(1, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?; // Check that both can be found in the database. assert!(db.load_super_key(&key_name_enc, 1)?.is_some()); assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some()); // Install the same keys for a different user. db.store_super_key( 2, &key_name_nonenc, &super_key, &BlobMetaData::new(), &KeyMetaData::new(), )?; db.store_super_key(2, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?; // Check that the second pair of keys can be found in the database. assert!(db.load_super_key(&key_name_enc, 2)?.is_some()); assert!(db.load_super_key(&key_name_nonenc, 2)?.is_some()); // Delete only encrypted keys. db.unbind_keys_for_user(1, true)?; // The encrypted superkey should be gone now. assert!(db.load_super_key(&key_name_enc, 1)?.is_none()); assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some()); // Reinsert the encrypted key. db.store_super_key(1, &key_name_enc, &encrypted_super_key, &metadata, &KeyMetaData::new())?; // Check that both can be found in the database, again.. assert!(db.load_super_key(&key_name_enc, 1)?.is_some()); assert!(db.load_super_key(&key_name_nonenc, 1)?.is_some()); // Delete all even unencrypted keys. db.unbind_keys_for_user(1, false)?; // Both should be gone now. assert!(db.load_super_key(&key_name_enc, 1)?.is_none()); assert!(db.load_super_key(&key_name_nonenc, 1)?.is_none()); // Check that the second pair of keys was untouched. assert!(db.load_super_key(&key_name_enc, 2)?.is_some()); assert!(db.load_super_key(&key_name_nonenc, 2)?.is_some()); Ok(()) } fn app_key_exists(db: &mut KeystoreDB, nspace: i64, alias: &str) -> Result { db.key_exists(Domain::APP, nspace, alias, KeyType::Client) } // Tests the unbind_auth_bound_keys_for_user() function. #[test] fn test_unbind_auth_bound_keys_for_user() -> Result<()> { let mut db = new_test_db()?; let user_id = 1; let nspace: i64 = (user_id * AID_USER_OFFSET).into(); let other_user_id = 2; let other_user_nspace: i64 = (other_user_id * AID_USER_OFFSET).into(); let super_key_type = &USER_AFTER_FIRST_UNLOCK_SUPER_KEY; // Create a superencryption key. let super_key = keystore2_crypto::generate_aes256_key()?; let pw: keystore2_crypto::Password = (&b"xyzabc"[..]).into(); let (encrypted_super_key, blob_metadata) = SuperKeyManager::encrypt_with_password(&super_key, &pw)?; db.store_super_key( user_id, super_key_type, &encrypted_super_key, &blob_metadata, &KeyMetaData::new(), )?; let super_key_id = db.load_super_key(super_key_type, user_id)?.unwrap().0 .0; // Store 4 superencrypted app keys, one for each possible combination of // (authentication required, unlocked device required). make_superencrypted_key_entry(&mut db, nspace, "noauth_noud", false, false, super_key_id)?; make_superencrypted_key_entry(&mut db, nspace, "noauth_ud", false, true, super_key_id)?; make_superencrypted_key_entry(&mut db, nspace, "auth_noud", true, false, super_key_id)?; make_superencrypted_key_entry(&mut db, nspace, "auth_ud", true, true, super_key_id)?; assert!(app_key_exists(&mut db, nspace, "noauth_noud")?); assert!(app_key_exists(&mut db, nspace, "noauth_ud")?); assert!(app_key_exists(&mut db, nspace, "auth_noud")?); assert!(app_key_exists(&mut db, nspace, "auth_ud")?); // Also store a key for a different user that requires authentication. make_superencrypted_key_entry( &mut db, other_user_nspace, "auth_ud", true, true, super_key_id, )?; db.unbind_auth_bound_keys_for_user(user_id)?; // Verify that only the user's app keys that require authentication were // deleted. Keys that require an unlocked device but not authentication // should *not* have been deleted, nor should the super key have been // deleted, nor should other users' keys have been deleted. assert!(db.load_super_key(super_key_type, user_id)?.is_some()); assert!(app_key_exists(&mut db, nspace, "noauth_noud")?); assert!(app_key_exists(&mut db, nspace, "noauth_ud")?); assert!(!app_key_exists(&mut db, nspace, "auth_noud")?); assert!(!app_key_exists(&mut db, nspace, "auth_ud")?); assert!(app_key_exists(&mut db, other_user_nspace, "auth_ud")?); Ok(()) } #[test] fn test_store_super_key() -> Result<()> { let mut db = new_test_db()?; let pw: keystore2_crypto::Password = (&b"xyzabc"[..]).into(); let super_key = keystore2_crypto::generate_aes256_key()?; let secret_bytes = b"keystore2 is great."; let (encrypted_secret, iv, tag) = keystore2_crypto::aes_gcm_encrypt(secret_bytes, &super_key)?; let (encrypted_super_key, metadata) = SuperKeyManager::encrypt_with_password(&super_key, &pw)?; db.store_super_key( 1, &USER_AFTER_FIRST_UNLOCK_SUPER_KEY, &encrypted_super_key, &metadata, &KeyMetaData::new(), )?; // Check if super key exists. assert!(db.key_exists( Domain::APP, 1, USER_AFTER_FIRST_UNLOCK_SUPER_KEY.alias, KeyType::Super )?); let (_, key_entry) = db.load_super_key(&USER_AFTER_FIRST_UNLOCK_SUPER_KEY, 1)?.unwrap(); let loaded_super_key = SuperKeyManager::extract_super_key_from_key_entry( USER_AFTER_FIRST_UNLOCK_SUPER_KEY.algorithm, key_entry, &pw, None, )?; let decrypted_secret_bytes = loaded_super_key.decrypt(&encrypted_secret, &iv, &tag)?; assert_eq!(secret_bytes, &*decrypted_secret_bytes); Ok(()) } fn get_valid_statsd_storage_types() -> Vec { vec![ MetricsStorage::KEY_ENTRY, MetricsStorage::KEY_ENTRY_ID_INDEX, MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX, MetricsStorage::BLOB_ENTRY, MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX, MetricsStorage::KEY_PARAMETER, MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX, MetricsStorage::KEY_METADATA, MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX, MetricsStorage::GRANT, MetricsStorage::AUTH_TOKEN, MetricsStorage::BLOB_METADATA, MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX, ] } /// Perform a simple check to ensure that we can query all the storage types /// that are supported by the DB. Check for reasonable values. #[test] fn test_query_all_valid_table_sizes() -> Result<()> { const PAGE_SIZE: i32 = 4096; let mut db = new_test_db()?; for t in get_valid_statsd_storage_types() { let stat = db.get_storage_stat(t)?; // AuthToken can be less than a page since it's in a btree, not sqlite // TODO(b/187474736) stop using if-let here if let MetricsStorage::AUTH_TOKEN = t { } else { assert!(stat.size >= PAGE_SIZE); } assert!(stat.size >= stat.unused_size); } Ok(()) } fn get_storage_stats_map(db: &mut KeystoreDB) -> BTreeMap { get_valid_statsd_storage_types() .into_iter() .map(|t| (t.0, db.get_storage_stat(t).unwrap())) .collect() } fn assert_storage_increased( db: &mut KeystoreDB, increased_storage_types: Vec, baseline: &mut BTreeMap, ) { for storage in increased_storage_types { // Verify the expected storage increased. let new = db.get_storage_stat(storage).unwrap(); let old = &baseline[&storage.0]; assert!(new.size >= old.size, "{}: {} >= {}", storage.0, new.size, old.size); assert!( new.unused_size <= old.unused_size, "{}: {} <= {}", storage.0, new.unused_size, old.unused_size ); // Update the baseline with the new value so that it succeeds in the // later comparison. baseline.insert(storage.0, new); } // Get an updated map of the storage and verify there were no unexpected changes. let updated_stats = get_storage_stats_map(db); assert_eq!(updated_stats.len(), baseline.len()); for &k in baseline.keys() { let stringify = |map: &BTreeMap| -> String { let mut s = String::new(); for &k in map.keys() { writeln!(&mut s, " {}: {}, {}", &k, map[&k].size, map[&k].unused_size) .expect("string concat failed"); } s }; assert!( updated_stats[&k].size == baseline[&k].size && updated_stats[&k].unused_size == baseline[&k].unused_size, "updated_stats:\n{}\nbaseline:\n{}", stringify(&updated_stats), stringify(baseline) ); } } #[test] fn test_verify_key_table_size_reporting() -> Result<()> { let mut db = new_test_db()?; let mut working_stats = get_storage_stats_map(&mut db); let key_id = create_key_entry(&mut db, &Domain::APP, &42, KeyType::Client, &KEYSTORE_UUID)?; assert_storage_increased( &mut db, vec![ MetricsStorage::KEY_ENTRY, MetricsStorage::KEY_ENTRY_ID_INDEX, MetricsStorage::KEY_ENTRY_DOMAIN_NAMESPACE_INDEX, ], &mut working_stats, ); let mut blob_metadata = BlobMetaData::new(); blob_metadata.add(BlobMetaEntry::EncryptedBy(EncryptedBy::Password)); db.set_blob(&key_id, SubComponentType::KEY_BLOB, Some(TEST_KEY_BLOB), None)?; assert_storage_increased( &mut db, vec![ MetricsStorage::BLOB_ENTRY, MetricsStorage::BLOB_ENTRY_KEY_ENTRY_ID_INDEX, MetricsStorage::BLOB_METADATA, MetricsStorage::BLOB_METADATA_BLOB_ENTRY_ID_INDEX, ], &mut working_stats, ); let params = make_test_params(None); db.insert_keyparameter(&key_id, ¶ms)?; assert_storage_increased( &mut db, vec![MetricsStorage::KEY_PARAMETER, MetricsStorage::KEY_PARAMETER_KEY_ENTRY_ID_INDEX], &mut working_stats, ); let mut metadata = KeyMetaData::new(); metadata.add(KeyMetaEntry::CreationDate(DateTime::from_millis_epoch(123456789))); db.insert_key_metadata(&key_id, &metadata)?; assert_storage_increased( &mut db, vec![MetricsStorage::KEY_METADATA, MetricsStorage::KEY_METADATA_KEY_ENTRY_ID_INDEX], &mut working_stats, ); let mut sum = 0; for stat in working_stats.values() { sum += stat.size; } let total = db.get_storage_stat(MetricsStorage::DATABASE)?.size; assert!(sum <= total, "Expected sum <= total. sum: {}, total: {}", sum, total); Ok(()) } #[test] fn test_verify_auth_table_size_reporting() -> Result<()> { let mut db = new_test_db()?; let mut working_stats = get_storage_stats_map(&mut db); db.insert_auth_token(&HardwareAuthToken { challenge: 123, userId: 456, authenticatorId: 789, authenticatorType: kmhw_authenticator_type::ANY, timestamp: Timestamp { milliSeconds: 10 }, mac: b"mac".to_vec(), }); assert_storage_increased(&mut db, vec![MetricsStorage::AUTH_TOKEN], &mut working_stats); Ok(()) } #[test] fn test_verify_grant_table_size_reporting() -> Result<()> { const OWNER: i64 = 1; let mut db = new_test_db()?; make_test_key_entry(&mut db, Domain::APP, OWNER, TEST_ALIAS, None)?; let mut working_stats = get_storage_stats_map(&mut db); db.grant( &KeyDescriptor { domain: Domain::APP, nspace: 0, alias: Some(TEST_ALIAS.to_string()), blob: None, }, OWNER as u32, 123, key_perm_set![KeyPerm::Use], |_, _| Ok(()), )?; assert_storage_increased(&mut db, vec![MetricsStorage::GRANT], &mut working_stats); Ok(()) } #[test] fn find_auth_token_entry_returns_latest() -> Result<()> { let mut db = new_test_db()?; db.insert_auth_token(&HardwareAuthToken { challenge: 123, userId: 456, authenticatorId: 789, authenticatorType: kmhw_authenticator_type::ANY, timestamp: Timestamp { milliSeconds: 10 }, mac: b"mac0".to_vec(), }); std::thread::sleep(std::time::Duration::from_millis(1)); db.insert_auth_token(&HardwareAuthToken { challenge: 123, userId: 457, authenticatorId: 789, authenticatorType: kmhw_authenticator_type::ANY, timestamp: Timestamp { milliSeconds: 12 }, mac: b"mac1".to_vec(), }); std::thread::sleep(std::time::Duration::from_millis(1)); db.insert_auth_token(&HardwareAuthToken { challenge: 123, userId: 458, authenticatorId: 789, authenticatorType: kmhw_authenticator_type::ANY, timestamp: Timestamp { milliSeconds: 3 }, mac: b"mac2".to_vec(), }); // All three entries are in the database assert_eq!(db.perboot.auth_tokens_len(), 3); // It selected the most recent timestamp assert_eq!(db.find_auth_token_entry(|_| true).unwrap().auth_token.mac, b"mac2".to_vec()); Ok(()) } #[test] fn test_load_key_descriptor() -> Result<()> { let mut db = new_test_db()?; let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None)?.0; let key = db.load_key_descriptor(key_id)?.unwrap(); assert_eq!(key.domain, Domain::APP); assert_eq!(key.nspace, 1); assert_eq!(key.alias, Some(TEST_ALIAS.to_string())); // No such id assert_eq!(db.load_key_descriptor(key_id + 1)?, None); Ok(()) } #[test] fn test_get_list_app_uids_for_sid() -> Result<()> { let uid: i32 = 1; let uid_offset: i64 = (uid as i64) * (AID_USER_OFFSET as i64); let first_sid = 667; let second_sid = 669; let first_app_id: i64 = 123 + uid_offset; let second_app_id: i64 = 456 + uid_offset; let third_app_id: i64 = 789 + uid_offset; let unrelated_app_id: i64 = 1011 + uid_offset; let mut db = new_test_db()?; make_test_key_entry_with_sids( &mut db, Domain::APP, first_app_id, TEST_ALIAS, None, &[first_sid], ) .context("test_get_list_app_uids_for_sid")?; make_test_key_entry_with_sids( &mut db, Domain::APP, second_app_id, "alias2", None, &[first_sid], ) .context("test_get_list_app_uids_for_sid")?; make_test_key_entry_with_sids( &mut db, Domain::APP, second_app_id, TEST_ALIAS, None, &[second_sid], ) .context("test_get_list_app_uids_for_sid")?; make_test_key_entry_with_sids( &mut db, Domain::APP, third_app_id, "alias3", None, &[second_sid], ) .context("test_get_list_app_uids_for_sid")?; make_test_key_entry_with_sids( &mut db, Domain::APP, unrelated_app_id, TEST_ALIAS, None, &[], ) .context("test_get_list_app_uids_for_sid")?; let mut first_sid_apps = db.get_app_uids_affected_by_sid(uid, first_sid)?; first_sid_apps.sort(); assert_eq!(first_sid_apps, vec![first_app_id, second_app_id]); let mut second_sid_apps = db.get_app_uids_affected_by_sid(uid, second_sid)?; second_sid_apps.sort(); assert_eq!(second_sid_apps, vec![second_app_id, third_app_id]); Ok(()) } #[test] fn test_get_list_app_uids_with_multiple_sids() -> Result<()> { let uid: i32 = 1; let uid_offset: i64 = (uid as i64) * (AID_USER_OFFSET as i64); let first_sid = 667; let second_sid = 669; let third_sid = 772; let first_app_id: i64 = 123 + uid_offset; let second_app_id: i64 = 456 + uid_offset; let mut db = new_test_db()?; make_test_key_entry_with_sids( &mut db, Domain::APP, first_app_id, TEST_ALIAS, None, &[first_sid, second_sid], ) .context("test_get_list_app_uids_for_sid")?; make_test_key_entry_with_sids( &mut db, Domain::APP, second_app_id, "alias2", None, &[second_sid, third_sid], ) .context("test_get_list_app_uids_for_sid")?; let first_sid_apps = db.get_app_uids_affected_by_sid(uid, first_sid)?; assert_eq!(first_sid_apps, vec![first_app_id]); let mut second_sid_apps = db.get_app_uids_affected_by_sid(uid, second_sid)?; second_sid_apps.sort(); assert_eq!(second_sid_apps, vec![first_app_id, second_app_id]); let third_sid_apps = db.get_app_uids_affected_by_sid(uid, third_sid)?; assert_eq!(third_sid_apps, vec![second_app_id]); Ok(()) } #[test] fn test_key_id_guard_immediate() -> Result<()> { if !keystore2_flags::database_loop_timeout() { eprintln!("Skipping test as loop timeout flag disabled"); return Ok(()); } // Emit logging from test. android_logger::init_once( android_logger::Config::default() .with_tag("keystore_database_tests") .with_max_level(log::LevelFilter::Debug), ); // Preparation: put a single entry into a test DB. let temp_dir = Arc::new(TempDir::new("key_id_guard_immediate")?); let temp_dir_clone_a = temp_dir.clone(); let temp_dir_clone_b = temp_dir.clone(); let mut db = KeystoreDB::new(temp_dir.path(), None)?; let key_id = make_test_key_entry(&mut db, Domain::APP, 1, TEST_ALIAS, None)?.0; let (a_sender, b_receiver) = std::sync::mpsc::channel(); let (b_sender, a_receiver) = std::sync::mpsc::channel(); // First thread starts an immediate transaction, then waits on a synchronization channel // before trying to get the `KeyIdGuard`. let handle_a = thread::spawn(move || { let temp_dir = temp_dir_clone_a; let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap(); // Make sure the other thread has initialized its database access before we lock it out. a_receiver.recv().unwrap(); let _result = db.with_transaction_timeout(Immediate("TX_test"), Duration::from_secs(3), |_tx| { // Notify the other thread that we're inside the immediate transaction... a_sender.send(()).unwrap(); // ...then wait to be sure that the other thread has the `KeyIdGuard` before // this thread also tries to get it. a_receiver.recv().unwrap(); let _guard = KEY_ID_LOCK.get(key_id); Ok(()).no_gc() }); }); // Second thread gets the `KeyIdGuard`, then waits before trying to perform an immediate // transaction. let handle_b = thread::spawn(move || { let temp_dir = temp_dir_clone_b; let mut db = KeystoreDB::new(temp_dir.path(), None).unwrap(); // Notify the other thread that we are initialized (so it can lock the immediate // transaction). b_sender.send(()).unwrap(); let _guard = KEY_ID_LOCK.get(key_id); // Notify the other thread that we have the `KeyIdGuard`... b_sender.send(()).unwrap(); // ...then wait to be sure that the other thread is in the immediate transaction before // this thread also tries to do one. b_receiver.recv().unwrap(); let result = db.with_transaction_timeout(Immediate("TX_test"), Duration::from_secs(3), |_tx| { Ok(()).no_gc() }); // Expect the attempt to get an immediate transaction to fail, and then this thread will // exit and release the `KeyIdGuard`, allowing the other thread to complete. assert!(result.is_err()); check_result_is_error_containing_string(result, "BACKEND_BUSY"); }); let _ = handle_a.join(); let _ = handle_b.join(); Ok(()) } }