// // Copyright (C) 2012 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_consumer/delta_performer.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "libsnapshot/cow_format.h" #include "update_engine/common/constants.h" #include "update_engine/common/download_action.h" #include "update_engine/common/error_code.h" #include "update_engine/common/error_code_utils.h" #include "update_engine/common/hardware_interface.h" #include "update_engine/common/prefs_interface.h" #include "update_engine/common/terminator.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/partition_update_generator_interface.h" #include "update_engine/payload_consumer/partition_writer.h" #include "update_engine/update_metadata.pb.h" #if USE_FEC #include "update_engine/payload_consumer/fec_file_descriptor.h" #endif // USE_FEC #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_consumer/payload_verifier.h" using google::protobuf::RepeatedPtrField; using std::min; using std::string; using std::vector; namespace chromeos_update_engine { const unsigned DeltaPerformer::kProgressLogMaxChunks = 10; const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30; const unsigned DeltaPerformer::kProgressDownloadWeight = 50; const unsigned DeltaPerformer::kProgressOperationsWeight = 50; const uint64_t DeltaPerformer::kCheckpointFrequencySeconds = 1; namespace { const int kUpdateStateOperationInvalid = -1; const int kMaxResumedUpdateFailures = 10; } // namespace // Computes the ratio of |part| and |total|, scaled to |norm|, using integer // arithmetic. static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) { return part * norm / total; } void DeltaPerformer::LogProgress(const char* message_prefix) { // Format operations total count and percentage. string total_operations_str("?"); string completed_percentage_str(""); if (num_total_operations_) { total_operations_str = std::to_string(num_total_operations_); // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. completed_percentage_str = base::StringPrintf( " (%" PRIu64 "%%)", IntRatio(next_operation_num_, num_total_operations_, 100)); } // Format download total count and percentage. size_t payload_size = payload_->size; string payload_size_str("?"); string downloaded_percentage_str(""); if (payload_size) { payload_size_str = std::to_string(payload_size); // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. downloaded_percentage_str = base::StringPrintf( " (%" PRIu64 "%%)", IntRatio(total_bytes_received_, payload_size, 100)); } LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_ << "/" << total_operations_str << " operations" << completed_percentage_str << ", " << total_bytes_received_ << "/" << payload_size_str << " bytes downloaded" << downloaded_percentage_str << ", overall progress " << overall_progress_ << "%"; } void DeltaPerformer::UpdateOverallProgress(bool force_log, const char* message_prefix) { // Compute our download and overall progress. unsigned new_overall_progress = 0; static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100, "Progress weights don't add up"); // Only consider download progress if its total size is known; otherwise // adjust the operations weight to compensate for the absence of download // progress. Also, make sure to cap the download portion at // kProgressDownloadWeight, in case we end up downloading more than we // initially expected (this indicates a problem, but could generally happen). // TODO(garnold) the correction of operations weight when we do not have the // total payload size, as well as the conditional guard below, should both be // eliminated once we ensure that the payload_size in the install plan is // always given and is non-zero. This currently isn't the case during unit // tests (see chromium-os:37969). size_t payload_size = payload_->size; unsigned actual_operations_weight = kProgressOperationsWeight; if (payload_size) new_overall_progress += min(static_cast(IntRatio( total_bytes_received_, payload_size, kProgressDownloadWeight)), kProgressDownloadWeight); else actual_operations_weight += kProgressDownloadWeight; // Only add completed operations if their total number is known; we definitely // expect an update to have at least one operation, so the expectation is that // this will eventually reach |actual_operations_weight|. if (num_total_operations_) new_overall_progress += IntRatio( next_operation_num_, num_total_operations_, actual_operations_weight); // Progress ratio cannot recede, unless our assumptions about the total // payload size, total number of operations, or the monotonicity of progress // is breached. if (new_overall_progress < overall_progress_) { LOG(WARNING) << "progress counter receded from " << overall_progress_ << "% down to " << new_overall_progress << "%; this is a bug"; force_log = true; } overall_progress_ = new_overall_progress; // Update chunk index, log as needed: if forced by called, or we completed a // progress chunk, or a timeout has expired. base::TimeTicks curr_time = base::TimeTicks::Now(); unsigned curr_progress_chunk = overall_progress_ * kProgressLogMaxChunks / 100; if (force_log || curr_progress_chunk > last_progress_chunk_ || curr_time > forced_progress_log_time_) { forced_progress_log_time_ = curr_time + forced_progress_log_wait_; LogProgress(message_prefix); } last_progress_chunk_ = curr_progress_chunk; } size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p, size_t max) { const size_t count = *count_p; if (!count) return 0; // Special case shortcut. size_t read_len = min(count, max - buffer_.size()); const char* bytes_start = *bytes_p; const char* bytes_end = bytes_start + read_len; buffer_.reserve(max); buffer_.insert(buffer_.end(), bytes_start, bytes_end); *bytes_p = bytes_end; *count_p = count - read_len; return read_len; } bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name, ErrorCode* error) { if (op_result) return true; LOG(ERROR) << "Failed to perform " << op_type_name << " operation " << next_operation_num_ << ", which is the operation " << GetPartitionOperationNum() << " in partition \"" << partitions_[current_partition_].partition_name() << "\""; if (*error == ErrorCode::kSuccess) *error = ErrorCode::kDownloadOperationExecutionError; return false; } int DeltaPerformer::Close() { // Checkpoint update progress before canceling, so that subsequent attempts // can resume from exactly where update_engine left last time. CheckpointUpdateProgress(true); int err = -CloseCurrentPartition(); LOG_IF(ERROR, !payload_hash_calculator_.Finalize() || !signed_hash_calculator_.Finalize()) << "Unable to finalize the hash."; if (!buffer_.empty()) { LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes"; if (err >= 0) err = 1; } return -err; } int DeltaPerformer::CloseCurrentPartition() { if (!partition_writer_) { return 0; } int err = partition_writer_->Close(); partition_writer_ = nullptr; return err; } bool DeltaPerformer::OpenCurrentPartition() { if (current_partition_ >= partitions_.size()) return false; const PartitionUpdate& partition = partitions_[current_partition_]; size_t num_previous_partitions = install_plan_->partitions.size() - partitions_.size(); const InstallPlan::Partition& install_part = install_plan_->partitions[num_previous_partitions + current_partition_]; auto dynamic_control = boot_control_->GetDynamicPartitionControl(); partition_writer_ = CreatePartitionWriter( partition, install_part, dynamic_control, block_size_, interactive_, IsDynamicPartition(install_part.name, install_plan_->target_slot)); // Open source fds if we have a delta payload, or for partitions in the // partial update. const bool source_may_exist = manifest_.partial_update() || payload_->type == InstallPayloadType::kDelta; const size_t partition_operation_num = GetPartitionOperationNum(); TEST_AND_RETURN_FALSE(partition_writer_->Init( install_plan_, source_may_exist, partition_operation_num)); CheckpointUpdateProgress(true); return true; } size_t DeltaPerformer::GetPartitionOperationNum() { return next_operation_num_ - (current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0); } namespace { void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) { string sha256 = HexEncode(info.hash()); LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256 << " size: " << info.size(); } void LogPartitionInfo(const vector& partitions) { for (const PartitionUpdate& partition : partitions) { if (partition.has_old_partition_info()) { LogPartitionInfoHash(partition.old_partition_info(), "old " + partition.partition_name()); } LogPartitionInfoHash(partition.new_partition_info(), "new " + partition.partition_name()); } } } // namespace bool DeltaPerformer::IsHeaderParsed() const { return metadata_size_ != 0; } MetadataParseResult DeltaPerformer::ParsePayloadMetadata( const brillo::Blob& payload, ErrorCode* error) { *error = ErrorCode::kSuccess; if (!IsHeaderParsed()) { MetadataParseResult result = payload_metadata_.ParsePayloadHeader(payload, error); if (result != MetadataParseResult::kSuccess) return result; metadata_size_ = payload_metadata_.GetMetadataSize(); metadata_signature_size_ = payload_metadata_.GetMetadataSignatureSize(); major_payload_version_ = payload_metadata_.GetMajorVersion(); // If the metadata size is present in install plan, check for it immediately // even before waiting for that many number of bytes to be downloaded in the // payload. This will prevent any attack which relies on us downloading data // beyond the expected metadata size. if (install_plan_->hash_checks_mandatory) { if (payload_->metadata_size != metadata_size_) { LOG(ERROR) << "Mandatory metadata size in Omaha response (" << payload_->metadata_size << ") is missing/incorrect, actual = " << metadata_size_; *error = ErrorCode::kDownloadInvalidMetadataSize; return MetadataParseResult::kError; } } // Check that the |metadata signature size_| and |metadata_size_| are not // very big numbers. This is necessary since |update_engine| needs to write // these values into the buffer before being able to use them, and if an // attacker sets these values to a very big number, the buffer will overflow // and |update_engine| will crash. A simple way of solving this is to check // that the size of both values is smaller than the payload itself. if (metadata_size_ + metadata_signature_size_ > payload_->size) { LOG(ERROR) << "The size of the metadata_size(" << metadata_size_ << ")" << " or metadata signature(" << metadata_signature_size_ << ")" << " is greater than the size of the payload" << "(" << payload_->size << ")"; *error = ErrorCode::kDownloadInvalidMetadataSize; return MetadataParseResult::kError; } } // Now that we have validated the metadata size, we should wait for the full // metadata and its signature (if exist) to be read in before we can parse it. if (payload.size() < metadata_size_ + metadata_signature_size_) return MetadataParseResult::kInsufficientData; // Log whether we validated the size or simply trusting what's in the payload // here. This is logged here (after we received the full metadata data) so // that we just log once (instead of logging n times) if it takes n // DeltaPerformer::Write calls to download the full manifest. if (payload_->metadata_size == metadata_size_) { LOG(INFO) << "Manifest size in payload matches expected value from Omaha"; } else { // For mandatory-cases, we'd have already returned a kMetadataParseError // above. We'll be here only for non-mandatory cases. Just send a UMA stat. LOG(WARNING) << "Ignoring missing/incorrect metadata size (" << payload_->metadata_size << ") in Omaha response as validation is not mandatory. " << "Trusting metadata size in payload = " << metadata_size_; } // NOLINTNEXTLINE(whitespace/braces) auto [payload_verifier, perform_verification] = CreatePayloadVerifier(); if (!payload_verifier) { LOG(ERROR) << "Failed to create payload verifier."; *error = ErrorCode::kDownloadMetadataSignatureVerificationError; if (perform_verification) { return MetadataParseResult::kError; } } else { // We have the full metadata in |payload|. Verify its integrity // and authenticity based on the information we have in Omaha response. *error = payload_metadata_.ValidateMetadataSignature( payload, payload_->metadata_signature, *payload_verifier); } if (*error != ErrorCode::kSuccess) { if (install_plan_->hash_checks_mandatory) { // The autoupdate_CatchBadSignatures test checks for this string // in log-files. Keep in sync. LOG(ERROR) << "Mandatory metadata signature validation failed"; return MetadataParseResult::kError; } // For non-mandatory cases, just send a UMA stat. LOG(WARNING) << "Ignoring metadata signature validation failures"; *error = ErrorCode::kSuccess; } // The payload metadata is deemed valid, it's safe to parse the protobuf. if (!payload_metadata_.GetManifest(payload, &manifest_)) { LOG(ERROR) << "Unable to parse manifest in update file."; *error = ErrorCode::kDownloadManifestParseError; return MetadataParseResult::kError; } manifest_parsed_ = true; return MetadataParseResult::kSuccess; } #define OP_DURATION_HISTOGRAM(_op_name, _start_time) \ LOCAL_HISTOGRAM_CUSTOM_TIMES( \ "UpdateEngine.DownloadAction.InstallOperation::" + string(_op_name) + \ ".Duration", \ (base::TimeTicks::Now() - _start_time), \ base::TimeDelta::FromMilliseconds(10), \ base::TimeDelta::FromMinutes(5), \ 20); bool DeltaPerformer::CheckSPLDowngrade() { if (!manifest_.has_security_patch_level()) { return true; } if (manifest_.security_patch_level().empty()) { return true; } const auto new_spl = manifest_.security_patch_level(); const auto current_spl = android::base::GetProperty("ro.build.version.security_patch", ""); if (current_spl.empty()) { LOG(WARNING) << "Failed to get ro.build.version.security_patch, unable to " "determine if this OTA is a SPL downgrade. Assuming this " "OTA is not SPL downgrade."; return true; } if (new_spl < current_spl) { const auto avb_state = android::base::GetProperty("ro.boot.verifiedbootstate", "green"); if (android::base::EqualsIgnoreCase(avb_state, "green")) { LOG(ERROR) << "Target build SPL " << new_spl << " is older than current build's SPL " << current_spl << ", this OTA is an SPL downgrade. Your device's " "ro.boot.verifiedbootstate=" << avb_state << ", it probably has a locked bootlaoder. Since a locked " "bootloader will reject SPL downgrade no matter what, we " "will reject this OTA."; return false; } install_plan_->powerwash_required = true; LOG(WARNING) << "Target build SPL " << new_spl << " is older than current build's SPL " << current_spl << ", this OTA is an SPL downgrade. Data wipe will be required"; } return true; } // Wrapper around write. Returns true if all requested bytes // were written, or false on any error, regardless of progress // and stores an action exit code in |error|. bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode* error) { if (!error) { LOG(INFO) << "Error Code is not initialized"; return false; } *error = ErrorCode::kSuccess; const char* c_bytes = reinterpret_cast(bytes); // Update the total byte downloaded count and the progress logs. total_bytes_received_ += count; UpdateOverallProgress(false, "Completed "); while (!manifest_valid_) { bool insufficient_bytes = false; if (!ParseManifest(&c_bytes, &count, error, &insufficient_bytes)) { LOG(ERROR) << "Failed to parse manifest"; return false; } if (insufficient_bytes) { return true; } } while (next_operation_num_ < num_total_operations_) { // Check if we should cancel the current attempt for any reason. // In this case, *error will have already been populated with the reason // why we're canceling. if (download_delegate_ && download_delegate_->ShouldCancel(error)) return false; // We know there are more operations to perform because we didn't reach the // |num_total_operations_| limit yet. if (next_operation_num_ >= acc_num_operations_[current_partition_]) { if (partition_writer_) { if (!partition_writer_->FinishedInstallOps()) { *error = ErrorCode::kDownloadWriteError; return false; } } const auto err = CloseCurrentPartition(); if (err < 0) { LOG(ERROR) << "Failed to close partition " << partitions_[current_partition_].partition_name() << " " << strerror(-err); return false; } // Skip until there are operations for current_partition_. while (next_operation_num_ >= acc_num_operations_[current_partition_]) { current_partition_++; } if (!OpenCurrentPartition()) { *error = ErrorCode::kInstallDeviceOpenError; return false; } } const InstallOperation& op = partitions_[current_partition_].operations(GetPartitionOperationNum()); CopyDataToBuffer(&c_bytes, &count, op.data_length()); // Check whether we received all of the next operation's data payload. if (!CanPerformInstallOperation(op)) return true; if (!ProcessOperation(&op, error)) { LOG(ERROR) << "unable to process operation: " << InstallOperationTypeName(op.type()) << " Error: " << utils::ErrorCodeToString(*error); return false; } next_operation_num_++; UpdateOverallProgress(false, "Completed "); CheckpointUpdateProgress(false); } if (partition_writer_) { TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps()); } CloseCurrentPartition(); // In major version 2, we don't add unused operation to the payload. // If we already extracted the signature we should skip this step. if (manifest_.has_signatures_offset() && manifest_.has_signatures_size() && signatures_message_data_.empty()) { if (manifest_.signatures_offset() != buffer_offset_) { LOG(ERROR) << "Payload signatures offset points to blob offset " << manifest_.signatures_offset() << " but signatures are expected at offset " << buffer_offset_; *error = ErrorCode::kDownloadPayloadVerificationError; return false; } CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size()); // Needs more data to cover entire signature. if (buffer_.size() < manifest_.signatures_size()) return true; if (!ExtractSignatureMessage()) { LOG(ERROR) << "Extract payload signature failed."; *error = ErrorCode::kDownloadPayloadVerificationError; return false; } DiscardBuffer(true, 0); // Since we extracted the SignatureMessage we need to advance the // checkpoint, otherwise we would reload the signature and try to extract // it again. // This is the last checkpoint for an update, force this checkpoint to be // saved. CheckpointUpdateProgress(true); } return true; } bool DeltaPerformer::ParseManifest(const char** c_bytes, size_t* count, ErrorCode* error, bool* should_return) { // Read data up to the needed limit; this is either maximium payload header // size, or the full metadata size (once it becomes known). const bool do_read_header = !IsHeaderParsed(); CopyDataToBuffer( c_bytes, count, (do_read_header ? kMaxPayloadHeaderSize : metadata_size_ + metadata_signature_size_)); MetadataParseResult result = ParsePayloadMetadata(buffer_, error); if (result == MetadataParseResult::kError) return false; if (result == MetadataParseResult::kInsufficientData) { // If we just processed the header, make an attempt on the manifest. if (do_read_header && IsHeaderParsed()) { return true; } *should_return = true; return true; } // Checks the integrity of the payload manifest. if ((*error = ValidateManifest()) != ErrorCode::kSuccess) return false; manifest_valid_ = true; if (!install_plan_->is_resume) { auto begin = reinterpret_cast(buffer_.data()); prefs_->SetString(kPrefsManifestBytes, {begin, buffer_.size()}); } // Clear the download buffer. DiscardBuffer(false, metadata_size_); block_size_ = manifest_.block_size(); if (!install_plan_->spl_downgrade && !CheckSPLDowngrade()) { *error = ErrorCode::kPayloadTimestampError; return false; } // update estimate_cow_size if VABC is disabled // new_cow_size per partition = partition_size - (#blocks in Copy // operations part of the partition) if (install_plan_->vabc_none) { LOG(INFO) << "Setting Virtual AB Compression algorithm to none. This " "would also disable VABC XOR as XOR only saves space if " "compression is enabled."; manifest_.mutable_dynamic_partition_metadata()->set_vabc_compression_param( "none"); for (auto& partition : *manifest_.mutable_partitions()) { if (!partition.has_estimate_cow_size()) { continue; } auto new_cow_size = partition.new_partition_info().size(); for (const auto& operation : partition.merge_operations()) { if (operation.type() == CowMergeOperation::COW_COPY) { new_cow_size -= operation.dst_extent().num_blocks() * manifest_.block_size(); } } // Remove all COW_XOR merge ops, as XOR without compression is useless. // It increases CPU usage but does not reduce space usage at all. auto&& merge_ops = *partition.mutable_merge_operations(); merge_ops.erase(std::remove_if(merge_ops.begin(), merge_ops.end(), [](const auto& op) { return op.type() == CowMergeOperation::COW_XOR; }), merge_ops.end()); // Every block written to COW device will come with a header which // stores src/dst block info along with other data. const auto cow_metadata_size = partition.new_partition_info().size() / manifest_.block_size() * sizeof(android::snapshot::CowOperation); // update_engine will emit a label op every op or every two seconds, // whichever one is longer. In the worst case, we add 1 label per // InstallOp. So take size of label ops into account. const auto label_ops_size = partition.operations_size() * sizeof(android::snapshot::CowOperation); // Adding extra 2MB headroom just for any unexpected space usage. // If we overrun reserved COW size, entire OTA will fail // and no way for user to retry OTA partition.set_estimate_cow_size(new_cow_size + (1024 * 1024 * 2) + cow_metadata_size + label_ops_size); // Setting op count max to 0 will defer to num_blocks as the op buffer // size. partition.set_estimate_op_count_max(0); LOG(INFO) << "New COW size for partition " << partition.partition_name() << " is " << partition.estimate_cow_size(); } } if (install_plan_->disable_vabc) { manifest_.mutable_dynamic_partition_metadata()->set_vabc_enabled(false); } if (install_plan_->enable_threading) { manifest_.mutable_dynamic_partition_metadata() ->mutable_vabc_feature_set() ->set_threaded(install_plan_->enable_threading.value()); LOG(INFO) << "Attempting to " << (install_plan_->enable_threading.value() ? "enable" : "disable") << " multi-threaded compression for VABC"; } if (install_plan_->batched_writes) { manifest_.mutable_dynamic_partition_metadata() ->mutable_vabc_feature_set() ->set_batch_writes(true); LOG(INFO) << "Attempting to enable batched writes for VABC"; } // This populates |partitions_| and the |install_plan.partitions| with the // list of partitions from the manifest. if (!ParseManifestPartitions(error)) return false; // |install_plan.partitions| was filled in, nothing need to be done here if // the payload was already applied, returns false to terminate http fetcher, // but keep |error| as ErrorCode::kSuccess. if (payload_->already_applied) return false; num_total_operations_ = 0; for (const auto& partition : partitions_) { num_total_operations_ += partition.operations_size(); acc_num_operations_.push_back(num_total_operations_); } LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, metadata_size_)) << "Unable to save the manifest metadata size."; LOG_IF( WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize, metadata_signature_size_)) << "Unable to save the manifest signature size."; if (!PrimeUpdateState()) { *error = ErrorCode::kDownloadStateInitializationError; LOG(ERROR) << "Unable to prime the update state."; return false; } if (next_operation_num_ < acc_num_operations_[current_partition_]) { if (!OpenCurrentPartition()) { *error = ErrorCode::kInstallDeviceOpenError; return false; } } if (next_operation_num_ > 0) UpdateOverallProgress(true, "Resuming after "); LOG(INFO) << "Starting to apply update payload operations"; return true; } bool DeltaPerformer::ProcessOperation(const InstallOperation* op, ErrorCode* error) { // Validate the operation unconditionally. This helps prevent the // exploitation of vulnerabilities in the patching libraries, e.g. bspatch. // The hash of the patch data for a given operation is embedded in the // payload metadata; and thus has been verified against the public key on // device. // Note: Validate must be called only if CanPerformInstallOperation is // called. Otherwise, we might be failing operations before even if there // isn't sufficient data to compute the proper hash. *error = ValidateOperationHash(*op); if (*error != ErrorCode::kSuccess) { if (install_plan_->hash_checks_mandatory) { LOG(ERROR) << "Mandatory operation hash check failed"; return false; } // For non-mandatory cases, just send a UMA stat. LOG(WARNING) << "Ignoring operation validation errors"; *error = ErrorCode::kSuccess; } // Makes sure we unblock exit when this operation completes. ScopedTerminatorExitUnblocker exit_unblocker = ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug. base::TimeTicks op_start_time = base::TimeTicks::Now(); bool op_result{}; const string op_name = InstallOperationTypeName(op->type()); switch (op->type()) { case InstallOperation::REPLACE: case InstallOperation::REPLACE_BZ: case InstallOperation::REPLACE_XZ: op_result = PerformReplaceOperation(*op); OP_DURATION_HISTOGRAM("REPLACE", op_start_time); break; case InstallOperation::ZERO: case InstallOperation::DISCARD: op_result = PerformZeroOrDiscardOperation(*op); OP_DURATION_HISTOGRAM("ZERO_OR_DISCARD", op_start_time); break; case InstallOperation::SOURCE_COPY: op_result = PerformSourceCopyOperation(*op, error); OP_DURATION_HISTOGRAM("SOURCE_COPY", op_start_time); break; case InstallOperation::SOURCE_BSDIFF: case InstallOperation::BROTLI_BSDIFF: case InstallOperation::PUFFDIFF: case InstallOperation::ZUCCHINI: case InstallOperation::LZ4DIFF_PUFFDIFF: case InstallOperation::LZ4DIFF_BSDIFF: op_result = PerformDiffOperation(*op, error); OP_DURATION_HISTOGRAM(op_name, op_start_time); break; default: op_result = false; } if (!HandleOpResult(op_result, op_name.c_str(), error)) return false; return true; } bool DeltaPerformer::IsManifestValid() { return manifest_valid_; } bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) { partitions_.assign(manifest_.partitions().begin(), manifest_.partitions().end()); // For VAB and partial updates, the partition preparation will copy the // dynamic partitions metadata to the target metadata slot, and rename the // slot suffix of the partitions in the metadata. if (install_plan_->target_slot != BootControlInterface::kInvalidSlot) { uint64_t required_size = 0; if (!PreparePartitionsForUpdate(&required_size, error)) { if (*error == ErrorCode::kOverlayfsenabledError) { return false; } else if (required_size > 0) { *error = ErrorCode::kNotEnoughSpace; } else { *error = ErrorCode::kInstallDeviceOpenError; } return false; } } // Partitions in manifest are no longer needed after preparing partitions. manifest_.clear_partitions(); // TODO(xunchang) TBD: allow partial update only on devices with dynamic // partition. if (manifest_.partial_update()) { std::set touched_partitions; for (const auto& partition_update : partitions_) { touched_partitions.insert(partition_update.partition_name()); } auto generator = partition_update_generator::Create(boot_control_, manifest_.block_size()); std::vector untouched_static_partitions; if (!generator->GenerateOperationsForPartitionsNotInPayload( install_plan_->source_slot, install_plan_->target_slot, touched_partitions, &untouched_static_partitions)) { LOG(ERROR) << "Failed to generate operations for partitions not in payload " << android::base::Join(touched_partitions, ", "); *error = ErrorCode::kDownloadStateInitializationError; return false; } partitions_.insert(partitions_.end(), untouched_static_partitions.begin(), untouched_static_partitions.end()); // Save the untouched dynamic partitions in install plan. std::vector dynamic_partitions; if (!boot_control_->GetDynamicPartitionControl() ->ListDynamicPartitionsForSlot(install_plan_->source_slot, boot_control_->GetCurrentSlot(), &dynamic_partitions)) { LOG(ERROR) << "Failed to load dynamic partitions from slot " << install_plan_->source_slot; return false; } install_plan_->untouched_dynamic_partitions.clear(); for (const auto& name : dynamic_partitions) { if (touched_partitions.find(name) == touched_partitions.end()) { install_plan_->untouched_dynamic_partitions.push_back(name); } } } const auto start = std::chrono::system_clock::now(); if (!install_plan_->ParsePartitions( partitions_, boot_control_, block_size_, error)) { return false; } const auto duration = std::chrono::system_clock::now() - start; LOG(INFO) << "ParsePartitions done. took " << std::chrono::duration_cast(duration).count() << " ms"; auto&& has_verity = [](const auto& part) { return part.fec_extent().num_blocks() > 0 || part.hash_tree_extent().num_blocks() > 0; }; if (!std::any_of(partitions_.begin(), partitions_.end(), has_verity)) { install_plan_->write_verity = false; } LogPartitionInfo(partitions_); return true; } bool DeltaPerformer::PreparePartitionsForUpdate(uint64_t* required_size, ErrorCode* error) { // Call static PreparePartitionsForUpdate with hash from // kPrefsUpdateCheckResponseHash to ensure hash of payload that space is // preallocated for is the same as the hash of payload being applied. string update_check_response_hash; ignore_result(prefs_->GetString(kPrefsUpdateCheckResponseHash, &update_check_response_hash)); return PreparePartitionsForUpdate(prefs_, boot_control_, install_plan_->target_slot, manifest_, update_check_response_hash, required_size, error); } bool DeltaPerformer::PreparePartitionsForUpdate( PrefsInterface* prefs, BootControlInterface* boot_control, BootControlInterface::Slot target_slot, const DeltaArchiveManifest& manifest, const std::string& update_check_response_hash, uint64_t* required_size, ErrorCode* error) { string last_hash; ignore_result( prefs->GetString(kPrefsDynamicPartitionMetadataUpdated, &last_hash)); bool is_resume = !update_check_response_hash.empty() && last_hash == update_check_response_hash; if (is_resume) { LOG(INFO) << "Using previously prepared partitions for update. hash = " << last_hash; } else { LOG(INFO) << "Preparing partitions for new update. last hash = " << last_hash << ", new hash = " << update_check_response_hash; ResetUpdateProgress(prefs, false); } const auto start = std::chrono::system_clock::now(); if (!boot_control->GetDynamicPartitionControl()->PreparePartitionsForUpdate( boot_control->GetCurrentSlot(), target_slot, manifest, !is_resume /* should update */, required_size, error)) { LOG(ERROR) << "Unable to initialize partition metadata for slot " << BootControlInterface::SlotName(target_slot) << " " << utils::ErrorCodeToString(*error); return false; } const auto duration = std::chrono::system_clock::now() - start; TEST_AND_RETURN_FALSE(prefs->SetString(kPrefsDynamicPartitionMetadataUpdated, update_check_response_hash)); LOG(INFO) << "PreparePartitionsForUpdate done. took " << std::chrono::duration_cast(duration).count() << " ms"; return true; } bool DeltaPerformer::CanPerformInstallOperation( const chromeos_update_engine::InstallOperation& operation) { // If we don't have a data blob we can apply it right away. if (!operation.has_data_offset() && !operation.has_data_length()) return true; // See if we have the entire data blob in the buffer if (operation.data_offset() < buffer_offset_) { LOG(ERROR) << "we threw away data it seems?"; return false; } return (operation.data_offset() + operation.data_length() <= buffer_offset_ + buffer_.size()); } bool DeltaPerformer::PerformReplaceOperation( const InstallOperation& operation) { CHECK(operation.type() == InstallOperation::REPLACE || operation.type() == InstallOperation::REPLACE_BZ || operation.type() == InstallOperation::REPLACE_XZ); // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); TEST_AND_RETURN_FALSE(partition_writer_->PerformReplaceOperation( operation, buffer_.data(), buffer_.size())); // Update buffer DiscardBuffer(true, buffer_.size()); return true; } bool DeltaPerformer::PerformZeroOrDiscardOperation( const InstallOperation& operation) { CHECK(operation.type() == InstallOperation::DISCARD || operation.type() == InstallOperation::ZERO); // These operations have no blob. TEST_AND_RETURN_FALSE(!operation.has_data_offset()); TEST_AND_RETURN_FALSE(!operation.has_data_length()); return partition_writer_->PerformZeroOrDiscardOperation(operation); } bool DeltaPerformer::PerformSourceCopyOperation( const InstallOperation& operation, ErrorCode* error) { if (operation.has_src_length()) TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); if (operation.has_dst_length()) TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); return partition_writer_->PerformSourceCopyOperation(operation, error); } bool DeltaPerformer::ExtentsToBsdiffPositionsString( const RepeatedPtrField& extents, uint64_t block_size, uint64_t full_length, string* positions_string) { string ret; uint64_t length = 0; for (const Extent& extent : extents) { int64_t start = extent.start_block() * block_size; uint64_t this_length = min(full_length - length, static_cast(extent.num_blocks()) * block_size); ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length); length += this_length; } TEST_AND_RETURN_FALSE(length == full_length); if (!ret.empty()) ret.resize(ret.size() - 1); // Strip trailing comma off *positions_string = ret; return true; } bool DeltaPerformer::PerformDiffOperation(const InstallOperation& operation, ErrorCode* error) { // Since we delete data off the beginning of the buffer as we use it, // the data we need should be exactly at the beginning of the buffer. TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); if (operation.has_src_length()) TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); if (operation.has_dst_length()) TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); TEST_AND_RETURN_FALSE(partition_writer_->PerformDiffOperation( operation, error, buffer_.data(), buffer_.size())); DiscardBuffer(true, buffer_.size()); return true; } bool DeltaPerformer::ExtractSignatureMessage() { TEST_AND_RETURN_FALSE(signatures_message_data_.empty()); TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset()); TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size()); signatures_message_data_.assign( buffer_.begin(), buffer_.begin() + manifest_.signatures_size()); LOG(INFO) << "Extracted signature data of size " << manifest_.signatures_size() << " at " << manifest_.signatures_offset(); return true; } bool DeltaPerformer::GetPublicKey(string* out_public_key) { out_public_key->clear(); if (utils::FileExists(public_key_path_.c_str())) { LOG(INFO) << "Verifying using public key: " << public_key_path_; return utils::ReadFile(public_key_path_, out_public_key); } // If this is an official build then we are not allowed to use public key // from Omaha response. if (!hardware_->IsOfficialBuild() && !install_plan_->public_key_rsa.empty()) { LOG(INFO) << "Verifying using public key from Omaha response."; return brillo::data_encoding::Base64Decode(install_plan_->public_key_rsa, out_public_key); } LOG(INFO) << "No public keys found for verification."; return true; } std::pair, bool> DeltaPerformer::CreatePayloadVerifier() { if (utils::FileExists(update_certificates_path_.c_str())) { LOG(INFO) << "Verifying using certificates: " << update_certificates_path_; return { PayloadVerifier::CreateInstanceFromZipPath(update_certificates_path_), true}; } string public_key; if (!GetPublicKey(&public_key)) { LOG(ERROR) << "Failed to read public key"; return {nullptr, true}; } // Skips the verification if the public key is empty. if (public_key.empty()) { return {nullptr, false}; } LOG(INFO) << "Verifing using public key: " << public_key; return {PayloadVerifier::CreateInstance(public_key), true}; } ErrorCode DeltaPerformer::ValidateManifest() { // Perform assorted checks to validation check the manifest, make sure it // matches data from other sources, and that it is a supported version. bool has_old_fields = std::any_of(manifest_.partitions().begin(), manifest_.partitions().end(), [](const PartitionUpdate& partition) { return partition.has_old_partition_info(); }); // The presence of an old partition hash is the sole indicator for a delta // update. Also, always treat the partial update as delta so that we can // perform the minor version check correctly. InstallPayloadType actual_payload_type = (has_old_fields || manifest_.partial_update()) ? InstallPayloadType::kDelta : InstallPayloadType::kFull; if (payload_->type == InstallPayloadType::kUnknown) { LOG(INFO) << "Detected a '" << InstallPayloadTypeToString(actual_payload_type) << "' payload."; payload_->type = actual_payload_type; } else if (payload_->type != actual_payload_type) { LOG(ERROR) << "InstallPlan expected a '" << InstallPayloadTypeToString(payload_->type) << "' payload but the downloaded manifest contains a '" << InstallPayloadTypeToString(actual_payload_type) << "' payload."; return ErrorCode::kPayloadMismatchedType; } // Check that the minor version is compatible. // TODO(xunchang) increment minor version & add check for partial update if (actual_payload_type == InstallPayloadType::kFull) { if (manifest_.minor_version() != kFullPayloadMinorVersion) { LOG(ERROR) << "Manifest contains minor version " << manifest_.minor_version() << ", but all full payloads should have version " << kFullPayloadMinorVersion << "."; return ErrorCode::kUnsupportedMinorPayloadVersion; } } else { if (manifest_.minor_version() < kMinSupportedMinorPayloadVersion || manifest_.minor_version() > kMaxSupportedMinorPayloadVersion) { LOG(ERROR) << "Manifest contains minor version " << manifest_.minor_version() << " not in the range of supported minor versions [" << kMinSupportedMinorPayloadVersion << ", " << kMaxSupportedMinorPayloadVersion << "]."; return ErrorCode::kUnsupportedMinorPayloadVersion; } } ErrorCode error_code = CheckTimestampError(); if (error_code != ErrorCode::kSuccess) { if (error_code == ErrorCode::kPayloadTimestampError) { if (!hardware_->AllowDowngrade()) { return ErrorCode::kPayloadTimestampError; } LOG(INFO) << "The current OS build allows downgrade, continuing to apply" " the payload with an older timestamp."; } else { LOG(ERROR) << "Timestamp check returned " << utils::ErrorCodeToString(error_code); return error_code; } } // TODO(crbug.com/37661) we should be adding more and more manifest checks, // such as partition boundaries, etc. return ErrorCode::kSuccess; } ErrorCode DeltaPerformer::CheckTimestampError() const { bool is_partial_update = manifest_.has_partial_update() && manifest_.partial_update(); const auto& partitions = manifest_.partitions(); // Check version field for a given PartitionUpdate object. If an error // is encountered, set |error_code| accordingly. If downgrade is detected, // |downgrade_detected| is set. Return true if the program should continue // to check the next partition or not, or false if it should exit early due // to errors. auto&& timestamp_valid = [this](const PartitionUpdate& partition, bool allow_empty_version, bool* downgrade_detected) -> ErrorCode { const auto& partition_name = partition.partition_name(); if (!partition.has_version()) { if (hardware_->GetVersionForLogging(partition_name).empty()) { LOG(INFO) << partition_name << " does't have version, skipping " << "downgrade check."; return ErrorCode::kSuccess; } if (allow_empty_version) { return ErrorCode::kSuccess; } LOG(ERROR) << "PartitionUpdate " << partition_name << " doesn't have a version field. Not allowed in partial updates."; return ErrorCode::kDownloadManifestParseError; } auto error_code = hardware_->IsPartitionUpdateValid(partition_name, partition.version()); switch (error_code) { case ErrorCode::kSuccess: break; case ErrorCode::kPayloadTimestampError: *downgrade_detected = true; LOG(WARNING) << "PartitionUpdate " << partition_name << " has an older version than partition on device."; break; default: LOG(ERROR) << "IsPartitionUpdateValid(" << partition_name << ") returned" << utils::ErrorCodeToString(error_code); break; } return error_code; }; bool downgrade_detected = false; if (is_partial_update) { // for partial updates, all partition MUST have valid timestamps // But max_timestamp can be empty for (const auto& partition : partitions) { auto error_code = timestamp_valid( partition, false /* allow_empty_version */, &downgrade_detected); if (error_code != ErrorCode::kSuccess && error_code != ErrorCode::kPayloadTimestampError) { return error_code; } } if (downgrade_detected) { return ErrorCode::kPayloadTimestampError; } return ErrorCode::kSuccess; } // For non-partial updates, check max_timestamp first. if (manifest_.max_timestamp() < hardware_->GetBuildTimestamp()) { LOG(ERROR) << "The current OS build timestamp (" << hardware_->GetBuildTimestamp() << ") is newer than the maximum timestamp in the manifest (" << manifest_.max_timestamp() << ")"; return ErrorCode::kPayloadTimestampError; } // Otherwise... partitions can have empty timestamps. for (const auto& partition : partitions) { auto error_code = timestamp_valid( partition, true /* allow_empty_version */, &downgrade_detected); if (error_code != ErrorCode::kSuccess && error_code != ErrorCode::kPayloadTimestampError) { return error_code; } } if (downgrade_detected) { return ErrorCode::kPayloadTimestampError; } return ErrorCode::kSuccess; } ErrorCode DeltaPerformer::ValidateOperationHash( const InstallOperation& operation) { if (!operation.data_sha256_hash().size()) { if (!operation.data_length()) { // Operations that do not have any data blob won't have any operation // hash either. So, these operations are always considered validated // since the metadata that contains all the non-data-blob portions of // the operation has already been validated. This is true for both HTTP // and HTTPS cases. return ErrorCode::kSuccess; } // No hash is present for an operation that has data blobs. This shouldn't // happen normally for any client that has this code, because the // corresponding update should have been produced with the operation // hashes. So if it happens it means either we've turned operation hash // generation off in DeltaDiffGenerator or it's a regression of some sort. // One caveat though: The last operation is a unused signature operation // that doesn't have a hash at the time the manifest is created. So we // should not complaint about that operation. This operation can be // recognized by the fact that it's offset is mentioned in the manifest. if (manifest_.signatures_offset() && manifest_.signatures_offset() == operation.data_offset()) { LOG(INFO) << "Skipping hash verification for signature operation " << next_operation_num_ + 1; } else { if (install_plan_->hash_checks_mandatory) { LOG(ERROR) << "Missing mandatory operation hash for operation " << next_operation_num_ + 1; return ErrorCode::kDownloadOperationHashMissingError; } LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1 << " as there's no operation hash in manifest"; } return ErrorCode::kSuccess; } brillo::Blob expected_op_hash; expected_op_hash.assign(operation.data_sha256_hash().data(), (operation.data_sha256_hash().data() + operation.data_sha256_hash().size())); brillo::Blob calculated_op_hash; if (!HashCalculator::RawHashOfBytes( buffer_.data(), operation.data_length(), &calculated_op_hash)) { LOG(ERROR) << "Unable to compute actual hash of operation " << next_operation_num_; return ErrorCode::kDownloadOperationHashVerificationError; } if (calculated_op_hash != expected_op_hash) { LOG(ERROR) << "Hash verification failed for operation " << next_operation_num_ << ". Expected hash = " << HexEncode(expected_op_hash); LOG(ERROR) << "Calculated hash over " << operation.data_length() << " bytes at offset: " << operation.data_offset() << " = " << HexEncode(calculated_op_hash); return ErrorCode::kDownloadOperationHashMismatch; } return ErrorCode::kSuccess; } #define TEST_AND_RETURN_VAL(_retval, _condition) \ do { \ if (!(_condition)) { \ LOG(ERROR) << "VerifyPayload failure: " << #_condition; \ return _retval; \ } \ } while (0); ErrorCode DeltaPerformer::VerifyPayload( const brillo::Blob& update_check_response_hash, const uint64_t update_check_response_size) { // Verifies the download size. if (update_check_response_size != metadata_size_ + metadata_signature_size_ + buffer_offset_) { LOG(ERROR) << "update_check_response_size (" << update_check_response_size << ") doesn't match metadata_size (" << metadata_size_ << ") + metadata_signature_size (" << metadata_signature_size_ << ") + buffer_offset (" << buffer_offset_ << ")."; return ErrorCode::kPayloadSizeMismatchError; } // Verifies the payload hash. TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError, !payload_hash_calculator_.raw_hash().empty()); if (payload_hash_calculator_.raw_hash() != update_check_response_hash) { LOG(ERROR) << "Actual hash: " << HexEncode(payload_hash_calculator_.raw_hash()) << ", expected hash: " << HexEncode(update_check_response_hash); return ErrorCode::kPayloadHashMismatchError; } // NOLINTNEXTLINE(whitespace/braces) auto [payload_verifier, perform_verification] = CreatePayloadVerifier(); if (!perform_verification) { LOG(WARNING) << "Not verifying signed delta payload -- missing public key."; return ErrorCode::kSuccess; } if (!payload_verifier) { LOG(ERROR) << "Failed to create the payload verifier."; return ErrorCode::kDownloadPayloadPubKeyVerificationError; } TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError, !signatures_message_data_.empty()); brillo::Blob hash_data = signed_hash_calculator_.raw_hash(); TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, hash_data.size() == kSHA256Size); if (!payload_verifier->VerifySignature(signatures_message_data_, hash_data)) { // The autoupdate_CatchBadSignatures test checks for this string // in log-files. Keep in sync. LOG(ERROR) << "Public key verification failed, thus update failed."; return ErrorCode::kDownloadPayloadPubKeyVerificationError; } LOG(INFO) << "Payload hash matches value in payload."; return ErrorCode::kSuccess; } void DeltaPerformer::DiscardBuffer(bool do_advance_offset, size_t signed_hash_buffer_size) { // Update the buffer offset. if (do_advance_offset) buffer_offset_ += buffer_.size(); // Hash the content. payload_hash_calculator_.Update(buffer_.data(), buffer_.size()); signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size); // Swap content with an empty vector to ensure that all memory is released. brillo::Blob().swap(buffer_); } bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs, const string& update_check_response_hash) { int64_t next_operation = kUpdateStateOperationInvalid; if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) && next_operation != kUpdateStateOperationInvalid && next_operation > 0)) { LOG(WARNING) << "Failed to resume update " << kPrefsUpdateStateNextOperation << " invalid: " << next_operation; return false; } string interrupted_hash; if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) && !interrupted_hash.empty() && interrupted_hash == update_check_response_hash)) { LOG(WARNING) << "Failed to resume update " << kPrefsUpdateCheckResponseHash << " mismatch, last hash: " << interrupted_hash << ", current hash: " << update_check_response_hash << ""; return false; } int64_t resumed_update_failures{}; // Note that storing this value is optional, but if it is there it should // not be more than the limit. if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) && resumed_update_failures > kMaxResumedUpdateFailures) { LOG(WARNING) << "Failed to resume update " << kPrefsResumedUpdateFailures << " has value " << resumed_update_failures << " is over the limit " << kMaxResumedUpdateFailures; return false; } // Validation check the rest. int64_t next_data_offset = -1; if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && next_data_offset >= 0)) { LOG(WARNING) << "Failed to resume update " << kPrefsUpdateStateNextDataOffset << " invalid: " << next_data_offset; return false; } string sha256_context; if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) && !sha256_context.empty())) { LOG(WARNING) << "Failed to resume update " << kPrefsUpdateStateSHA256Context << " is empty."; return false; } int64_t manifest_metadata_size = 0; if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && manifest_metadata_size > 0)) { LOG(WARNING) << "Failed to resume update " << kPrefsManifestMetadataSize << " invalid: " << manifest_metadata_size; return false; } int64_t manifest_signature_size = 0; if (!(prefs->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && manifest_signature_size >= 0)) { LOG(WARNING) << "Failed to resume update " << kPrefsManifestSignatureSize << " invalid: " << manifest_signature_size; return false; } return true; } bool DeltaPerformer::ResetUpdateProgress( PrefsInterface* prefs, bool quick, bool skip_dynamic_partititon_metadata_updated) { TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation, kUpdateStateOperationInvalid)); if (!quick) { prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1); prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0); prefs->SetString(kPrefsUpdateStateSHA256Context, ""); prefs->SetString(kPrefsUpdateStateSignedSHA256Context, ""); prefs->SetString(kPrefsUpdateStateSignatureBlob, ""); prefs->SetInt64(kPrefsManifestMetadataSize, -1); prefs->SetInt64(kPrefsManifestSignatureSize, -1); prefs->SetInt64(kPrefsResumedUpdateFailures, 0); prefs->Delete(kPrefsPostInstallSucceeded); prefs->Delete(kPrefsVerityWritten); if (!skip_dynamic_partititon_metadata_updated) { LOG(INFO) << "Resetting recorded hash for prepared partitions."; prefs->Delete(kPrefsDynamicPartitionMetadataUpdated); } } return true; } bool DeltaPerformer::ShouldCheckpoint() { base::TimeTicks curr_time = base::TimeTicks::Now(); if (curr_time > update_checkpoint_time_) { update_checkpoint_time_ = curr_time + update_checkpoint_wait_; return true; } return false; } bool DeltaPerformer::CheckpointUpdateProgress(bool force) { if (!force && !ShouldCheckpoint()) { return false; } Terminator::set_exit_blocked(true); LOG_IF(WARNING, !prefs_->StartTransaction()) << "unable to start transaction in checkpointing"; DEFER { prefs_->CancelTransaction(); }; if (last_updated_operation_num_ != next_operation_num_ || force) { if (!signatures_message_data_.empty()) { // Save the signature blob because if the update is interrupted after the // download phase we don't go through this path anymore. Some alternatives // to consider: // // 1. On resume, re-download the signature blob from the server and // re-verify it. // // 2. Verify the signature as soon as it's received and don't checkpoint // the blob and the signed sha-256 context. LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob, signatures_message_data_)) << "Unable to store the signature blob."; } TEST_AND_RETURN_FALSE(prefs_->SetString( kPrefsUpdateStateSHA256Context, payload_hash_calculator_.GetContext())); TEST_AND_RETURN_FALSE( prefs_->SetString(kPrefsUpdateStateSignedSHA256Context, signed_hash_calculator_.GetContext())); TEST_AND_RETURN_FALSE( prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, buffer_offset_)); last_updated_operation_num_ = next_operation_num_; if (next_operation_num_ < num_total_operations_) { size_t partition_index = current_partition_; while (next_operation_num_ >= acc_num_operations_[partition_index]) { partition_index++; } const size_t partition_operation_num = next_operation_num_ - (partition_index ? acc_num_operations_[partition_index - 1] : 0); const InstallOperation& op = partitions_[partition_index].operations(partition_operation_num); TEST_AND_RETURN_FALSE( prefs_->SetInt64(kPrefsUpdateStateNextDataLength, op.data_length())); } else { TEST_AND_RETURN_FALSE( prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 0)); } if (partition_writer_) { partition_writer_->CheckpointUpdateProgress(GetPartitionOperationNum()); } else { CHECK_EQ(next_operation_num_, num_total_operations_) << "Partition writer is null, we are expected to finish all " "operations: " << next_operation_num_ << "/" << num_total_operations_; } } TEST_AND_RETURN_FALSE( prefs_->SetInt64(kPrefsUpdateStateNextOperation, next_operation_num_)); if (!prefs_->SubmitTransaction()) { LOG(ERROR) << "Failed to submit transaction in checkpointing"; } return true; } bool DeltaPerformer::PrimeUpdateState() { CHECK(manifest_valid_); int64_t next_operation = kUpdateStateOperationInvalid; if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) || next_operation == kUpdateStateOperationInvalid || next_operation <= 0) { // Initiating a new update, no more state needs to be initialized. return true; } next_operation_num_ = next_operation; // Resuming an update -- load the rest of the update state. int64_t next_data_offset = -1; TEST_AND_RETURN_FALSE( prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && next_data_offset >= 0); buffer_offset_ = next_data_offset; // The signed hash context and the signature blob may be empty if the // interrupted update didn't reach the signature. string signed_hash_context; if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context, &signed_hash_context)) { TEST_AND_RETURN_FALSE( signed_hash_calculator_.SetContext(signed_hash_context)); } prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signatures_message_data_); string hash_context; TEST_AND_RETURN_FALSE( prefs_->GetString(kPrefsUpdateStateSHA256Context, &hash_context) && payload_hash_calculator_.SetContext(hash_context)); int64_t manifest_metadata_size = 0; TEST_AND_RETURN_FALSE( prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && manifest_metadata_size > 0); metadata_size_ = manifest_metadata_size; int64_t manifest_signature_size = 0; TEST_AND_RETURN_FALSE( prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && manifest_signature_size >= 0); metadata_signature_size_ = manifest_signature_size; // Advance the download progress to reflect what doesn't need to be // re-downloaded. total_bytes_received_ += buffer_offset_; // Speculatively count the resume as a failure. int64_t resumed_update_failures{}; if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) { resumed_update_failures++; } else { resumed_update_failures = 1; } prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures); return true; } bool DeltaPerformer::IsDynamicPartition(const std::string& part_name, uint32_t slot) { return boot_control_->GetDynamicPartitionControl()->IsDynamicPartition( part_name, slot); } std::unique_ptr DeltaPerformer::CreatePartitionWriter( const PartitionUpdate& partition_update, const InstallPlan::Partition& install_part, DynamicPartitionControlInterface* dynamic_control, size_t block_size, bool is_interactive, bool is_dynamic_partition) { return partition_writer::CreatePartitionWriter( partition_update, install_part, dynamic_control, block_size_, interactive_, IsDynamicPartition(install_part.name, install_plan_->target_slot)); } } // namespace chromeos_update_engine