1 /*
2  * Copyright (C) 2013 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 //#define LOG_NDEBUG 0
17 
18 #include <cmath>
19 
20 #include "common/core/math.h"
21 #include "common/core/types.h"
22 #include "dsp/core/basic.h"
23 #include "dsp/core/interpolation.h"
24 #include "dsp/core/dynamic_range_compression.h"
25 
26 #include <android/log.h>
27 
28 namespace le_fx {
29 
30 // Definitions for static const class members declared in
31 // dynamic_range_compression.h.
32 const float AdaptiveDynamicRangeCompression::kMinAbsValue = 0.000001f;
33 const float AdaptiveDynamicRangeCompression::kMinLogAbsValue =
34     0.032766999999999997517097227728299912996590137481689453125f;
35 const float AdaptiveDynamicRangeCompression::kFixedPointLimit = 32767.0f;
36 const float AdaptiveDynamicRangeCompression::kInverseFixedPointLimit =
37     1.0f / AdaptiveDynamicRangeCompression::kFixedPointLimit;
38 const float AdaptiveDynamicRangeCompression::kDefaultKneeThresholdInDecibel =
39     -8.0f;
40 const float AdaptiveDynamicRangeCompression::kCompressionRatio = 7.0f;
41 const float AdaptiveDynamicRangeCompression::kTauAttack = 0.001f;
42 const float AdaptiveDynamicRangeCompression::kTauRelease = 0.015f;
43 
AdaptiveDynamicRangeCompression()44 AdaptiveDynamicRangeCompression::AdaptiveDynamicRangeCompression() {
45   static const float kTargetGain[] = {
46       1.0f, 2.0f, 3.0f, 4.0f, 5.0f };
47   static const float kKneeThreshold[] = {
48       -8.0f, -8.0f, -8.5f, -9.0f, -10.0f };
49   target_gain_to_knee_threshold_.Initialize(
50       &kTargetGain[0], &kKneeThreshold[0],
51       sizeof(kTargetGain) / sizeof(kTargetGain[0]));
52 }
53 
Initialize(float target_gain,float sampling_rate)54 bool AdaptiveDynamicRangeCompression::Initialize(
55         float target_gain, float sampling_rate) {
56   set_knee_threshold_via_target_gain(target_gain);
57   sampling_rate_ = sampling_rate;
58   state_ = 0.0f;
59   compressor_gain_ = 1.0f;
60   if (kTauAttack > 0.0f) {
61     const float taufs = kTauAttack * sampling_rate_;
62     alpha_attack_ = std::exp(-1.0f / taufs);
63   } else {
64     alpha_attack_ = 0.0f;
65   }
66   if (kTauRelease > 0.0f) {
67     const float taufs = kTauRelease * sampling_rate_;
68     alpha_release_ = std::exp(-1.0f / taufs);
69   } else {
70     alpha_release_ = 0.0f;
71   }
72   // Feed-forward topology
73   slope_ = 1.0f / kCompressionRatio - 1.0f;
74   return true;
75 }
76 
Compress(float x)77 float AdaptiveDynamicRangeCompression::Compress(float x) {
78   const float max_abs_x = std::max(std::fabs(x), kMinLogAbsValue);
79   const float max_abs_x_dB = math::fast_log(max_abs_x);
80   // Subtract Threshold from log-encoded input to get the amount of overshoot
81   const float overshoot = max_abs_x_dB - knee_threshold_;
82   // Hard half-wave rectifier
83   const float rect = std::max(overshoot, 0.0f);
84   // Multiply rectified overshoot with slope
85   const float cv = rect * slope_;
86   const float prev_state = state_;
87   if (cv <= state_) {
88     state_ = alpha_attack_ * state_ + (1.0f - alpha_attack_) * cv;
89   } else {
90     state_ = alpha_release_ * state_ + (1.0f - alpha_release_) * cv;
91   }
92   compressor_gain_ *= expf(state_ - prev_state);
93   x *= compressor_gain_;
94   if (x > kFixedPointLimit) {
95     return kFixedPointLimit;
96   }
97   if (x < -kFixedPointLimit) {
98     return -kFixedPointLimit;
99   }
100   return x;
101 }
102 
Compress(float * x1,float * x2)103 void AdaptiveDynamicRangeCompression::Compress(float *x1, float *x2) {
104   // Taking the maximum amplitude of both channels
105   const float max_abs_x = std::max(std::fabs(*x1),
106     std::max(std::fabs(*x2), kMinLogAbsValue));
107   const float max_abs_x_dB = math::fast_log(max_abs_x);
108   // Subtract Threshold from log-encoded input to get the amount of overshoot
109   const float overshoot = max_abs_x_dB - knee_threshold_;
110   // Hard half-wave rectifier
111   const float rect = std::max(overshoot, 0.0f);
112   // Multiply rectified overshoot with slope
113   const float cv = rect * slope_;
114   const float prev_state = state_;
115   if (cv <= state_) {
116     state_ = alpha_attack_ * state_ + (1.0f - alpha_attack_) * cv;
117   } else {
118     state_ = alpha_release_ * state_ + (1.0f - alpha_release_) * cv;
119   }
120   compressor_gain_ *= expf(state_ - prev_state);
121   *x1 *= compressor_gain_;
122   if (*x1 > kFixedPointLimit) {
123     *x1 = kFixedPointLimit;
124   }
125   if (*x1 < -kFixedPointLimit) {
126     *x1 = -kFixedPointLimit;
127   }
128   *x2 *= compressor_gain_;
129   if (*x2 > kFixedPointLimit) {
130     *x2 = kFixedPointLimit;
131   }
132   if (*x2 < -kFixedPointLimit) {
133     *x2 = -kFixedPointLimit;
134   }
135 }
136 
137 }  // namespace le_fx
138 
139