1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ResourceValues.h"
18 
19 #include <algorithm>
20 #include <cinttypes>
21 #include <limits>
22 #include <set>
23 #include <sstream>
24 
25 #include "android-base/stringprintf.h"
26 #include "androidfw/ResourceTypes.h"
27 
28 #include "Resource.h"
29 #include "ResourceUtils.h"
30 #include "ValueVisitor.h"
31 #include "util/Util.h"
32 
33 using ::aapt::text::Printer;
34 using ::android::StringPiece;
35 using ::android::base::StringPrintf;
36 
37 namespace aapt {
38 
PrettyPrint(Printer * printer) const39 void Value::PrettyPrint(Printer* printer) const {
40   std::ostringstream str_stream;
41   Print(&str_stream);
42   printer->Print(str_stream.str());
43 }
44 
operator <<(std::ostream & out,const Value & value)45 std::ostream& operator<<(std::ostream& out, const Value& value) {
46   value.Print(&out);
47   return out;
48 }
49 
Transform(ValueTransformer & transformer) const50 std::unique_ptr<Value> Value::Transform(ValueTransformer& transformer) const {
51   return std::unique_ptr<Value>(this->TransformValueImpl(transformer));
52 }
53 
Transform(ValueTransformer & transformer) const54 std::unique_ptr<Item> Item::Transform(ValueTransformer& transformer) const {
55   return std::unique_ptr<Item>(this->TransformItemImpl(transformer));
56 }
57 
58 template <typename Derived>
Accept(ValueVisitor * visitor)59 void BaseValue<Derived>::Accept(ValueVisitor* visitor) {
60   visitor->Visit(static_cast<Derived*>(this));
61 }
62 
63 template <typename Derived>
Accept(ConstValueVisitor * visitor) const64 void BaseValue<Derived>::Accept(ConstValueVisitor* visitor) const {
65   visitor->Visit(static_cast<const Derived*>(this));
66 }
67 
68 template <typename Derived>
Accept(ValueVisitor * visitor)69 void BaseItem<Derived>::Accept(ValueVisitor* visitor) {
70   visitor->Visit(static_cast<Derived*>(this));
71 }
72 
73 template <typename Derived>
Accept(ConstValueVisitor * visitor) const74 void BaseItem<Derived>::Accept(ConstValueVisitor* visitor) const {
75   visitor->Visit(static_cast<const Derived*>(this));
76 }
77 
RawString(const android::StringPool::Ref & ref)78 RawString::RawString(const android::StringPool::Ref& ref) : value(ref) {
79 }
80 
Equals(const Value * value) const81 bool RawString::Equals(const Value* value) const {
82   const RawString* other = ValueCast<RawString>(value);
83   if (!other) {
84     return false;
85   }
86   return *this->value == *other->value;
87 }
88 
Flatten(android::Res_value * out_value) const89 bool RawString::Flatten(android::Res_value* out_value) const {
90   out_value->dataType = android::Res_value::TYPE_STRING;
91   out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
92   return true;
93 }
94 
Print(std::ostream * out) const95 void RawString::Print(std::ostream* out) const {
96   *out << "(raw string) " << *value;
97 }
98 
Reference()99 Reference::Reference() : reference_type(Type::kResource) {}
100 
Reference(const ResourceNameRef & n,Type t)101 Reference::Reference(const ResourceNameRef& n, Type t)
102     : name(n.ToResourceName()), reference_type(t) {}
103 
Reference(const ResourceId & i,Type type)104 Reference::Reference(const ResourceId& i, Type type)
105     : id(i), reference_type(type) {}
106 
Reference(const ResourceNameRef & n,const ResourceId & i)107 Reference::Reference(const ResourceNameRef& n, const ResourceId& i)
108     : name(n.ToResourceName()), id(i), reference_type(Type::kResource) {}
109 
Equals(const Value * value) const110 bool Reference::Equals(const Value* value) const {
111   const Reference* other = ValueCast<Reference>(value);
112   if (!other) {
113     return false;
114   }
115   return reference_type == other->reference_type && private_reference == other->private_reference &&
116          id == other->id && name == other->name && type_flags == other->type_flags;
117 }
118 
Flatten(android::Res_value * out_value) const119 bool Reference::Flatten(android::Res_value* out_value) const {
120   if (name && name.value().type.type == ResourceType::kMacro) {
121     return false;
122   }
123 
124   const ResourceId resid = id.value_or(ResourceId(0));
125   const bool dynamic = resid.is_valid() && is_dynamic;
126 
127   if (reference_type == Reference::Type::kResource) {
128     if (dynamic) {
129       out_value->dataType = android::Res_value::TYPE_DYNAMIC_REFERENCE;
130     } else {
131       out_value->dataType = android::Res_value::TYPE_REFERENCE;
132     }
133   } else {
134     if (dynamic) {
135       out_value->dataType = android::Res_value::TYPE_DYNAMIC_ATTRIBUTE;
136     } else {
137       out_value->dataType = android::Res_value::TYPE_ATTRIBUTE;
138     }
139   }
140   out_value->data = android::util::HostToDevice32(resid.id);
141   return true;
142 }
143 
Print(std::ostream * out) const144 void Reference::Print(std::ostream* out) const {
145   if (reference_type == Type::kResource) {
146     *out << "(reference) @";
147     if (!name && !id) {
148       *out << "null";
149       return;
150     }
151   } else {
152     *out << "(attr-reference) ?";
153   }
154 
155   if (private_reference) {
156     *out << "*";
157   }
158 
159   if (name) {
160     *out << name.value();
161   }
162 
163   if (id && id.value().is_valid()) {
164     if (name) {
165       *out << " ";
166     }
167     *out << id.value();
168   }
169 }
170 
PrettyPrintReferenceImpl(const Reference & ref,bool print_package,Printer * printer)171 static void PrettyPrintReferenceImpl(const Reference& ref, bool print_package, Printer* printer) {
172   switch (ref.reference_type) {
173     case Reference::Type::kResource:
174       printer->Print("@");
175       break;
176 
177     case Reference::Type::kAttribute:
178       printer->Print("?");
179       break;
180   }
181 
182   if (!ref.name && !ref.id) {
183     printer->Print("null");
184     return;
185   }
186 
187   if (ref.private_reference) {
188     printer->Print("*");
189   }
190 
191   if (ref.name) {
192     const ResourceName& name = ref.name.value();
193     if (print_package) {
194       printer->Print(name.to_string());
195     } else {
196       printer->Print(name.type.to_string());
197       printer->Print("/");
198       printer->Print(name.entry);
199     }
200   } else if (ref.id && ref.id.value().is_valid()) {
201     printer->Print(ref.id.value().to_string());
202   }
203 }
204 
PrettyPrint(Printer * printer) const205 void Reference::PrettyPrint(Printer* printer) const {
206   PrettyPrintReferenceImpl(*this, true /*print_package*/, printer);
207 }
208 
PrettyPrint(StringPiece package,Printer * printer) const209 void Reference::PrettyPrint(StringPiece package, Printer* printer) const {
210   const bool print_package = name ? package != name.value().package : true;
211   PrettyPrintReferenceImpl(*this, print_package, printer);
212 }
213 
Equals(const Value * value) const214 bool Id::Equals(const Value* value) const {
215   return ValueCast<Id>(value) != nullptr;
216 }
217 
Flatten(android::Res_value * out) const218 bool Id::Flatten(android::Res_value* out) const {
219   out->dataType = android::Res_value::TYPE_INT_BOOLEAN;
220   out->data = android::util::HostToDevice32(0);
221   return true;
222 }
223 
Print(std::ostream * out) const224 void Id::Print(std::ostream* out) const {
225   *out << "(id)";
226 }
227 
String(const android::StringPool::Ref & ref)228 String::String(const android::StringPool::Ref& ref) : value(ref) {
229 }
230 
Equals(const Value * value) const231 bool String::Equals(const Value* value) const {
232   const String* other = ValueCast<String>(value);
233   if (!other) {
234     return false;
235   }
236 
237   if (this->value != other->value) {
238     return false;
239   }
240 
241   if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
242     return false;
243   }
244 
245   auto other_iter = other->untranslatable_sections.begin();
246   for (const UntranslatableSection& this_section : untranslatable_sections) {
247     if (this_section != *other_iter) {
248       return false;
249     }
250     ++other_iter;
251   }
252   return true;
253 }
254 
Flatten(android::Res_value * out_value) const255 bool String::Flatten(android::Res_value* out_value) const {
256   // Verify that our StringPool index is within encode-able limits.
257   if (value.index() > std::numeric_limits<uint32_t>::max()) {
258     return false;
259   }
260 
261   out_value->dataType = android::Res_value::TYPE_STRING;
262   out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
263   return true;
264 }
265 
Print(std::ostream * out) const266 void String::Print(std::ostream* out) const {
267   *out << "(string) \"" << *value << "\"";
268 }
269 
PrettyPrint(Printer * printer) const270 void String::PrettyPrint(Printer* printer) const {
271   printer->Print("\"");
272   printer->Print(*value);
273   printer->Print("\"");
274 }
275 
StyledString(const android::StringPool::StyleRef & ref)276 StyledString::StyledString(const android::StringPool::StyleRef& ref) : value(ref) {
277 }
278 
Equals(const Value * value) const279 bool StyledString::Equals(const Value* value) const {
280   const StyledString* other = ValueCast<StyledString>(value);
281   if (!other) {
282     return false;
283   }
284 
285   if (this->value != other->value) {
286     return false;
287   }
288 
289   if (untranslatable_sections.size() != other->untranslatable_sections.size()) {
290     return false;
291   }
292 
293   auto other_iter = other->untranslatable_sections.begin();
294   for (const UntranslatableSection& this_section : untranslatable_sections) {
295     if (this_section != *other_iter) {
296       return false;
297     }
298     ++other_iter;
299   }
300   return true;
301 }
302 
Flatten(android::Res_value * out_value) const303 bool StyledString::Flatten(android::Res_value* out_value) const {
304   if (value.index() > std::numeric_limits<uint32_t>::max()) {
305     return false;
306   }
307 
308   out_value->dataType = android::Res_value::TYPE_STRING;
309   out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(value.index()));
310   return true;
311 }
312 
Print(std::ostream * out) const313 void StyledString::Print(std::ostream* out) const {
314   *out << "(styled string) \"" << value->value << "\"";
315   for (const android::StringPool::Span& span : value->spans) {
316     *out << " " << *span.name << ":" << span.first_char << "," << span.last_char;
317   }
318 }
319 
FileReference(const android::StringPool::Ref & _path)320 FileReference::FileReference(const android::StringPool::Ref& _path) : path(_path) {
321 }
322 
Equals(const Value * value) const323 bool FileReference::Equals(const Value* value) const {
324   const FileReference* other = ValueCast<FileReference>(value);
325   if (!other) {
326     return false;
327   }
328   return path == other->path;
329 }
330 
Flatten(android::Res_value * out_value) const331 bool FileReference::Flatten(android::Res_value* out_value) const {
332   if (path.index() > std::numeric_limits<uint32_t>::max()) {
333     return false;
334   }
335 
336   out_value->dataType = android::Res_value::TYPE_STRING;
337   out_value->data = android::util::HostToDevice32(static_cast<uint32_t>(path.index()));
338   return true;
339 }
340 
Print(std::ostream * out) const341 void FileReference::Print(std::ostream* out) const {
342   *out << "(file) " << *path;
343   switch (type) {
344     case ResourceFile::Type::kBinaryXml:
345       *out << " type=XML";
346       break;
347     case ResourceFile::Type::kProtoXml:
348       *out << " type=protoXML";
349       break;
350     case ResourceFile::Type::kPng:
351       *out << " type=PNG";
352       break;
353     default:
354       break;
355   }
356 }
357 
BinaryPrimitive(const android::Res_value & val)358 BinaryPrimitive::BinaryPrimitive(const android::Res_value& val) : value(val) {
359 }
360 
BinaryPrimitive(uint8_t dataType,uint32_t data)361 BinaryPrimitive::BinaryPrimitive(uint8_t dataType, uint32_t data) {
362   value.dataType = dataType;
363   value.data = data;
364 }
365 
Equals(const Value * value) const366 bool BinaryPrimitive::Equals(const Value* value) const {
367   const BinaryPrimitive* other = ValueCast<BinaryPrimitive>(value);
368   if (!other) {
369     return false;
370   }
371   return this->value.dataType == other->value.dataType &&
372          this->value.data == other->value.data;
373 }
374 
Flatten(::android::Res_value * out_value) const375 bool BinaryPrimitive::Flatten(::android::Res_value* out_value) const {
376   out_value->dataType = value.dataType;
377   out_value->data = android::util::HostToDevice32(value.data);
378   return true;
379 }
380 
Print(std::ostream * out) const381 void BinaryPrimitive::Print(std::ostream* out) const {
382   *out << StringPrintf("(primitive) type=0x%02x data=0x%08x", value.dataType, value.data);
383 }
384 
ComplexToString(uint32_t complex_value,bool fraction)385 static std::string ComplexToString(uint32_t complex_value, bool fraction) {
386   using ::android::Res_value;
387 
388   constexpr std::array<int, 4> kRadixShifts = {{23, 16, 8, 0}};
389 
390   // Determine the radix that was used.
391   const uint32_t radix =
392       (complex_value >> Res_value::COMPLEX_RADIX_SHIFT) & Res_value::COMPLEX_RADIX_MASK;
393   const uint64_t mantissa = uint64_t{(complex_value >> Res_value::COMPLEX_MANTISSA_SHIFT) &
394                                      Res_value::COMPLEX_MANTISSA_MASK}
395                             << kRadixShifts[radix];
396   const float value = mantissa * (1.0f / (1 << 23));
397 
398   std::string str = StringPrintf("%f", value);
399 
400   const int unit_type =
401       (complex_value >> Res_value::COMPLEX_UNIT_SHIFT) & Res_value::COMPLEX_UNIT_MASK;
402   if (fraction) {
403     switch (unit_type) {
404       case Res_value::COMPLEX_UNIT_FRACTION:
405         str += "%";
406         break;
407       case Res_value::COMPLEX_UNIT_FRACTION_PARENT:
408         str += "%p";
409         break;
410       default:
411         str += "???";
412         break;
413     }
414   } else {
415     switch (unit_type) {
416       case Res_value::COMPLEX_UNIT_PX:
417         str += "px";
418         break;
419       case Res_value::COMPLEX_UNIT_DIP:
420         str += "dp";
421         break;
422       case Res_value::COMPLEX_UNIT_SP:
423         str += "sp";
424         break;
425       case Res_value::COMPLEX_UNIT_PT:
426         str += "pt";
427         break;
428       case Res_value::COMPLEX_UNIT_IN:
429         str += "in";
430         break;
431       case Res_value::COMPLEX_UNIT_MM:
432         str += "mm";
433         break;
434       default:
435         str += "???";
436         break;
437     }
438   }
439   return str;
440 }
441 
442 // This function is designed to using different specifier to print different floats,
443 // which can print more accurate format rather than using %g only.
DecideFormat(float f)444 const char* BinaryPrimitive::DecideFormat(float f) {
445   // if the float is either too big or too tiny, print it in scientific notation.
446   // eg: "10995116277760000000000" to 1.099512e+22, "0.00000000001" to 1.000000e-11
447   if (fabs(f) > std::numeric_limits<int64_t>::max() || fabs(f) < 1e-10) {
448     return "%e";
449     // Else if the number is an integer exactly, print it without trailing zeros.
450     // eg: "1099511627776" to 1099511627776
451   } else if (int64_t(f) == f) {
452     return "%.0f";
453   }
454   return "%g";
455 }
456 
PrettyPrint(Printer * printer) const457 void BinaryPrimitive::PrettyPrint(Printer* printer) const {
458   using ::android::Res_value;
459   switch (value.dataType) {
460     case Res_value::TYPE_NULL:
461       if (value.data == Res_value::DATA_NULL_EMPTY) {
462         printer->Print("@empty");
463       } else {
464         printer->Print("@null");
465       }
466       break;
467 
468     case Res_value::TYPE_INT_DEC:
469       printer->Print(StringPrintf("%" PRIi32, static_cast<int32_t>(value.data)));
470       break;
471 
472     case Res_value::TYPE_INT_HEX:
473       printer->Print(StringPrintf("0x%08x", value.data));
474       break;
475 
476     case Res_value::TYPE_INT_BOOLEAN:
477       printer->Print(value.data != 0 ? "true" : "false");
478       break;
479 
480     case Res_value::TYPE_INT_COLOR_ARGB8:
481     case Res_value::TYPE_INT_COLOR_RGB8:
482     case Res_value::TYPE_INT_COLOR_ARGB4:
483     case Res_value::TYPE_INT_COLOR_RGB4:
484       printer->Print(StringPrintf("#%08x", value.data));
485       break;
486 
487     case Res_value::TYPE_FLOAT:
488       float f;
489       f = *reinterpret_cast<const float*>(&value.data);
490       printer->Print(StringPrintf(DecideFormat(f), f));
491       break;
492 
493     case Res_value::TYPE_DIMENSION:
494       printer->Print(ComplexToString(value.data, false /*fraction*/));
495       break;
496 
497     case Res_value::TYPE_FRACTION:
498       printer->Print(ComplexToString(value.data, true /*fraction*/));
499       break;
500 
501     default:
502       printer->Print(StringPrintf("(unknown 0x%02x) 0x%08x", value.dataType, value.data));
503       break;
504   }
505 }
506 
Attribute(uint32_t t)507 Attribute::Attribute(uint32_t t)
508     : type_mask(t),
509       min_int(std::numeric_limits<int32_t>::min()),
510       max_int(std::numeric_limits<int32_t>::max()) {
511 }
512 
operator <<(std::ostream & out,const Attribute::Symbol & s)513 std::ostream& operator<<(std::ostream& out, const Attribute::Symbol& s) {
514   if (s.symbol.name) {
515     out << s.symbol.name.value().entry;
516   } else {
517     out << "???";
518   }
519   return out << "=" << s.value;
520 }
521 
522 template <typename T>
add_pointer(T & val)523 constexpr T* add_pointer(T& val) {
524   return &val;
525 }
526 
Equals(const Value * value) const527 bool Attribute::Equals(const Value* value) const {
528   const Attribute* other = ValueCast<Attribute>(value);
529   if (!other) {
530     return false;
531   }
532 
533   if (symbols.size() != other->symbols.size()) {
534     return false;
535   }
536 
537   if (type_mask != other->type_mask || min_int != other->min_int || max_int != other->max_int) {
538     return false;
539   }
540 
541   std::vector<const Symbol*> sorted_a;
542   std::transform(symbols.begin(), symbols.end(), std::back_inserter(sorted_a),
543                  add_pointer<const Symbol>);
544   std::sort(sorted_a.begin(), sorted_a.end(), [](const Symbol* a, const Symbol* b) -> bool {
545     return a->symbol.name < b->symbol.name;
546   });
547 
548   std::vector<const Symbol*> sorted_b;
549   std::transform(other->symbols.begin(), other->symbols.end(), std::back_inserter(sorted_b),
550                  add_pointer<const Symbol>);
551   std::sort(sorted_b.begin(), sorted_b.end(), [](const Symbol* a, const Symbol* b) -> bool {
552     return a->symbol.name < b->symbol.name;
553   });
554 
555   return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
556                     [](const Symbol* a, const Symbol* b) -> bool {
557                       return a->symbol.Equals(&b->symbol) && a->value == b->value;
558                     });
559 }
560 
IsCompatibleWith(const Attribute & attr) const561 bool Attribute::IsCompatibleWith(const Attribute& attr) const {
562   // If the high bits are set on any of these attribute type masks, then they are incompatible.
563   // We don't check that flags and enums are identical.
564   if ((type_mask & ~android::ResTable_map::TYPE_ANY) != 0 ||
565       (attr.type_mask & ~android::ResTable_map::TYPE_ANY) != 0) {
566     return false;
567   }
568 
569   // Every attribute accepts a reference.
570   uint32_t this_type_mask = type_mask | android::ResTable_map::TYPE_REFERENCE;
571   uint32_t that_type_mask = attr.type_mask | android::ResTable_map::TYPE_REFERENCE;
572   return this_type_mask == that_type_mask;
573 }
574 
MaskString(uint32_t type_mask)575 std::string Attribute::MaskString(uint32_t type_mask) {
576   if (type_mask == android::ResTable_map::TYPE_ANY) {
577     return "any";
578   }
579 
580   std::ostringstream out;
581   bool set = false;
582   if ((type_mask & android::ResTable_map::TYPE_REFERENCE) != 0) {
583     if (!set) {
584       set = true;
585     } else {
586       out << "|";
587     }
588     out << "reference";
589   }
590 
591   if ((type_mask & android::ResTable_map::TYPE_STRING) != 0) {
592     if (!set) {
593       set = true;
594     } else {
595       out << "|";
596     }
597     out << "string";
598   }
599 
600   if ((type_mask & android::ResTable_map::TYPE_INTEGER) != 0) {
601     if (!set) {
602       set = true;
603     } else {
604       out << "|";
605     }
606     out << "integer";
607   }
608 
609   if ((type_mask & android::ResTable_map::TYPE_BOOLEAN) != 0) {
610     if (!set) {
611       set = true;
612     } else {
613       out << "|";
614     }
615     out << "boolean";
616   }
617 
618   if ((type_mask & android::ResTable_map::TYPE_COLOR) != 0) {
619     if (!set) {
620       set = true;
621     } else {
622       out << "|";
623     }
624     out << "color";
625   }
626 
627   if ((type_mask & android::ResTable_map::TYPE_FLOAT) != 0) {
628     if (!set) {
629       set = true;
630     } else {
631       out << "|";
632     }
633     out << "float";
634   }
635 
636   if ((type_mask & android::ResTable_map::TYPE_DIMENSION) != 0) {
637     if (!set) {
638       set = true;
639     } else {
640       out << "|";
641     }
642     out << "dimension";
643   }
644 
645   if ((type_mask & android::ResTable_map::TYPE_FRACTION) != 0) {
646     if (!set) {
647       set = true;
648     } else {
649       out << "|";
650     }
651     out << "fraction";
652   }
653 
654   if ((type_mask & android::ResTable_map::TYPE_ENUM) != 0) {
655     if (!set) {
656       set = true;
657     } else {
658       out << "|";
659     }
660     out << "enum";
661   }
662 
663   if ((type_mask & android::ResTable_map::TYPE_FLAGS) != 0) {
664     if (!set) {
665       set = true;
666     } else {
667       out << "|";
668     }
669     out << "flags";
670   }
671   return out.str();
672 }
673 
MaskString() const674 std::string Attribute::MaskString() const {
675   return MaskString(type_mask);
676 }
677 
Print(std::ostream * out) const678 void Attribute::Print(std::ostream* out) const {
679   *out << "(attr) " << MaskString();
680 
681   if (!symbols.empty()) {
682     *out << " [" << util::Joiner(symbols, ", ") << "]";
683   }
684 
685   if (min_int != std::numeric_limits<int32_t>::min()) {
686     *out << " min=" << min_int;
687   }
688 
689   if (max_int != std::numeric_limits<int32_t>::max()) {
690     *out << " max=" << max_int;
691   }
692 
693   if (IsWeak()) {
694     *out << " [weak]";
695   }
696 }
697 
BuildAttributeMismatchMessage(const Attribute & attr,const Item & value,android::DiagMessage * out_msg)698 static void BuildAttributeMismatchMessage(const Attribute& attr, const Item& value,
699                                           android::DiagMessage* out_msg) {
700   *out_msg << "expected";
701   if (attr.type_mask & android::ResTable_map::TYPE_BOOLEAN) {
702     *out_msg << " boolean";
703   }
704 
705   if (attr.type_mask & android::ResTable_map::TYPE_COLOR) {
706     *out_msg << " color";
707   }
708 
709   if (attr.type_mask & android::ResTable_map::TYPE_DIMENSION) {
710     *out_msg << " dimension";
711   }
712 
713   if (attr.type_mask & android::ResTable_map::TYPE_ENUM) {
714     *out_msg << " enum";
715   }
716 
717   if (attr.type_mask & android::ResTable_map::TYPE_FLAGS) {
718     *out_msg << " flags";
719   }
720 
721   if (attr.type_mask & android::ResTable_map::TYPE_FLOAT) {
722     *out_msg << " float";
723   }
724 
725   if (attr.type_mask & android::ResTable_map::TYPE_FRACTION) {
726     *out_msg << " fraction";
727   }
728 
729   if (attr.type_mask & android::ResTable_map::TYPE_INTEGER) {
730     *out_msg << " integer";
731   }
732 
733   if (attr.type_mask & android::ResTable_map::TYPE_REFERENCE) {
734     *out_msg << " reference";
735   }
736 
737   if (attr.type_mask & android::ResTable_map::TYPE_STRING) {
738     *out_msg << " string";
739   }
740 
741   *out_msg << " but got " << value;
742 }
743 
Matches(const Item & item,android::DiagMessage * out_msg) const744 bool Attribute::Matches(const Item& item, android::DiagMessage* out_msg) const {
745   constexpr const uint32_t TYPE_ENUM = android::ResTable_map::TYPE_ENUM;
746   constexpr const uint32_t TYPE_FLAGS = android::ResTable_map::TYPE_FLAGS;
747   constexpr const uint32_t TYPE_INTEGER = android::ResTable_map::TYPE_INTEGER;
748   constexpr const uint32_t TYPE_REFERENCE = android::ResTable_map::TYPE_REFERENCE;
749 
750   android::Res_value val = {};
751   item.Flatten(&val);
752 
753   const uint32_t flattened_data = android::util::DeviceToHost32(val.data);
754 
755   // Always allow references.
756   const uint32_t actual_type = ResourceUtils::AndroidTypeToAttributeTypeMask(val.dataType);
757 
758   // Only one type must match between the actual and expected.
759   if ((actual_type & (type_mask | TYPE_REFERENCE)) == 0) {
760     if (out_msg) {
761       BuildAttributeMismatchMessage(*this, item, out_msg);
762     }
763     return false;
764   }
765 
766   // Enums and flags are encoded as integers, so check them first before doing any range checks.
767   if ((type_mask & TYPE_ENUM) != 0 && (actual_type & TYPE_ENUM) != 0) {
768     for (const Symbol& s : symbols) {
769       if (flattened_data == s.value) {
770         return true;
771       }
772     }
773 
774     // If the attribute accepts integers, we can't fail here.
775     if ((type_mask & TYPE_INTEGER) == 0) {
776       if (out_msg) {
777         *out_msg << item << " is not a valid enum";
778       }
779       return false;
780     }
781   }
782 
783   if ((type_mask & TYPE_FLAGS) != 0 && (actual_type & TYPE_FLAGS) != 0) {
784     uint32_t mask = 0u;
785     for (const Symbol& s : symbols) {
786       mask |= s.value;
787     }
788 
789     // Check if the flattened data is covered by the flag bit mask.
790     // If the attribute accepts integers, we can't fail here.
791     if ((mask & flattened_data) == flattened_data) {
792       return true;
793     } else if ((type_mask & TYPE_INTEGER) == 0) {
794       if (out_msg) {
795         *out_msg << item << " is not a valid flag";
796       }
797       return false;
798     }
799   }
800 
801   // Finally check the integer range of the value.
802   if ((type_mask & TYPE_INTEGER) != 0 && (actual_type & TYPE_INTEGER) != 0) {
803     if (static_cast<int32_t>(flattened_data) < min_int) {
804       if (out_msg) {
805         *out_msg << item << " is less than minimum integer " << min_int;
806       }
807       return false;
808     } else if (static_cast<int32_t>(flattened_data) > max_int) {
809       if (out_msg) {
810         *out_msg << item << " is greater than maximum integer " << max_int;
811       }
812       return false;
813     }
814   }
815   return true;
816 }
817 
operator <<(std::ostream & out,const Style::Entry & entry)818 std::ostream& operator<<(std::ostream& out, const Style::Entry& entry) {
819   if (entry.key.name) {
820     out << entry.key.name.value();
821   } else if (entry.key.id) {
822     out << entry.key.id.value();
823   } else {
824     out << "???";
825   }
826   out << " = " << entry.value;
827   return out;
828 }
829 
830 template <typename T>
ToPointerVec(std::vector<T> & src)831 std::vector<T*> ToPointerVec(std::vector<T>& src) {
832   std::vector<T*> dst;
833   dst.reserve(src.size());
834   for (T& in : src) {
835     dst.push_back(&in);
836   }
837   return dst;
838 }
839 
840 template <typename T>
ToPointerVec(const std::vector<T> & src)841 std::vector<const T*> ToPointerVec(const std::vector<T>& src) {
842   std::vector<const T*> dst;
843   dst.reserve(src.size());
844   for (const T& in : src) {
845     dst.push_back(&in);
846   }
847   return dst;
848 }
849 
KeyNameComparator(const Style::Entry * a,const Style::Entry * b)850 static bool KeyNameComparator(const Style::Entry* a, const Style::Entry* b) {
851   return a->key.name < b->key.name;
852 }
853 
Equals(const Value * value) const854 bool Style::Equals(const Value* value) const {
855   const Style* other = ValueCast<Style>(value);
856   if (!other) {
857     return false;
858   }
859 
860   if (bool(parent) != bool(other->parent) ||
861       (parent && other->parent && !parent.value().Equals(&other->parent.value()))) {
862     return false;
863   }
864 
865   if (entries.size() != other->entries.size()) {
866     return false;
867   }
868 
869   std::vector<const Entry*> sorted_a = ToPointerVec(entries);
870   std::sort(sorted_a.begin(), sorted_a.end(), KeyNameComparator);
871 
872   std::vector<const Entry*> sorted_b = ToPointerVec(other->entries);
873   std::sort(sorted_b.begin(), sorted_b.end(), KeyNameComparator);
874 
875   return std::equal(sorted_a.begin(), sorted_a.end(), sorted_b.begin(),
876                     [](const Entry* a, const Entry* b) -> bool {
877                       return a->key.Equals(&b->key) && a->value->Equals(b->value.get());
878                     });
879 }
880 
Print(std::ostream * out) const881 void Style::Print(std::ostream* out) const {
882   *out << "(style) ";
883   if (parent && parent.value().name) {
884     const Reference& parent_ref = parent.value();
885     if (parent_ref.private_reference) {
886       *out << "*";
887     }
888     *out << parent_ref.name.value();
889   }
890   *out << " [" << util::Joiner(entries, ", ") << "]";
891 }
892 
CloneEntry(const Style::Entry & entry,android::StringPool * pool)893 Style::Entry CloneEntry(const Style::Entry& entry, android::StringPool* pool) {
894   Style::Entry cloned_entry{entry.key};
895   if (entry.value != nullptr) {
896     CloningValueTransformer cloner(pool);
897     cloned_entry.value = entry.value->Transform(cloner);
898   }
899   return cloned_entry;
900 }
901 
MergeWith(Style * other,android::StringPool * pool)902 void Style::MergeWith(Style* other, android::StringPool* pool) {
903   if (other->parent) {
904     parent = other->parent;
905   }
906 
907   // We can't assume that the entries are sorted alphabetically since they're supposed to be
908   // sorted by Resource Id. Not all Resource Ids may be set though, so we can't sort and merge
909   // them keying off that.
910   //
911   // Instead, sort the entries of each Style by their name in a separate structure. Then merge
912   // those.
913 
914   std::vector<Entry*> this_sorted = ToPointerVec(entries);
915   std::sort(this_sorted.begin(), this_sorted.end(), KeyNameComparator);
916 
917   std::vector<Entry*> other_sorted = ToPointerVec(other->entries);
918   std::sort(other_sorted.begin(), other_sorted.end(), KeyNameComparator);
919 
920   auto this_iter = this_sorted.begin();
921   const auto this_end = this_sorted.end();
922 
923   auto other_iter = other_sorted.begin();
924   const auto other_end = other_sorted.end();
925 
926   std::vector<Entry> merged_entries;
927   while (this_iter != this_end) {
928     if (other_iter != other_end) {
929       if ((*this_iter)->key.name < (*other_iter)->key.name) {
930         merged_entries.push_back(std::move(**this_iter));
931         ++this_iter;
932       } else {
933         // The other overrides.
934         merged_entries.push_back(CloneEntry(**other_iter, pool));
935         if ((*this_iter)->key.name == (*other_iter)->key.name) {
936           ++this_iter;
937         }
938         ++other_iter;
939       }
940     } else {
941       merged_entries.push_back(std::move(**this_iter));
942       ++this_iter;
943     }
944   }
945 
946   while (other_iter != other_end) {
947     merged_entries.push_back(CloneEntry(**other_iter, pool));
948     ++other_iter;
949   }
950 
951   entries = std::move(merged_entries);
952 }
953 
Equals(const Value * value) const954 bool Array::Equals(const Value* value) const {
955   const Array* other = ValueCast<Array>(value);
956   if (!other) {
957     return false;
958   }
959 
960   if (elements.size() != other->elements.size()) {
961     return false;
962   }
963 
964   return std::equal(elements.begin(), elements.end(), other->elements.begin(),
965                     [](const std::unique_ptr<Item>& a, const std::unique_ptr<Item>& b) -> bool {
966                       return a->Equals(b.get());
967                     });
968 }
969 
Print(std::ostream * out) const970 void Array::Print(std::ostream* out) const {
971   *out << "(array) [" << util::Joiner(elements, ", ") << "]";
972 }
973 
Equals(const Value * value) const974 bool Plural::Equals(const Value* value) const {
975   const Plural* other = ValueCast<Plural>(value);
976   if (!other) {
977     return false;
978   }
979 
980   auto one_iter = values.begin();
981   auto one_end_iter = values.end();
982   auto two_iter = other->values.begin();
983   for (; one_iter != one_end_iter; ++one_iter, ++two_iter) {
984     const std::unique_ptr<Item>& a = *one_iter;
985     const std::unique_ptr<Item>& b = *two_iter;
986     if (a != nullptr && b != nullptr) {
987       if (!a->Equals(b.get())) {
988         return false;
989       }
990     } else if (a != b) {
991       return false;
992     }
993   }
994   return true;
995 }
996 
Print(std::ostream * out) const997 void Plural::Print(std::ostream* out) const {
998   *out << "(plural)";
999   if (values[Zero]) {
1000     *out << " zero=" << *values[Zero];
1001   }
1002 
1003   if (values[One]) {
1004     *out << " one=" << *values[One];
1005   }
1006 
1007   if (values[Two]) {
1008     *out << " two=" << *values[Two];
1009   }
1010 
1011   if (values[Few]) {
1012     *out << " few=" << *values[Few];
1013   }
1014 
1015   if (values[Many]) {
1016     *out << " many=" << *values[Many];
1017   }
1018 
1019   if (values[Other]) {
1020     *out << " other=" << *values[Other];
1021   }
1022 }
1023 
Equals(const Value * value) const1024 bool Styleable::Equals(const Value* value) const {
1025   const Styleable* other = ValueCast<Styleable>(value);
1026   if (!other) {
1027     return false;
1028   }
1029 
1030   if (entries.size() != other->entries.size()) {
1031     return false;
1032   }
1033 
1034   return std::equal(entries.begin(), entries.end(), other->entries.begin(),
1035                     [](const Reference& a, const Reference& b) -> bool {
1036                       return a.Equals(&b);
1037                     });
1038 }
1039 
Print(std::ostream * out) const1040 void Styleable::Print(std::ostream* out) const {
1041   *out << "(styleable) "
1042        << " [" << util::Joiner(entries, ", ") << "]";
1043 }
1044 
Equals(const Value * value) const1045 bool Macro::Equals(const Value* value) const {
1046   const Macro* other = ValueCast<Macro>(value);
1047   if (!other) {
1048     return false;
1049   }
1050   return other->raw_value == raw_value && other->style_string.spans == style_string.spans &&
1051          other->style_string.str == style_string.str &&
1052          other->untranslatable_sections == untranslatable_sections &&
1053          other->alias_namespaces == alias_namespaces;
1054 }
1055 
Print(std::ostream * out) const1056 void Macro::Print(std::ostream* out) const {
1057   *out << "(macro) ";
1058 }
1059 
operator <(const Reference & a,const Reference & b)1060 bool operator<(const Reference& a, const Reference& b) {
1061   int cmp = a.name.value_or(ResourceName{}).compare(b.name.value_or(ResourceName{}));
1062   if (cmp != 0) return cmp < 0;
1063   return a.id < b.id;
1064 }
1065 
operator ==(const Reference & a,const Reference & b)1066 bool operator==(const Reference& a, const Reference& b) {
1067   return a.name == b.name && a.id == b.id;
1068 }
1069 
operator !=(const Reference & a,const Reference & b)1070 bool operator!=(const Reference& a, const Reference& b) {
1071   return a.name != b.name || a.id != b.id;
1072 }
1073 
1074 struct NameOnlyComparator {
operator ()aapt::NameOnlyComparator1075   bool operator()(const Reference& a, const Reference& b) const {
1076     return a.name < b.name;
1077   }
1078 };
1079 
MergeWith(Styleable * other)1080 void Styleable::MergeWith(Styleable* other) {
1081   // Compare only names, because some References may already have their IDs
1082   // assigned (framework IDs that don't change).
1083   std::set<Reference, NameOnlyComparator> references;
1084   references.insert(entries.begin(), entries.end());
1085   references.insert(other->entries.begin(), other->entries.end());
1086   entries.clear();
1087   entries.reserve(references.size());
1088   entries.insert(entries.end(), references.begin(), references.end());
1089 }
1090 
1091 template <typename T>
CopyValueFields(std::unique_ptr<T> new_value,const T * value)1092 std::unique_ptr<T> CopyValueFields(std::unique_ptr<T> new_value, const T* value) {
1093   new_value->SetSource(value->GetSource());
1094   new_value->SetComment(value->GetComment());
1095   return new_value;
1096 }
1097 
CloningValueTransformer(android::StringPool * new_pool)1098 CloningValueTransformer::CloningValueTransformer(android::StringPool* new_pool)
1099     : ValueTransformer(new_pool) {
1100 }
1101 
TransformDerived(const Reference * value)1102 std::unique_ptr<Reference> CloningValueTransformer::TransformDerived(const Reference* value) {
1103   return std::make_unique<Reference>(*value);
1104 }
1105 
TransformDerived(const Id * value)1106 std::unique_ptr<Id> CloningValueTransformer::TransformDerived(const Id* value) {
1107   return std::make_unique<Id>(*value);
1108 }
1109 
TransformDerived(const RawString * value)1110 std::unique_ptr<RawString> CloningValueTransformer::TransformDerived(const RawString* value) {
1111   auto new_value = std::make_unique<RawString>(pool_->MakeRef(value->value));
1112   return CopyValueFields(std::move(new_value), value);
1113 }
1114 
TransformDerived(const String * value)1115 std::unique_ptr<String> CloningValueTransformer::TransformDerived(const String* value) {
1116   auto new_value = std::make_unique<String>(pool_->MakeRef(value->value));
1117   new_value->untranslatable_sections = value->untranslatable_sections;
1118   return CopyValueFields(std::move(new_value), value);
1119 }
1120 
TransformDerived(const StyledString * value)1121 std::unique_ptr<StyledString> CloningValueTransformer::TransformDerived(const StyledString* value) {
1122   auto new_value = std::make_unique<StyledString>(pool_->MakeRef(value->value));
1123   new_value->untranslatable_sections = value->untranslatable_sections;
1124   return CopyValueFields(std::move(new_value), value);
1125 }
1126 
TransformDerived(const FileReference * value)1127 std::unique_ptr<FileReference> CloningValueTransformer::TransformDerived(
1128     const FileReference* value) {
1129   auto new_value = std::make_unique<FileReference>(pool_->MakeRef(value->path));
1130   new_value->file = value->file;
1131   new_value->type = value->type;
1132   return CopyValueFields(std::move(new_value), value);
1133 }
1134 
TransformDerived(const BinaryPrimitive * value)1135 std::unique_ptr<BinaryPrimitive> CloningValueTransformer::TransformDerived(
1136     const BinaryPrimitive* value) {
1137   return std::make_unique<BinaryPrimitive>(*value);
1138 }
1139 
TransformDerived(const Attribute * value)1140 std::unique_ptr<Attribute> CloningValueTransformer::TransformDerived(const Attribute* value) {
1141   auto new_value = std::make_unique<Attribute>();
1142   new_value->type_mask = value->type_mask;
1143   new_value->min_int = value->min_int;
1144   new_value->max_int = value->max_int;
1145   for (const Attribute::Symbol& s : value->symbols) {
1146     new_value->symbols.emplace_back(Attribute::Symbol{
1147         .symbol = *s.symbol.Transform(*this),
1148         .value = s.value,
1149         .type = s.type,
1150     });
1151   }
1152   return CopyValueFields(std::move(new_value), value);
1153 }
1154 
TransformDerived(const Style * value)1155 std::unique_ptr<Style> CloningValueTransformer::TransformDerived(const Style* value) {
1156   auto new_value = std::make_unique<Style>();
1157   new_value->parent = value->parent;
1158   new_value->parent_inferred = value->parent_inferred;
1159   for (auto& entry : value->entries) {
1160     new_value->entries.push_back(Style::Entry{entry.key, entry.value->Transform(*this)});
1161   }
1162   return CopyValueFields(std::move(new_value), value);
1163 }
1164 
TransformDerived(const Array * value)1165 std::unique_ptr<Array> CloningValueTransformer::TransformDerived(const Array* value) {
1166   auto new_value = std::make_unique<Array>();
1167   for (auto& item : value->elements) {
1168     new_value->elements.emplace_back(item->Transform(*this));
1169   }
1170   return CopyValueFields(std::move(new_value), value);
1171 }
1172 
TransformDerived(const Plural * value)1173 std::unique_ptr<Plural> CloningValueTransformer::TransformDerived(const Plural* value) {
1174   auto new_value = std::make_unique<Plural>();
1175   const size_t count = value->values.size();
1176   for (size_t i = 0; i < count; i++) {
1177     if (value->values[i]) {
1178       new_value->values[i] = value->values[i]->Transform(*this);
1179     }
1180   }
1181   return CopyValueFields(std::move(new_value), value);
1182 }
1183 
TransformDerived(const Styleable * value)1184 std::unique_ptr<Styleable> CloningValueTransformer::TransformDerived(const Styleable* value) {
1185   auto new_value = std::make_unique<Styleable>();
1186   for (const Reference& s : value->entries) {
1187     new_value->entries.emplace_back(*s.Transform(*this));
1188   }
1189   return CopyValueFields(std::move(new_value), value);
1190 }
1191 
TransformDerived(const Macro * value)1192 std::unique_ptr<Macro> CloningValueTransformer::TransformDerived(const Macro* value) {
1193   auto new_value = std::make_unique<Macro>(*value);
1194   return CopyValueFields(std::move(new_value), value);
1195 }
1196 
1197 }  // namespace aapt
1198