1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <general_test/heap_exhaustion_stability_test.h>
18 
19 #include <cinttypes>
20 #include <cstddef>
21 
22 #include <shared/send_message.h>
23 #include <shared/time_util.h>
24 
25 #include "chre/util/nanoapp/log.h"
26 #include "chre_api/chre.h"
27 
28 #define LOG_TAG "[HeapExhaustionStabilityTest]"
29 
30 using nanoapp_testing::kOneMillisecondInNanoseconds;
31 using nanoapp_testing::kOneSecondInNanoseconds;
32 using nanoapp_testing::sendFailureToHost;
33 using nanoapp_testing::sendFatalFailureToHost;
34 using nanoapp_testing::sendSuccessToHost;
35 
36 /*
37  * We set an "exhaustion timer" to go off when we're ready for the test to
38  * be over.  Then we exhaust the heap.
39  *
40  * We try a series of chre*() calls with the heap exhausted.  For many of
41  * these calls, we're less interested in them succeeding than in the system
42  * just not crashing.  However, for things which claim success, we require
43  * they succeed.
44  *
45  * To track the things which claim success, we have two "stages", kTimerStage
46  * and kEventStage.
47  *
48  * When the "exhaustion timer" fires, we free our memory, and make sure our
49  * stages have all succeeded.
50  */
51 
52 namespace general_test {
53 
54 // Note: We use pointers to the 'duration' to serve as our timer event data.
55 // Thus we make this "static const" instead of "constexpr", as we expect
56 // them to have backing memory.
57 
58 static const uint64_t kExhaustionDuration = 5 * kOneSecondInNanoseconds;
59 static const uint64_t kShortDuration = 10 * kOneMillisecondInNanoseconds;
60 
61 constexpr uint16_t kEventType = CHRE_EVENT_FIRST_USER_VALUE;
62 
63 constexpr uint32_t kTimerStage = 0;
64 constexpr uint32_t kEventStage = 1;
65 
exhaustHeap()66 void HeapExhaustionStabilityTest::exhaustHeap() {
67   constexpr size_t kNumPtrs = 256;
68   mExhaustionPtrs = reinterpret_cast<void **>(
69       chreHeapAlloc(kNumPtrs * sizeof(*mExhaustionPtrs)));
70   if (mExhaustionPtrs == nullptr) {
71     // Oh, the irony.
72     sendFatalFailureToHost("Insufficient free heap to exhaust the heap.");
73   }
74 
75   // We start by trying to allocate massive sizes (256MB to start).
76   // When we're not able to allocate massive sizes, we cut the size in
77   // half.  We repeat until we've either done kNumPtrs allocations,
78   // or reduced our allocation size below 16 bytes.
79   uint32_t allocSize = 1024 * 1024 * 256;
80   for (mExhaustionPtrCount = 0; mExhaustionPtrCount < kNumPtrs;
81        mExhaustionPtrCount++) {
82     void *ptr = chreHeapAlloc(allocSize);
83     while (ptr == nullptr) {
84       allocSize /= 2;
85       if (allocSize < 4) {
86         break;
87       }
88       ptr = chreHeapAlloc(allocSize);
89     }
90     if (ptr == nullptr) {
91       break;
92     }
93     mExhaustionPtrs[mExhaustionPtrCount] = ptr;
94   }
95   if (mExhaustionPtrCount == 0) {
96     sendFatalFailureToHost("Failed to allocate anything for heap exhaustion");
97   }
98 }
99 
freeMemory()100 void HeapExhaustionStabilityTest::freeMemory() {
101   for (size_t i = 0; i < mExhaustionPtrCount; i++) {
102     chreHeapFree(mExhaustionPtrs[i]);
103   }
104   chreHeapFree(mExhaustionPtrs);
105 }
106 
HeapExhaustionStabilityTest()107 HeapExhaustionStabilityTest::HeapExhaustionStabilityTest()
108     : Test(CHRE_API_VERSION_1_0) {}
109 
setUp(uint32_t messageSize,const void *)110 void HeapExhaustionStabilityTest::setUp(uint32_t messageSize,
111                                         const void * /* message */) {
112   mInMethod = true;
113   if (messageSize != 0) {
114     sendFatalFailureToHost(
115         "HeapExhaustionStability message expects 0 additional bytes, got ",
116         &messageSize);
117   }
118 
119   if (chreTimerSet(kExhaustionDuration, &kExhaustionDuration, true) ==
120       CHRE_TIMER_INVALID) {
121     sendFatalFailureToHost("Unable to set initial timer");
122   }
123 
124   exhaustHeap();
125 
126   testLog(messageSize);
127   testSetTimer();
128   testSendEvent();
129   testSensor();
130   // TODO(b/32114261): This method currently doesn't test anything.
131   testMessageToHost();
132 
133   // Some of the above 'test' methods might trigger events.  Even if they
134   // don't, the kExhaustionDuration timer we set earlier should trigger
135   // eventually, and that's when we'll conclude the test.
136   mInMethod = false;
137 }
138 
testLog(uint32_t zero)139 void HeapExhaustionStabilityTest::testLog(uint32_t zero) {
140   // This doesn't need to land in the log (and indeed we have no automated
141   // means of checking that right now anyway), but it shouldn't crash.
142   LOGI("Test log %s, zero: %" PRId32, "message", zero);
143 }
144 
testSetTimer()145 void HeapExhaustionStabilityTest::testSetTimer() {
146   if (chreTimerSet(kShortDuration, &kShortDuration, true) !=
147       CHRE_TIMER_INVALID) {
148     // CHRE claims we were able to set this timer.  We'll
149     // mark this stage a success when the timer fires.
150   } else {
151     // CHRE was not able to set this timer.  That's okay, since we're
152     // out of heap.  We'll mark this stage as a success.
153     markSuccess(kTimerStage);
154   }
155 }
156 
testSendEvent()157 void HeapExhaustionStabilityTest::testSendEvent() {
158   if (chreSendEvent(kEventType, nullptr, nullptr, chreGetInstanceId())) {
159     // CHRE claims we were able to send this event.  We'll make
160     // this stage a success when the event is received.
161   } else {
162     // CHRE was not able to send this event.  That's okay, since we're
163     // out of heap.  We'll mark this stage as a success.
164     markSuccess(kEventStage);
165   }
166 }
167 
testSensor()168 void HeapExhaustionStabilityTest::testSensor() {
169   static constexpr uint8_t kSensorType = CHRE_SENSOR_TYPE_ACCELEROMETER;
170   uint32_t handle;
171   if (!chreSensorFindDefault(kSensorType, &handle)) {
172     // We still expect this to succeed without any heap left.
173     sendFatalFailureToHost("chreSensorFindDefault failed");
174   }
175   chreSensorInfo info;
176   if (!chreGetSensorInfo(handle, &info)) {
177     // We still expect this to succeed, since we're supplying the memory.
178     sendFatalFailureToHost("chreGetSensorInfo failed");
179   }
180   if (info.sensorType != kSensorType) {
181     sendFatalFailureToHost("Invalid sensor info provided");
182   }
183 
184   chreSensorSamplingStatus samplingStatus;
185   if (!chreGetSensorSamplingStatus(handle, &samplingStatus)) {
186     // We still expect this to succeed, since we're supplying the memory.
187     sendFatalFailureToHost("chreGetSensorSamplingStatus failed");
188   }
189 
190   // TODO: We might want to consider calling chreSensorConfigure() for a
191   //     more robust test of this.  However, we don't expect sensor events to
192   //     necessarily get delivered under heap exhaustion, so it's unclear
193   //     how we'd make sure we eventually tell the system we're DONE with
194   //     the sensor (setting a timer isn't assured to work at this point).
195 }
196 
testMessageToHost()197 void HeapExhaustionStabilityTest::testMessageToHost() {
198   // TODO(b/32114261): We should invoke sendMessageToHost() here.
199   //     Unfortunately, this is a real pain due to this bug, as we need to
200   //     duplicate much of the contents of shared/send_message.cc to
201   //     add the hack-around bytes (the method itself will internally
202   //     fail if the send attempt fails, but we're in a state where
203   //     we'll allow a failed send attempt).  Or we need to take this
204   //     off of the General test infrastructure to allow raw byte sending.
205   //     That seems not worth the effort for NYC, and just easier to wait
206   //     until OMC when this is much easier to implement.
207   // OMC Note: When we've fixed this bug, and added a send here, we'll
208   //     need to make this no longer Simple protocol, since this nanoapp
209   //     might send a message.
210 }
211 
handleEvent(uint32_t senderInstanceId,uint16_t eventType,const void * eventData)212 void HeapExhaustionStabilityTest::handleEvent(uint32_t senderInstanceId,
213                                               uint16_t eventType,
214                                               const void *eventData) {
215   if (mInMethod) {
216     sendFatalFailureToHost(
217         "handleEvent invoked while another nanoapp method is running");
218   }
219   mInMethod = true;
220 
221   if (eventType == CHRE_EVENT_TIMER) {
222     handleTimer(senderInstanceId, eventData);
223   } else if (eventType == kEventType) {
224     handleSelfEvent(senderInstanceId, eventData);
225   } else {
226     unexpectedEvent(eventType);
227   }
228   mInMethod = false;
229 }
230 
handleTimer(uint32_t senderInstanceId,const void * eventData)231 void HeapExhaustionStabilityTest::handleTimer(uint32_t senderInstanceId,
232                                               const void *eventData) {
233   if (senderInstanceId != CHRE_INSTANCE_ID) {
234     sendFatalFailureToHost("handleTimer with unexpected sender:",
235                            &senderInstanceId);
236   }
237   if (eventData == &kShortDuration) {
238     // This was the timer we triggered while the heap was exhausted.
239     markSuccess(kTimerStage);
240 
241   } else if (eventData == &kExhaustionDuration) {
242     // Our test is done.
243     freeMemory();
244     if (mFinishedBitmask != kAllFinished) {
245       sendFatalFailureToHost("Done with test, but not all stages done.",
246                              &mFinishedBitmask);
247     }
248     sendSuccessToHost();
249 
250   } else {
251     sendFatalFailureToHost("Unexpected timer eventData");
252   }
253 }
254 
handleSelfEvent(uint32_t senderInstanceId,const void * eventData)255 void HeapExhaustionStabilityTest::handleSelfEvent(uint32_t senderInstanceId,
256                                                   const void *eventData) {
257   if (senderInstanceId != chreGetInstanceId()) {
258     sendFatalFailureToHost("handleSelfEvent with unexpected sender:",
259                            &senderInstanceId);
260   }
261   if (eventData != nullptr) {
262     sendFatalFailureToHost("Unexpected data for event to self");
263   }
264   markSuccess(kEventStage);
265 }
266 
markSuccess(uint32_t stage)267 void HeapExhaustionStabilityTest::markSuccess(uint32_t stage) {
268   LOGD("Stage %" PRIu32 " succeeded", stage);
269   uint32_t finishedBit = (1 << stage);
270   if ((kAllFinished & finishedBit) == 0) {
271     sendFatalFailureToHost("markSuccess bad stage", &stage);
272   }
273   if ((mFinishedBitmask & finishedBit) != 0) {
274     // This could be when a timer/event method returned 'false', but
275     // actually did end up triggering an event.
276     sendFatalFailureToHost("markSuccess stage triggered twice", &stage);
277   }
278   mFinishedBitmask |= finishedBit;
279   // Note that unlike many markSuccess() implementations, we do not
280   // check against kAllFinished here.  That happens when the
281   // timer for kExhaustionDuration fires.
282 }
283 
284 }  // namespace general_test
285