1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "IptablesRestoreController"
18 #include "IptablesRestoreController.h"
19
20 #include <poll.h>
21 #include <signal.h>
22 #include <sys/wait.h>
23 #include <unistd.h>
24
25 #include <android-base/file.h>
26 #include <android-base/logging.h>
27 #include <android-base/properties.h>
28 #include <netdutils/Syscalls.h>
29
30 #include "Controllers.h"
31 #include "NetdConstants.h"
32
33 using android::netdutils::StatusOr;
34 using android::netdutils::sSyscalls;
35
36 constexpr char IPTABLES_RESTORE_PATH[] = "/system/bin/iptables-restore";
37 constexpr char IP6TABLES_RESTORE_PATH[] = "/system/bin/ip6tables-restore";
38
39 constexpr char PING[] = "#PING\n";
40
41 constexpr size_t PING_SIZE = sizeof(PING) - 1;
42
43 // Not compile-time constants because they are changed by the unit tests.
44 int IptablesRestoreController::MAX_RETRIES = 50;
45 int IptablesRestoreController::POLL_TIMEOUT_MS = 100 * android::base::HwTimeoutMultiplier();
46
47 class IptablesProcess {
48 public:
IptablesProcess(const IptablesRestoreController::IptablesProcessType type,pid_t pid,int stdIn,int stdOut,int stdErr)49 IptablesProcess(const IptablesRestoreController::IptablesProcessType type,
50 pid_t pid, int stdIn, int stdOut, int stdErr) :
51 type(type),
52 pid(pid),
53 stdIn(stdIn),
54 processTerminated(false) {
55
56 pollFds[STDOUT_IDX] = { .fd = stdOut, .events = POLLIN };
57 pollFds[STDERR_IDX] = { .fd = stdErr, .events = POLLIN };
58 }
59
~IptablesProcess()60 ~IptablesProcess() {
61 close(stdIn);
62 close(pollFds[STDOUT_IDX].fd);
63 close(pollFds[STDERR_IDX].fd);
64 }
65
outputReady()66 bool outputReady() {
67 struct pollfd pollfd = { .fd = stdIn, .events = POLLOUT };
68 int ret = poll(&pollfd, 1, 0);
69 if (ret == -1) {
70 ALOGE("outputReady poll failed: %s", strerror(errno));
71 return false;
72 }
73 return (ret == 1) && !(pollfd.revents & POLLERR);
74 }
75
stop()76 void stop() {
77 if (processTerminated) return;
78
79 // This can be called by drainAndWaitForAck (after a POLLHUP) or by sendCommand (if the
80 // process was killed by something else on the system). In both cases, it's safe to send the
81 // PID a SIGTERM, because the PID continues to exist until its parent (i.e., us) calls
82 // waitpid on it, so there's no risk that the PID is reused.
83 ::stopProcess(pid, (type == IptablesRestoreController::IPTABLES_PROCESS) ?
84 "iptables-restore" : "ip6tables-restore");
85
86 processTerminated = true;
87 }
88
89 const IptablesRestoreController::IptablesProcessType type;
90 const pid_t pid; // NOLINT(misc-non-private-member-variables-in-classes)
91 const int stdIn; // NOLINT(misc-non-private-member-variables-in-classes)
92
93 struct pollfd pollFds[2];
94 std::string errBuf;
95
96 std::atomic_bool processTerminated;
97
98 static constexpr size_t STDOUT_IDX = 0;
99 static constexpr size_t STDERR_IDX = 1;
100 };
101
IptablesRestoreController()102 IptablesRestoreController::IptablesRestoreController() {
103 Init();
104 }
105
~IptablesRestoreController()106 IptablesRestoreController::~IptablesRestoreController() {
107 }
108
Init()109 void IptablesRestoreController::Init() {
110 // We cannot fork these in parallel or a child process could inherit the pipe fds intended for
111 // use by the other child process. see https://android-review.googlesource.com/469559 for what
112 // breaks. This does not cause a latency hit, because the parent only has to wait for
113 // forkAndExec, which is sub-millisecond, and the child processes then call exec() in parallel.
114 mIpRestore.reset(forkAndExec(IPTABLES_PROCESS));
115 mIp6Restore.reset(forkAndExec(IP6TABLES_PROCESS));
116 }
117
118 /* static */
forkAndExec(const IptablesProcessType type)119 IptablesProcess* IptablesRestoreController::forkAndExec(const IptablesProcessType type) {
120 const char* const cmd = (type == IPTABLES_PROCESS) ?
121 IPTABLES_RESTORE_PATH : IP6TABLES_RESTORE_PATH;
122
123 // Create the pipes we'll use for communication with the child
124 // process. One each for the child's in, out and err files.
125 int stdin_pipe[2];
126 int stdout_pipe[2];
127 int stderr_pipe[2];
128
129 // Assumes stdin, stdout, stderr are already in use.
130 if (pipe2(stdin_pipe, O_CLOEXEC) == -1 ||
131 pipe2(stdout_pipe, O_NONBLOCK | O_CLOEXEC) == -1 ||
132 pipe2(stderr_pipe, O_NONBLOCK | O_CLOEXEC) == -1) {
133
134 ALOGE("pipe2() failed: %s", strerror(errno));
135 return nullptr;
136 }
137
138 const auto& sys = sSyscalls.get();
139 StatusOr<pid_t> child_pid = sys.fork();
140 if (!isOk(child_pid)) {
141 ALOGE("fork() failed: %s", strerror(child_pid.status().code()));
142 return nullptr;
143 }
144
145 if (child_pid.value() == 0) {
146 // The child process. Reads from stdin, writes to stderr and stdout.
147
148 // stdin_pipe[0] : The read end of the stdin pipe.
149 // stdout_pipe[1] : The write end of the stdout pipe.
150 // stderr_pipe[1] : The write end of the stderr pipe.
151 // Note: dup2 does not set O_CLOEXEC. std*_pipe[*] is closed by execl.
152 if (dup2(stdin_pipe[0], 0) == -1 ||
153 dup2(stdout_pipe[1], 1) == -1 ||
154 dup2(stderr_pipe[1], 2) == -1) {
155 ALOGE("dup2() failed: %s", strerror(errno));
156 abort();
157 }
158
159 if (execl(cmd,
160 cmd,
161 "--noflush", // Don't flush the whole table.
162 "-w", // Wait instead of failing if the lock is held.
163 "-v", // Verbose mode, to make sure our ping is echoed
164 // back to us.
165 nullptr) == -1) {
166 ALOGE("execl(%s, ...) failed: %s", cmd, strerror(errno));
167 abort();
168 }
169
170 // This statement is unreachable. We abort() upon error, and execl
171 // if everything goes well.
172 return nullptr;
173 }
174
175 // The parent process.
176
177 if (close(stdin_pipe[0]) == -1 ||
178 close(stdout_pipe[1]) == -1 ||
179 close(stderr_pipe[1]) == -1) {
180 ALOGW("close() failed: %s", strerror(errno));
181 }
182
183 // stdin_pipe[1] : The write end of the stdin pipe.
184 // stdout_pipe[0] : The read end of the stdout pipe.
185 // stderr_pipe[0] : The read end of the stderr pipe.
186 return new IptablesProcess(type,
187 child_pid.value(), stdin_pipe[1], stdout_pipe[0], stderr_pipe[0]);
188 }
189
190 // TODO: Return -errno on failure instead of -1.
191 // TODO: Maybe we should keep a rotating buffer of the last N commands
192 // so that they can be dumped on dumpsys.
sendCommand(const IptablesProcessType type,const std::string & command,std::string * output)193 int IptablesRestoreController::sendCommand(const IptablesProcessType type,
194 const std::string& command,
195 std::string *output) {
196 std::unique_ptr<IptablesProcess> *process =
197 (type == IPTABLES_PROCESS) ? &mIpRestore : &mIp6Restore;
198
199
200 // We might need to fork a new process if we haven't forked one yet, or
201 // if the forked process terminated.
202 //
203 // NOTE: For a given command, this is the last point at which we try to
204 // recover from a child death. If the child dies at some later point during
205 // the execution of this method, we will receive an EPIPE and return an
206 // error. The command will then need to be retried at a higher level.
207 IptablesProcess *existingProcess = process->get();
208 if (existingProcess != nullptr && !existingProcess->outputReady()) {
209 existingProcess->stop();
210 existingProcess = nullptr;
211 }
212
213 if (existingProcess == nullptr) {
214 // Fork a new iptables[6]-restore process.
215 IptablesProcess *newProcess = IptablesRestoreController::forkAndExec(type);
216 if (newProcess == nullptr) {
217 LOG(ERROR) << "Unable to fork ip[6]tables-restore, type: " << type;
218 return -1;
219 }
220
221 process->reset(newProcess);
222 }
223
224 if (!android::base::WriteFully((*process)->stdIn, command.data(), command.length())) {
225 ALOGE("Unable to send command: %s", strerror(errno));
226 return -1;
227 }
228
229 if (!android::base::WriteFully((*process)->stdIn, PING, PING_SIZE)) {
230 ALOGE("Unable to send ping command: %s", strerror(errno));
231 return -1;
232 }
233
234 if (!drainAndWaitForAck(*process, command, output)) {
235 // drainAndWaitForAck has already logged an error.
236 return -1;
237 }
238
239 return 0;
240 }
241
maybeLogStderr(const std::unique_ptr<IptablesProcess> & process,const std::string & command)242 void IptablesRestoreController::maybeLogStderr(const std::unique_ptr<IptablesProcess> &process,
243 const std::string& command) {
244 if (process->errBuf.empty()) {
245 return;
246 }
247
248 ALOGE("iptables error:");
249 ALOGE("------- COMMAND -------");
250 ALOGE("%s", command.c_str());
251 ALOGE("------- ERROR -------");
252 ALOGE("%s", process->errBuf.c_str());
253 ALOGE("----------------------");
254 process->errBuf.clear();
255 }
256
257 /* static */
drainAndWaitForAck(const std::unique_ptr<IptablesProcess> & process,const std::string & command,std::string * output)258 bool IptablesRestoreController::drainAndWaitForAck(const std::unique_ptr<IptablesProcess> &process,
259 const std::string& command,
260 std::string *output) {
261 bool receivedAck = false;
262 int timeout = 0;
263 while (!receivedAck && (timeout++ < MAX_RETRIES)) {
264 int numEvents = TEMP_FAILURE_RETRY(
265 poll(process->pollFds, ARRAY_SIZE(process->pollFds), POLL_TIMEOUT_MS));
266 if (numEvents == -1) {
267 ALOGE("Poll failed: %s", strerror(errno));
268 return false;
269 }
270
271 // We've timed out, which means something has gone wrong - we know that stdout should have
272 // become available to read with the ACK message, or that stderr should have been available
273 // to read with an error message.
274 if (numEvents == 0) {
275 continue;
276 }
277
278 char buffer[PIPE_BUF];
279 for (size_t i = 0; i < ARRAY_SIZE(process->pollFds); ++i) {
280 const struct pollfd &pollfd = process->pollFds[i];
281 if (pollfd.revents & POLLIN) {
282 ssize_t size;
283 do {
284 size = TEMP_FAILURE_RETRY(read(pollfd.fd, buffer, sizeof(buffer)));
285
286 if (size == -1) {
287 if (errno != EAGAIN) {
288 ALOGE("Unable to read from descriptor: %s", strerror(errno));
289 }
290 break;
291 }
292
293 if (i == IptablesProcess::STDOUT_IDX) {
294 // i == STDOUT_IDX: accumulate stdout into *output, and look
295 // for the ping response.
296 output->append(buffer, size);
297 size_t pos = output->find(PING);
298 if (pos != std::string::npos) {
299 if (output->size() > pos + PING_SIZE) {
300 size_t extra = output->size() - (pos + PING_SIZE);
301 ALOGW("%zd extra characters after iptables response: '%s...'",
302 extra, output->substr(pos + PING_SIZE, 128).c_str());
303 }
304 output->resize(pos);
305 receivedAck = true;
306 }
307 } else {
308 // i == STDERR_IDX: accumulate stderr into errBuf.
309 process->errBuf.append(buffer, size);
310 }
311 } while (size > 0);
312 }
313 if (pollfd.revents & POLLHUP) {
314 // The pipe was closed. This likely means the subprocess is exiting, since
315 // iptables-restore only closes stdin on error.
316 process->stop();
317 break;
318 }
319 }
320 }
321
322 if (!receivedAck && !process->processTerminated) {
323 ALOGE("Timed out waiting for response from iptables process %d", process->pid);
324 // Kill the process so that if it eventually recovers, we don't misinterpret the ping
325 // response (or any output) of the command we just sent as coming from future commands.
326 process->stop();
327 }
328
329 maybeLogStderr(process, command);
330
331 return receivedAck;
332 }
333
execute(const IptablesTarget target,const std::string & command,std::string * output)334 int IptablesRestoreController::execute(const IptablesTarget target, const std::string& command,
335 std::string *output) {
336 std::lock_guard lock(mLock);
337
338 std::string buffer;
339 if (output == nullptr) {
340 output = &buffer;
341 } else {
342 output->clear();
343 }
344
345 int res = 0;
346 if (target == V4 || target == V4V6) {
347 res |= sendCommand(IPTABLES_PROCESS, command, output);
348 }
349 if (target == V6 || target == V4V6) {
350 res |= sendCommand(IP6TABLES_PROCESS, command, output);
351 }
352 return res;
353 }
354
getIpRestorePid(const IptablesProcessType type)355 int IptablesRestoreController::getIpRestorePid(const IptablesProcessType type) {
356 return type == IPTABLES_PROCESS ? mIpRestore->pid : mIp6Restore->pid;
357 }
358