1 /*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "snapuserd_core.h"
18
19 /*
20 * Readahead is used to optimize the merge of COPY and XOR Ops.
21 *
22 * We create a scratch space of 2MB to store the read-ahead data in the COW
23 * device.
24 *
25 * +-----------------------+
26 * | Header (fixed) |
27 * +-----------------------+
28 * | Scratch space | <-- 2MB
29 * +-----------------------+
30 *
31 * Scratch space is as follows:
32 *
33 * +-----------------------+
34 * | Metadata | <- 4k page
35 * +-----------------------+
36 * | Metadata | <- 4k page
37 * +-----------------------+
38 * | |
39 * | Read-ahead data |
40 * | |
41 * +-----------------------+
42 *
43 *
44 * * ===================================================================
45 *
46 * Example:
47 *
48 * We have 6 copy operations to be executed in OTA. Update-engine
49 * will write to COW file as follows:
50 *
51 * Op-1: 20 -> 23
52 * Op-2: 19 -> 22
53 * Op-3: 18 -> 21
54 * Op-4: 17 -> 20
55 * Op-5: 16 -> 19
56 * Op-6: 15 -> 18
57 *
58 * Read-ahead thread will read all the 6 source blocks and store the data in the
59 * scratch space. Metadata will contain the destination block numbers. Thus,
60 * scratch space will look something like this:
61 *
62 * +--------------+
63 * | Block 23 |
64 * | offset - 1 |
65 * +--------------+
66 * | Block 22 |
67 * | offset - 2 |
68 * +--------------+
69 * | Block 21 |
70 * | offset - 3 |
71 * +--------------+
72 * ...
73 * ...
74 * +--------------+
75 * | Data-Block 20| <-- offset - 1
76 * +--------------+
77 * | Data-Block 19| <-- offset - 2
78 * +--------------+
79 * | Data-Block 18| <-- offset - 3
80 * +--------------+
81 * ...
82 * ...
83 *
84 * ====================================================================
85 *
86 *
87 * Read-ahead thread will process the COW Ops in fixed set. Consider
88 * the following example:
89 *
90 * +--------------------------+
91 * |op-1|op-2|op-3|....|op-510|
92 * +--------------------------+
93 *
94 * <------ One RA Block ------>
95 *
96 * RA thread will read 510 ordered COW ops at a time and will store
97 * the data in the scratch space.
98 *
99 * RA thread and Merge thread will go lock-step wherein RA thread
100 * will make sure that 510 COW operation data are read upfront
101 * and is in memory. Thus, when merge thread will pick up the data
102 * directly from memory and write it back to base device.
103 *
104 *
105 * +--------------------------+------------------------------------+
106 * |op-1|op-2|op-3|....|op-510|op-511|op-512|op-513........|op-1020|
107 * +--------------------------+------------------------------------+
108 *
109 * <------Merge 510 Blocks----><-Prepare 510 blocks for merge by RA->
110 * ^ ^
111 * | |
112 * Merge thread RA thread
113 *
114 * Both Merge and RA thread will strive to work in parallel.
115 *
116 * ===========================================================================
117 *
118 * State transitions and communication between RA thread and Merge thread:
119 *
120 * Merge Thread RA Thread
121 * ----------------------------------------------------------------------------
122 *
123 * | |
124 * WAIT for RA Block N READ one RA Block (N)
125 * for merge |
126 * | |
127 * | |
128 * <--------------MERGE BEGIN--------READ Block N done(copy to scratch)
129 * | |
130 * | |
131 * Merge Begin Block N READ one RA BLock (N+1)
132 * | |
133 * | |
134 * | READ done. Wait for merge complete
135 * | |
136 * | WAIT
137 * | |
138 * Merge done Block N |
139 * ----------------MERGE READY-------------->|
140 * WAIT for RA Block N+1 Copy RA Block (N+1)
141 * for merge to scratch space
142 * | |
143 * <---------------MERGE BEGIN---------BLOCK N+1 Done
144 * | |
145 * | |
146 * Merge Begin Block N+1 READ one RA BLock (N+2)
147 * | |
148 * | |
149 * | READ done. Wait for merge complete
150 * | |
151 * | WAIT
152 * | |
153 * Merge done Block N+1 |
154 * ----------------MERGE READY-------------->|
155 * WAIT for RA Block N+2 Copy RA Block (N+2)
156 * for merge to scratch space
157 * | |
158 * <---------------MERGE BEGIN---------BLOCK N+2 Done
159 */
160
161 namespace android {
162 namespace snapshot {
163
164 using namespace android;
165 using namespace android::dm;
166 using android::base::unique_fd;
167
MonitorMerge()168 void SnapshotHandler::MonitorMerge() {
169 {
170 std::lock_guard<std::mutex> lock(lock_);
171 merge_monitored_ = true;
172 }
173 }
174
175 // This is invoked once primarily by update-engine to initiate
176 // the merge
InitiateMerge()177 void SnapshotHandler::InitiateMerge() {
178 {
179 std::lock_guard<std::mutex> lock(lock_);
180 merge_initiated_ = true;
181
182 // If there are only REPLACE ops to be merged, then we need
183 // to explicitly set the state to MERGE_BEGIN as there
184 // is no read-ahead thread
185 if (!ra_thread_) {
186 io_state_ = MERGE_IO_TRANSITION::MERGE_BEGIN;
187 }
188 }
189 cv.notify_all();
190 }
191
IsMergeBeginError(MERGE_IO_TRANSITION io_state)192 static inline bool IsMergeBeginError(MERGE_IO_TRANSITION io_state) {
193 return io_state == MERGE_IO_TRANSITION::READ_AHEAD_FAILURE ||
194 io_state == MERGE_IO_TRANSITION::IO_TERMINATED;
195 }
196
197 // Invoked by Merge thread - Waits on RA thread to resume merging. Will
198 // be waken up RA thread.
WaitForMergeBegin()199 bool SnapshotHandler::WaitForMergeBegin() {
200 std::unique_lock<std::mutex> lock(lock_);
201
202 cv.wait(lock, [this]() -> bool { return MergeInitiated() || IsMergeBeginError(io_state_); });
203
204 if (IsMergeBeginError(io_state_)) {
205 SNAP_LOG(ERROR) << "WaitForMergeBegin failed with state: " << io_state_;
206 return false;
207 }
208
209 cv.wait(lock, [this]() -> bool {
210 return io_state_ == MERGE_IO_TRANSITION::MERGE_BEGIN || IsMergeBeginError(io_state_);
211 });
212
213 if (IsMergeBeginError(io_state_)) {
214 SNAP_LOG(ERROR) << "WaitForMergeBegin failed with state: " << io_state_;
215 return false;
216 }
217 return true;
218 }
219
220 // Invoked by RA thread - Flushes the RA block to scratch space if necessary
221 // and then notifies the merge thread to resume merging
ReadAheadIOCompleted(bool sync)222 bool SnapshotHandler::ReadAheadIOCompleted(bool sync) {
223 if (sync) {
224 // Flush the entire buffer region
225 int ret = msync(mapped_addr_, total_mapped_addr_length_, MS_SYNC);
226 if (ret < 0) {
227 PLOG(ERROR) << "msync failed after ReadAheadIOCompleted: " << ret;
228 return false;
229 }
230
231 // Metadata and data are synced. Now, update the state.
232 // We need to update the state after flushing data; if there is a crash
233 // when read-ahead IO is in progress, the state of data in the COW file
234 // is unknown. kCowReadAheadDone acts as a checkpoint wherein the data
235 // in the scratch space is good and during next reboot, read-ahead thread
236 // can safely re-construct the data.
237 struct BufferState* ra_state = GetBufferState();
238 ra_state->read_ahead_state = kCowReadAheadDone;
239
240 ret = msync(mapped_addr_, BLOCK_SZ, MS_SYNC);
241 if (ret < 0) {
242 PLOG(ERROR) << "msync failed to flush Readahead completion state...";
243 return false;
244 }
245 }
246
247 // Notify the merge thread to resume merging
248 {
249 std::lock_guard<std::mutex> lock(lock_);
250 if (io_state_ != MERGE_IO_TRANSITION::IO_TERMINATED &&
251 io_state_ != MERGE_IO_TRANSITION::MERGE_FAILED) {
252 io_state_ = MERGE_IO_TRANSITION::MERGE_BEGIN;
253 }
254 }
255
256 cv.notify_all();
257 return true;
258 }
259
260 // Invoked by RA thread - Waits for merge thread to finish merging
261 // RA Block N - RA thread would be ready will with Block N+1 but
262 // will wait to merge thread to finish Block N. Once Block N
263 // is merged, RA thread will be woken up by Merge thread and will
264 // flush the data of Block N+1 to scratch space
WaitForMergeReady()265 bool SnapshotHandler::WaitForMergeReady() {
266 {
267 std::unique_lock<std::mutex> lock(lock_);
268 while (!(io_state_ == MERGE_IO_TRANSITION::MERGE_READY ||
269 io_state_ == MERGE_IO_TRANSITION::MERGE_FAILED ||
270 io_state_ == MERGE_IO_TRANSITION::MERGE_COMPLETE ||
271 io_state_ == MERGE_IO_TRANSITION::IO_TERMINATED)) {
272 cv.wait(lock);
273 }
274
275 // Check if merge failed
276 if (io_state_ == MERGE_IO_TRANSITION::MERGE_FAILED ||
277 io_state_ == MERGE_IO_TRANSITION::MERGE_COMPLETE ||
278 io_state_ == MERGE_IO_TRANSITION::IO_TERMINATED) {
279 SNAP_LOG(ERROR) << "Wait for merge ready failed: " << io_state_;
280 return false;
281 }
282 return true;
283 }
284 }
285
286 // Invoked by Merge thread - Notify RA thread about Merge completion
287 // for Block N and wake up
NotifyRAForMergeReady()288 void SnapshotHandler::NotifyRAForMergeReady() {
289 {
290 std::lock_guard<std::mutex> lock(lock_);
291 if (io_state_ != MERGE_IO_TRANSITION::IO_TERMINATED &&
292 io_state_ != MERGE_IO_TRANSITION::READ_AHEAD_FAILURE) {
293 io_state_ = MERGE_IO_TRANSITION::MERGE_READY;
294 }
295 }
296
297 cv.notify_all();
298 }
299
300 // The following transitions are mostly in the failure paths
MergeFailed()301 void SnapshotHandler::MergeFailed() {
302 {
303 std::lock_guard<std::mutex> lock(lock_);
304 io_state_ = MERGE_IO_TRANSITION::MERGE_FAILED;
305 }
306
307 cv.notify_all();
308 }
309
MergeCompleted()310 void SnapshotHandler::MergeCompleted() {
311 {
312 std::lock_guard<std::mutex> lock(lock_);
313 io_state_ = MERGE_IO_TRANSITION::MERGE_COMPLETE;
314 }
315
316 cv.notify_all();
317 }
318
319 // This is invoked by worker threads.
320 //
321 // Worker threads are terminated either by two scenarios:
322 //
323 // 1: If dm-user device is destroyed
324 // 2: We had an I/O failure when reading root partitions
325 //
326 // In case (1), this would be a graceful shutdown. In this case, merge
327 // thread and RA thread should have _already_ terminated by this point. We will be
328 // destroying the dm-user device only _after_ merge is completed.
329 //
330 // In case (2), if merge thread had started, then it will be
331 // continuing to merge; however, since we had an I/O failure and the
332 // I/O on root partitions are no longer served, we will terminate the
333 // merge.
334 //
335 // This functions is about handling case (2)
NotifyIOTerminated()336 void SnapshotHandler::NotifyIOTerminated() {
337 {
338 std::lock_guard<std::mutex> lock(lock_);
339 io_state_ = MERGE_IO_TRANSITION::IO_TERMINATED;
340 }
341
342 cv.notify_all();
343 }
344
IsIOTerminated()345 bool SnapshotHandler::IsIOTerminated() {
346 std::lock_guard<std::mutex> lock(lock_);
347 return (io_state_ == MERGE_IO_TRANSITION::IO_TERMINATED);
348 }
349
350 // Invoked by RA thread
ReadAheadIOFailed()351 void SnapshotHandler::ReadAheadIOFailed() {
352 {
353 std::lock_guard<std::mutex> lock(lock_);
354 io_state_ = MERGE_IO_TRANSITION::READ_AHEAD_FAILURE;
355 }
356
357 cv.notify_all();
358 }
359
WaitForMergeComplete()360 void SnapshotHandler::WaitForMergeComplete() {
361 std::unique_lock<std::mutex> lock(lock_);
362 while (!(io_state_ == MERGE_IO_TRANSITION::MERGE_COMPLETE ||
363 io_state_ == MERGE_IO_TRANSITION::MERGE_FAILED ||
364 io_state_ == MERGE_IO_TRANSITION::IO_TERMINATED)) {
365 cv.wait(lock);
366 }
367 }
368
RaThreadStarted()369 void SnapshotHandler::RaThreadStarted() {
370 std::unique_lock<std::mutex> lock(lock_);
371 ra_thread_started_ = true;
372 }
373
WaitForRaThreadToStart()374 void SnapshotHandler::WaitForRaThreadToStart() {
375 auto now = std::chrono::system_clock::now();
376 auto deadline = now + 3s;
377 {
378 std::unique_lock<std::mutex> lock(lock_);
379 while (!ra_thread_started_) {
380 auto status = cv.wait_until(lock, deadline);
381 if (status == std::cv_status::timeout) {
382 SNAP_LOG(ERROR) << "Read-ahead thread did not start";
383 return;
384 }
385 }
386 }
387 }
388
MarkMergeComplete()389 void SnapshotHandler::MarkMergeComplete() {
390 std::lock_guard<std::mutex> lock(lock_);
391 merge_complete_ = true;
392 }
393
GetMergeStatus()394 std::string SnapshotHandler::GetMergeStatus() {
395 bool merge_not_initiated = false;
396 bool merge_monitored = false;
397 bool merge_failed = false;
398 bool merge_complete = false;
399
400 {
401 std::lock_guard<std::mutex> lock(lock_);
402
403 if (MergeMonitored()) {
404 merge_monitored = true;
405 }
406
407 if (!MergeInitiated()) {
408 merge_not_initiated = true;
409 }
410
411 if (io_state_ == MERGE_IO_TRANSITION::MERGE_FAILED) {
412 merge_failed = true;
413 }
414
415 merge_complete = merge_complete_;
416 }
417
418 if (merge_not_initiated) {
419 // Merge was not initiated yet; however, we have merge completion
420 // recorded in the COW Header. This can happen if the device was
421 // rebooted during merge. During next reboot, libsnapshot will
422 // query the status and if the merge is completed, then snapshot-status
423 // file will be deleted
424 if (merge_complete) {
425 return "snapshot-merge-complete";
426 }
427
428 // Merge monitor thread is tracking the merge but the merge thread
429 // is not started yet.
430 if (merge_monitored) {
431 return "snapshot-merge";
432 }
433
434 // Return the state as "snapshot". If the device was rebooted during
435 // merge, we will return the status as "snapshot". This is ok, as
436 // libsnapshot will explicitly resume the merge. This is slightly
437 // different from kernel snapshot wherein once the snapshot was switched
438 // to merge target, during next boot, we immediately switch to merge
439 // target. We don't do that here because, during first stage init, we
440 // don't want to initiate the merge. The problem is that we have daemon
441 // transition between first and second stage init. If the merge was
442 // started, then we will have to quiesce the merge before switching
443 // the dm tables. Instead, we just wait until second stage daemon is up
444 // before resuming the merge.
445 return "snapshot";
446 }
447
448 if (merge_failed) {
449 return "snapshot-merge-failed";
450 }
451
452 if (merge_complete) {
453 return "snapshot-merge-complete";
454 }
455
456 // Merge is in-progress
457 return "snapshot-merge";
458 }
459
460 //========== End of Read-ahead state transition functions ====================
461
462 /*
463 * Root partitions are mounted off dm-user and the I/O's are served
464 * by snapuserd worker threads.
465 *
466 * When there is an I/O request to be served by worker threads, we check
467 * if the corresponding sector is "changed" due to OTA by doing a lookup.
468 * If the lookup succeeds then the sector has been changed and that can
469 * either fall into 4 COW operations viz: COPY, XOR, REPLACE and ZERO.
470 *
471 * For the case of REPLACE and ZERO ops, there is not much of a concern
472 * as there is no dependency between blocks. Hence all the I/O request
473 * mapped to these two COW operations will be served by reading the COW device.
474 *
475 * However, COPY and XOR ops are tricky. Since the merge operations are
476 * in-progress, we cannot just go and read from the source device. We need
477 * to be in sync with the state of the merge thread before serving the I/O.
478 *
479 * Given that we know merge thread processes a set of COW ops called as RA
480 * Blocks - These set of COW ops are fixed size wherein each Block comprises
481 * of 510 COW ops.
482 *
483 * +--------------------------+
484 * |op-1|op-2|op-3|....|op-510|
485 * +--------------------------+
486 *
487 * <------ Merge Group Block N ------>
488 *
489 * Thus, a Merge Group Block N, will fall into one of these states and will
490 * transition the states in the following order:
491 *
492 * 1: GROUP_MERGE_PENDING
493 * 2: GROUP_MERGE_RA_READY
494 * 2: GROUP_MERGE_IN_PROGRESS
495 * 3: GROUP_MERGE_COMPLETED
496 * 4: GROUP_MERGE_FAILED
497 *
498 * Let's say that we have the I/O request from dm-user whose sector gets mapped
499 * to a COPY operation with op-10 in the above "Merge Group Block N".
500 *
501 * 1: If the Group is in "GROUP_MERGE_PENDING" state:
502 *
503 * Just read the data from source block based on COW op->source field. Note,
504 * that we will take a ref count on "Block N". This ref count will prevent
505 * merge thread to begin merging if there are any pending I/Os. Once the I/O
506 * is completed, ref count on "Group N" is decremented. Merge thread will
507 * resume merging "Group N" if there are no pending I/Os.
508 *
509 * 2: If the Group is in "GROUP_MERGE_IN_PROGRESS" or "GROUP_MERGE_RA_READY" state:
510 *
511 * When the merge thread is ready to process a "Group", it will first move
512 * the state to GROUP_MERGE_PENDING -> GROUP_MERGE_RA_READY. From this point
513 * onwards, I/O will be served from Read-ahead buffer. However, merge thread
514 * cannot start merging this "Group" immediately. If there were any in-flight
515 * I/O requests, merge thread should wait and allow those I/O's to drain.
516 * Once all the in-flight I/O's are completed, merge thread will move the
517 * state from "GROUP_MERGE_RA_READY" -> "GROUP_MERGE_IN_PROGRESS". I/O will
518 * be continued to serve from Read-ahead buffer during the entire duration
519 * of the merge.
520 *
521 * See SetMergeInProgress().
522 *
523 * 3: If the Group is in "GROUP_MERGE_COMPLETED" state:
524 *
525 * This is straightforward. We just read the data directly from "Base"
526 * device. We should not be reading the COW op->source field.
527 *
528 * 4: If the Block is in "GROUP_MERGE_FAILED" state:
529 *
530 * Terminate the I/O with an I/O error as we don't know which "op" in the
531 * "Group" failed.
532 *
533 * Transition ensures that the I/O from root partitions are never made to
534 * wait and are processed immediately. Thus the state transition for any
535 * "Group" is:
536 *
537 * GROUP_MERGE_PENDING
538 * |
539 * |
540 * v
541 * GROUP_MERGE_RA_READY
542 * |
543 * |
544 * v
545 * GROUP_MERGE_IN_PROGRESS
546 * |
547 * |----------------------------(on failure)
548 * | |
549 * v v
550 * GROUP_MERGE_COMPLETED GROUP_MERGE_FAILED
551 *
552 */
553
554 // Invoked by Merge thread
SetMergeCompleted(size_t ra_index)555 void SnapshotHandler::SetMergeCompleted(size_t ra_index) {
556 MergeGroupState* blk_state = merge_blk_state_[ra_index].get();
557 {
558 std::lock_guard<std::mutex> lock(blk_state->m_lock);
559
560 CHECK(blk_state->merge_state_ == MERGE_GROUP_STATE::GROUP_MERGE_IN_PROGRESS);
561 CHECK(blk_state->num_ios_in_progress == 0);
562
563 // Merge is complete - All I/O henceforth should be read directly
564 // from base device
565 blk_state->merge_state_ = MERGE_GROUP_STATE::GROUP_MERGE_COMPLETED;
566 }
567 }
568
569 // Invoked by Merge thread. This is called just before the beginning
570 // of merging a given Block of 510 ops. If there are any in-flight I/O's
571 // from dm-user then wait for them to complete.
SetMergeInProgress(size_t ra_index)572 void SnapshotHandler::SetMergeInProgress(size_t ra_index) {
573 MergeGroupState* blk_state = merge_blk_state_[ra_index].get();
574 {
575 std::unique_lock<std::mutex> lock(blk_state->m_lock);
576
577 // We may have fallback from Async-merge to synchronous merging
578 // on the existing block. There is no need to reset as the
579 // merge is already in progress.
580 if (blk_state->merge_state_ == MERGE_GROUP_STATE::GROUP_MERGE_IN_PROGRESS) {
581 return;
582 }
583
584 CHECK(blk_state->merge_state_ == MERGE_GROUP_STATE::GROUP_MERGE_PENDING);
585
586 // First set the state to RA_READY so that in-flight I/O will drain
587 // and any new I/O will start reading from RA buffer
588 blk_state->merge_state_ = MERGE_GROUP_STATE::GROUP_MERGE_RA_READY;
589
590 // Wait if there are any in-flight I/O's - we cannot merge at this point
591 while (!(blk_state->num_ios_in_progress == 0)) {
592 blk_state->m_cv.wait(lock);
593 }
594
595 blk_state->merge_state_ = MERGE_GROUP_STATE::GROUP_MERGE_IN_PROGRESS;
596 }
597 }
598
599 // Invoked by Merge thread on failure
SetMergeFailed(size_t ra_index)600 void SnapshotHandler::SetMergeFailed(size_t ra_index) {
601 MergeGroupState* blk_state = merge_blk_state_[ra_index].get();
602 {
603 std::unique_lock<std::mutex> lock(blk_state->m_lock);
604
605 blk_state->merge_state_ = MERGE_GROUP_STATE::GROUP_MERGE_FAILED;
606 }
607 }
608
609 // Invoked by worker threads when I/O is complete on a "MERGE_PENDING"
610 // Block. If there are no more in-flight I/Os, wake up merge thread
611 // to resume merging.
NotifyIOCompletion(uint64_t new_block)612 void SnapshotHandler::NotifyIOCompletion(uint64_t new_block) {
613 auto it = block_to_ra_index_.find(new_block);
614 CHECK(it != block_to_ra_index_.end()) << " invalid block: " << new_block;
615
616 bool pending_ios = true;
617
618 int ra_index = it->second;
619 MergeGroupState* blk_state = merge_blk_state_[ra_index].get();
620 {
621 std::unique_lock<std::mutex> lock(blk_state->m_lock);
622
623 blk_state->num_ios_in_progress -= 1;
624 if (blk_state->num_ios_in_progress == 0) {
625 pending_ios = false;
626 }
627 }
628
629 // Give a chance to merge-thread to resume merge
630 // as there are no pending I/O.
631 if (!pending_ios) {
632 blk_state->m_cv.notify_all();
633 }
634 }
635
GetRABuffer(std::unique_lock<std::mutex> * lock,uint64_t block,void * buffer)636 bool SnapshotHandler::GetRABuffer(std::unique_lock<std::mutex>* lock, uint64_t block,
637 void* buffer) {
638 if (!lock->owns_lock()) {
639 SNAP_LOG(ERROR) << "GetRABuffer - Lock not held";
640 return false;
641 }
642 std::unordered_map<uint64_t, void*>::iterator it = read_ahead_buffer_map_.find(block);
643
644 if (it == read_ahead_buffer_map_.end()) {
645 return false;
646 }
647
648 memcpy(buffer, it->second, BLOCK_SZ);
649 return true;
650 }
651
652 // Invoked by worker threads in the I/O path. This is called when a sector
653 // is mapped to a COPY/XOR COW op.
ProcessMergingBlock(uint64_t new_block,void * buffer)654 MERGE_GROUP_STATE SnapshotHandler::ProcessMergingBlock(uint64_t new_block, void* buffer) {
655 auto it = block_to_ra_index_.find(new_block);
656 if (it == block_to_ra_index_.end()) {
657 return MERGE_GROUP_STATE::GROUP_INVALID;
658 }
659
660 int ra_index = it->second;
661 MergeGroupState* blk_state = merge_blk_state_[ra_index].get();
662 {
663 std::unique_lock<std::mutex> lock(blk_state->m_lock);
664
665 MERGE_GROUP_STATE state = blk_state->merge_state_;
666 switch (state) {
667 case MERGE_GROUP_STATE::GROUP_MERGE_PENDING: {
668 // If this is a merge-resume path, check if the data is
669 // available from scratch space. Data from scratch space takes
670 // higher precedence than from source device for overlapping
671 // blocks.
672 if (resume_merge_ && GetRABuffer(&lock, new_block, buffer)) {
673 return (MERGE_GROUP_STATE::GROUP_MERGE_IN_PROGRESS);
674 }
675 blk_state->num_ios_in_progress += 1; // ref count
676 [[fallthrough]];
677 }
678 case MERGE_GROUP_STATE::GROUP_MERGE_COMPLETED: {
679 [[fallthrough]];
680 }
681 case MERGE_GROUP_STATE::GROUP_MERGE_FAILED: {
682 return state;
683 }
684 // Fetch the data from RA buffer.
685 case MERGE_GROUP_STATE::GROUP_MERGE_RA_READY: {
686 [[fallthrough]];
687 }
688 case MERGE_GROUP_STATE::GROUP_MERGE_IN_PROGRESS: {
689 if (!GetRABuffer(&lock, new_block, buffer)) {
690 return MERGE_GROUP_STATE::GROUP_INVALID;
691 }
692 return state;
693 }
694 default: {
695 return MERGE_GROUP_STATE::GROUP_INVALID;
696 }
697 }
698 }
699 }
700
operator <<(std::ostream & os,MERGE_IO_TRANSITION value)701 std::ostream& operator<<(std::ostream& os, MERGE_IO_TRANSITION value) {
702 switch (value) {
703 case MERGE_IO_TRANSITION::INVALID:
704 return os << "INVALID";
705 case MERGE_IO_TRANSITION::MERGE_READY:
706 return os << "MERGE_READY";
707 case MERGE_IO_TRANSITION::MERGE_BEGIN:
708 return os << "MERGE_BEGIN";
709 case MERGE_IO_TRANSITION::MERGE_FAILED:
710 return os << "MERGE_FAILED";
711 case MERGE_IO_TRANSITION::MERGE_COMPLETE:
712 return os << "MERGE_COMPLETE";
713 case MERGE_IO_TRANSITION::IO_TERMINATED:
714 return os << "IO_TERMINATED";
715 case MERGE_IO_TRANSITION::READ_AHEAD_FAILURE:
716 return os << "READ_AHEAD_FAILURE";
717 default:
718 return os << "unknown";
719 }
720 }
721
722 } // namespace snapshot
723 } // namespace android
724