1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "linker/arm64/relative_patcher_arm64.h"
18
19 #include "arch/arm64/asm_support_arm64.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "art_method.h"
22 #include "base/bit_utils.h"
23 #include "base/malloc_arena_pool.h"
24 #include "driver/compiled_method-inl.h"
25 #include "driver/compiler_driver.h"
26 #include "entrypoints/quick/quick_entrypoints_enum.h"
27 #include "heap_poisoning.h"
28 #include "linker/linker_patch.h"
29 #include "lock_word.h"
30 #include "mirror/array-inl.h"
31 #include "mirror/object.h"
32 #include "oat/oat.h"
33 #include "oat/oat_quick_method_header.h"
34 #include "read_barrier.h"
35 #include "stream/output_stream.h"
36
37 namespace art {
38 namespace linker {
39
40 namespace {
41
42 // Maximum positive and negative displacement for method call measured from the patch location.
43 // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
44 // the ARM64 PC pointing to the BL.)
45 constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
46 constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
47
48 // Maximum positive and negative displacement for a conditional branch measured from the patch
49 // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
50 // measured from the ARM64 PC pointing to the B.cond.)
51 constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
52 constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
53
54 // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
55 constexpr uint32_t kAdrpThunkSize = 8u;
56
IsAdrpPatch(const LinkerPatch & patch)57 inline bool IsAdrpPatch(const LinkerPatch& patch) {
58 switch (patch.GetType()) {
59 case LinkerPatch::Type::kCallRelative:
60 case LinkerPatch::Type::kCallEntrypoint:
61 case LinkerPatch::Type::kBakerReadBarrierBranch:
62 return false;
63 case LinkerPatch::Type::kIntrinsicReference:
64 case LinkerPatch::Type::kBootImageRelRo:
65 case LinkerPatch::Type::kMethodRelative:
66 case LinkerPatch::Type::kMethodBssEntry:
67 case LinkerPatch::Type::kJniEntrypointRelative:
68 case LinkerPatch::Type::kTypeRelative:
69 case LinkerPatch::Type::kTypeAppImageRelRo:
70 case LinkerPatch::Type::kTypeBssEntry:
71 case LinkerPatch::Type::kPublicTypeBssEntry:
72 case LinkerPatch::Type::kPackageTypeBssEntry:
73 case LinkerPatch::Type::kStringRelative:
74 case LinkerPatch::Type::kStringBssEntry:
75 case LinkerPatch::Type::kMethodTypeBssEntry:
76 return patch.LiteralOffset() == patch.PcInsnOffset();
77 }
78 }
79
MaxExtraSpace(size_t num_adrp,size_t code_size)80 inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
81 if (num_adrp == 0u) {
82 return 0u;
83 }
84 uint32_t alignment_bytes =
85 CompiledMethod::AlignCode(code_size, InstructionSet::kArm64) - code_size;
86 return kAdrpThunkSize * num_adrp + alignment_bytes;
87 }
88
89 } // anonymous namespace
90
Arm64RelativePatcher(RelativePatcherThunkProvider * thunk_provider,RelativePatcherTargetProvider * target_provider,const Arm64InstructionSetFeatures * features)91 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherThunkProvider* thunk_provider,
92 RelativePatcherTargetProvider* target_provider,
93 const Arm64InstructionSetFeatures* features)
94 : ArmBaseRelativePatcher(thunk_provider, target_provider, InstructionSet::kArm64),
95 fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
96 reserved_adrp_thunks_(0u),
97 processed_adrp_thunks_(0u) {
98 if (fix_cortex_a53_843419_) {
99 adrp_thunk_locations_.reserve(16u);
100 current_method_thunks_.reserve(16u * kAdrpThunkSize);
101 }
102 }
103
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)104 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
105 const CompiledMethod* compiled_method,
106 MethodReference method_ref) {
107 if (!fix_cortex_a53_843419_) {
108 DCHECK(adrp_thunk_locations_.empty());
109 return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
110 }
111
112 // Add thunks for previous method if any.
113 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
114 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
115 offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) +
116 kAdrpThunkSize * num_adrp_thunks;
117 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
118 }
119
120 // Count the number of ADRP insns as the upper bound on the number of thunks needed
121 // and use it to reserve space for other linker patches.
122 size_t num_adrp = 0u;
123 DCHECK(compiled_method != nullptr);
124 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
125 if (IsAdrpPatch(patch)) {
126 ++num_adrp;
127 }
128 }
129 ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
130 uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
131 offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
132 if (num_adrp == 0u) {
133 return offset;
134 }
135
136 // Now that we have the actual offset where the code will be placed, locate the ADRP insns
137 // that actually require the thunk.
138 uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
139 uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
140 DCHECK(compiled_method != nullptr);
141 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
142 if (IsAdrpPatch(patch)) {
143 uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
144 if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
145 adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
146 thunk_offset += kAdrpThunkSize;
147 }
148 }
149 }
150 return offset;
151 }
152
ReserveSpaceEnd(uint32_t offset)153 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
154 if (!fix_cortex_a53_843419_) {
155 DCHECK(adrp_thunk_locations_.empty());
156 } else {
157 // Add thunks for the last method if any.
158 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
159 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
160 offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64) +
161 kAdrpThunkSize * num_adrp_thunks;
162 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
163 }
164 }
165 return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
166 }
167
WriteThunks(OutputStream * out,uint32_t offset)168 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
169 if (fix_cortex_a53_843419_) {
170 if (!current_method_thunks_.empty()) {
171 uint32_t aligned_offset = CompiledMethod::AlignCode(offset, InstructionSet::kArm64);
172 if (kIsDebugBuild) {
173 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
174 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
175 CHECK_LE(num_thunks, processed_adrp_thunks_);
176 for (size_t i = 0u; i != num_thunks; ++i) {
177 const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
178 CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
179 }
180 }
181 uint32_t aligned_code_delta = aligned_offset - offset;
182 if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
183 return 0u;
184 }
185 if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
186 return 0u;
187 }
188 offset = aligned_offset + current_method_thunks_.size();
189 current_method_thunks_.clear();
190 }
191 }
192 return ArmBaseRelativePatcher::WriteThunks(out, offset);
193 }
194
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)195 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
196 uint32_t literal_offset,
197 uint32_t patch_offset,
198 uint32_t target_offset) {
199 DCHECK_ALIGNED(literal_offset, 4u);
200 DCHECK_ALIGNED(patch_offset, 4u);
201 DCHECK_ALIGNED(target_offset, 4u);
202 uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
203 PatchBl(code, literal_offset, displacement);
204 }
205
PatchPcRelativeReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)206 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
207 const LinkerPatch& patch,
208 uint32_t patch_offset,
209 uint32_t target_offset) {
210 DCHECK_ALIGNED(patch_offset, 4u);
211 DCHECK_ALIGNED(target_offset, 4u);
212 uint32_t literal_offset = patch.LiteralOffset();
213 uint32_t insn = GetInsn(code, literal_offset);
214 uint32_t pc_insn_offset = patch.PcInsnOffset();
215 uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
216 bool wide = (insn & 0x40000000) != 0;
217 uint32_t shift = wide ? 3u : 2u;
218 if (literal_offset == pc_insn_offset) {
219 // Check it's an ADRP with imm == 0 (unset).
220 DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
221 << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
222 if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
223 adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
224 DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
225 literal_offset, patch_offset));
226 uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
227 uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
228 uint32_t adrp = PatchAdrp(insn, adrp_disp);
229
230 uint32_t out_disp = thunk_offset - patch_offset;
231 DCHECK_EQ(out_disp & 3u, 0u);
232 DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed.
233 insn = (out_disp & 0x0fffffffu) >> shift;
234 insn |= 0x14000000; // B <thunk>
235
236 uint32_t back_disp = -out_disp;
237 DCHECK_EQ(back_disp & 3u, 0u);
238 DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed.
239 uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
240 b_back |= 0x14000000; // B <back>
241 size_t thunks_code_offset = current_method_thunks_.size();
242 current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
243 SetInsn(¤t_method_thunks_, thunks_code_offset, adrp);
244 SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back);
245 static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
246
247 processed_adrp_thunks_ += 1u;
248 } else {
249 insn = PatchAdrp(insn, disp);
250 }
251 // Write the new ADRP (or B to the erratum 843419 thunk).
252 SetInsn(code, literal_offset, insn);
253 } else {
254 if ((insn & 0xfffffc00) == 0x91000000) {
255 // ADD immediate, 64-bit with imm12 == 0 (unset).
256 if (kUseBakerReadBarrier) {
257 DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference ||
258 patch.GetType() == LinkerPatch::Type::kMethodRelative ||
259 patch.GetType() == LinkerPatch::Type::kTypeRelative ||
260 patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType();
261 } else {
262 // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or k*TypeBssEntry.
263 DCHECK(patch.GetType() == LinkerPatch::Type::kIntrinsicReference ||
264 patch.GetType() == LinkerPatch::Type::kMethodRelative ||
265 patch.GetType() == LinkerPatch::Type::kTypeRelative ||
266 patch.GetType() == LinkerPatch::Type::kStringRelative ||
267 patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
268 patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry ||
269 patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry ||
270 patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
271 }
272 shift = 0u; // No shift for ADD.
273 } else {
274 // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
275 DCHECK(patch.GetType() == LinkerPatch::Type::kBootImageRelRo ||
276 patch.GetType() == LinkerPatch::Type::kMethodBssEntry ||
277 patch.GetType() == LinkerPatch::Type::kJniEntrypointRelative ||
278 patch.GetType() == LinkerPatch::Type::kTypeAppImageRelRo ||
279 patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
280 patch.GetType() == LinkerPatch::Type::kPublicTypeBssEntry ||
281 patch.GetType() == LinkerPatch::Type::kPackageTypeBssEntry ||
282 patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
283 DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
284 }
285 if (kIsDebugBuild) {
286 uint32_t adrp = GetInsn(code, pc_insn_offset);
287 if ((adrp & 0x9f000000u) != 0x90000000u) {
288 CHECK(fix_cortex_a53_843419_);
289 CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk>
290 CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
291 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
292 CHECK_LE(num_thunks, processed_adrp_thunks_);
293 uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
294 for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
295 CHECK_NE(i, processed_adrp_thunks_);
296 if (adrp_thunk_locations_[i].first == b_offset) {
297 size_t idx = num_thunks - (processed_adrp_thunks_ - i);
298 adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize);
299 break;
300 }
301 }
302 }
303 CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points
304 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register.
305 }
306 uint32_t imm12 = (disp & 0xfffu) >> shift;
307 insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
308 SetInsn(code, literal_offset, insn);
309 }
310 }
311
PatchEntrypointCall(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)312 void Arm64RelativePatcher::PatchEntrypointCall(std::vector<uint8_t>* code,
313 const LinkerPatch& patch,
314 uint32_t patch_offset) {
315 DCHECK_ALIGNED(patch_offset, 4u);
316 ThunkKey key = GetEntrypointCallKey(patch);
317 uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
318 uint32_t displacement = target_offset - patch_offset;
319 PatchBl(code, patch.LiteralOffset(), displacement);
320 }
321
PatchBakerReadBarrierBranch(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset)322 void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
323 const LinkerPatch& patch,
324 uint32_t patch_offset) {
325 DCHECK_ALIGNED(patch_offset, 4u);
326 uint32_t literal_offset = patch.LiteralOffset();
327 uint32_t insn = GetInsn(code, literal_offset);
328 DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched)
329 ThunkKey key = GetBakerThunkKey(patch);
330 uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
331 DCHECK_ALIGNED(target_offset, 4u);
332 uint32_t disp = target_offset - patch_offset;
333 DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed.
334 insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23.
335 SetInsn(code, literal_offset, insn);
336 }
337
MaxPositiveDisplacement(const ThunkKey & key)338 uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) {
339 switch (key.GetType()) {
340 case ThunkType::kMethodCall:
341 case ThunkType::kEntrypointCall:
342 return kMaxMethodCallPositiveDisplacement;
343 case ThunkType::kBakerReadBarrier:
344 return kMaxBcondPositiveDisplacement;
345 }
346 }
347
MaxNegativeDisplacement(const ThunkKey & key)348 uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) {
349 switch (key.GetType()) {
350 case ThunkType::kMethodCall:
351 case ThunkType::kEntrypointCall:
352 return kMaxMethodCallNegativeDisplacement;
353 case ThunkType::kBakerReadBarrier:
354 return kMaxBcondNegativeDisplacement;
355 }
356 }
357
PatchAdrp(uint32_t adrp,uint32_t disp)358 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
359 return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg.
360 // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
361 ((disp & 0x00003000u) << (29 - 12)) |
362 // The next 16 bits are encoded in bits 5-22.
363 ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
364 // Since the target_offset is based on the beginning of the oat file and the
365 // image space precedes the oat file, the target_offset into image space will
366 // be negative yet passed as uint32_t. Therefore we limit the displacement
367 // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
368 // the highest bit of the displacement. This is encoded in bit 23.
369 ((disp & 0x80000000u) >> (31 - 23));
370 }
371
PatchBl(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t displacement)372 void Arm64RelativePatcher::PatchBl(std::vector<uint8_t>* code,
373 uint32_t literal_offset,
374 uint32_t displacement) {
375 DCHECK_ALIGNED(displacement, 4u);
376 DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
377 uint32_t insn = (displacement & 0x0fffffffu) >> 2;
378 insn |= 0x94000000; // BL
379
380 // Check that we're just overwriting an existing BL.
381 DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
382 // Write the new BL.
383 SetInsn(code, literal_offset, insn);
384 }
385
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)386 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
387 uint32_t literal_offset,
388 uint32_t patch_offset) {
389 DCHECK_EQ(patch_offset & 0x3u, 0u);
390 if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc
391 uint32_t adrp = GetInsn(code, literal_offset);
392 DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
393 uint32_t next_offset = patch_offset + 4u;
394 uint32_t next_insn = GetInsn(code, literal_offset + 4u);
395
396 // Below we avoid patching sequences where the adrp is followed by a load which can easily
397 // be proved to be aligned.
398
399 // First check if the next insn is the LDR using the result of the ADRP.
400 // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
401 if ((next_insn & 0xffc00000) == 0xb9400000 &&
402 (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
403 return false;
404 }
405
406 // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result
407 // of the ADRP for an ADD immediate, check for that as well. We generalize a bit
408 // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination
409 // or stores the result to a different register.
410 if ((next_insn & 0x1f000000) == 0x11000000 &&
411 ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
412 return false;
413 }
414
415 // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
416 if ((next_insn & 0xff000000) == 0x18000000) {
417 return false;
418 }
419
420 // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
421 if ((next_insn & 0xff000000) == 0x58000000) {
422 bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
423 return !is_aligned_load;
424 }
425
426 // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
427 // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
428 if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
429 return false;
430 }
431 return true;
432 }
433 return false;
434 }
435
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)436 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
437 DCHECK_LE(offset + 4u, code->size());
438 DCHECK_ALIGNED(offset, 4u);
439 uint8_t* addr = &(*code)[offset];
440 addr[0] = (value >> 0) & 0xff;
441 addr[1] = (value >> 8) & 0xff;
442 addr[2] = (value >> 16) & 0xff;
443 addr[3] = (value >> 24) & 0xff;
444 }
445
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)446 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
447 DCHECK_LE(offset + 4u, code.size());
448 DCHECK_ALIGNED(offset, 4u);
449 const uint8_t* addr = &code[offset];
450 return
451 (static_cast<uint32_t>(addr[0]) << 0) +
452 (static_cast<uint32_t>(addr[1]) << 8) +
453 (static_cast<uint32_t>(addr[2]) << 16)+
454 (static_cast<uint32_t>(addr[3]) << 24);
455 }
456
457 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)458 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
459 return GetInsn(ArrayRef<const uint8_t>(*code), offset);
460 }
461
462 } // namespace linker
463 } // namespace art
464