1 /*
2  * Copyright (C) 2023 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "PosePredictor.h"
18 
19 namespace android::media {
20 
21 namespace {
22 #ifdef ENABLE_VERIFICATION
23 constexpr bool kEnableVerification = true;
24 constexpr std::array<int, 3> kLookAheadMs{ 50, 100, 200 };
25 #else
26 constexpr bool kEnableVerification = false;
27 constexpr std::array<int, 0> kLookAheadMs{};
28 #endif
29 
30 } // namespace
31 
add(int64_t atNs,const Pose3f & pose,const Twist3f & twist)32 void LeastSquaresPredictor::add(int64_t atNs, const Pose3f& pose, const Twist3f& twist)
33 {
34     (void)twist;
35     mLastAtNs = atNs;
36     mLastPose = pose;
37     const auto q = pose.rotation();
38     const double datNs = static_cast<double>(atNs);
39     mRw.add({datNs, q.w()});
40     mRx.add({datNs, q.x()});
41     mRy.add({datNs, q.y()});
42     mRz.add({datNs, q.z()});
43 }
44 
predict(int64_t atNs) const45 Pose3f LeastSquaresPredictor::predict(int64_t atNs) const
46 {
47     if (mRw.getN() < kMinimumSamplesForPrediction) return mLastPose;
48 
49     /*
50      * Using parametric form, we have q(t) = { w(t), x(t), y(t), z(t) }.
51      * We compute the least squares prediction of w, x, y, z.
52      */
53     const double dLookahead = static_cast<double>(atNs);
54     Eigen::Quaternionf lsq(
55         mRw.getYFromX(dLookahead),
56         mRx.getYFromX(dLookahead),
57         mRy.getYFromX(dLookahead),
58         mRz.getYFromX(dLookahead));
59 
60      /*
61       * We cheat here, since the result lsq is the least squares prediction
62       * in H (arbitrary quaternion), not the least squares prediction in
63       * SO(3) (unit quaternion).
64       *
65       * In other words, the result for lsq is most likely not a unit quaternion.
66       * To solve this, we normalize, thereby selecting the closest unit quaternion
67       * in SO(3) to the prediction in H.
68       */
69     lsq.normalize();
70     return Pose3f(lsq);
71 }
72 
reset()73 void LeastSquaresPredictor::reset() {
74     mLastAtNs = {};
75     mLastPose = {};
76     mRw.reset();
77     mRx.reset();
78     mRy.reset();
79     mRz.reset();
80 }
81 
toString(size_t index) const82 std::string LeastSquaresPredictor::toString(size_t index) const {
83     std::string s(index, ' ');
84     s.append("LeastSquaresPredictor using alpha: ")
85         .append(std::to_string(mAlpha))
86         .append(" last pose: ")
87         .append(mLastPose.toString())
88         .append("\n");
89     return s;
90 }
91 
92 // Formatting
createDelimiterIdx(size_t predictors,size_t lookaheads)93 static inline std::vector<size_t> createDelimiterIdx(size_t predictors, size_t lookaheads) {
94     if (lookaheads == 0) return {};
95     --lookaheads;
96     std::vector<size_t> delimiterIdx(lookaheads);
97     for (size_t i = 0; i < lookaheads; ++i) {
98         delimiterIdx[i] = (i + 1) * predictors;
99     }
100     return delimiterIdx;
101 }
102 
PosePredictor()103 PosePredictor::PosePredictor()
104     : mPredictors{
105             // First predictors must match switch in getCurrentPredictor()
106             std::make_shared<LastPredictor>(),
107             std::make_shared<TwistPredictor>(),
108             std::make_shared<LeastSquaresPredictor>(),
109             // After this, can place additional predictors here for comparison such as
110             // std::make_shared<LeastSquaresPredictor>(0.25),
111         }
112     , mLookaheadMs(kLookAheadMs.begin(), kLookAheadMs.end())
113     , mVerifiers(std::size(mLookaheadMs) * std::size(mPredictors))
114     , mDelimiterIdx(createDelimiterIdx(std::size(mPredictors), std::size(mLookaheadMs)))
115     , mPredictionRecorder(
116         std::size(mVerifiers) /* vectorSize */, std::chrono::seconds(1), 10 /* maxLogLine */,
117         mDelimiterIdx)
118     , mPredictionDurableRecorder(
119         std::size(mVerifiers) /* vectorSize */, std::chrono::minutes(1), 10 /* maxLogLine */,
120         mDelimiterIdx)
121     {
122 }
123 
predict(int64_t timestampNs,const Pose3f & pose,const Twist3f & twist,float predictionDurationNs)124 Pose3f PosePredictor::predict(
125         int64_t timestampNs, const Pose3f& pose, const Twist3f& twist, float predictionDurationNs)
126 {
127     if (timestampNs - mLastTimestampNs > kMaximumSampleIntervalBeforeResetNs) {
128         for (const auto& predictor : mPredictors) {
129             predictor->reset();
130         }
131         ++mResets;
132     }
133     mLastTimestampNs = timestampNs;
134 
135     auto selectedPredictor = getCurrentPredictor();
136     if constexpr (kEnableVerification) {
137         // Update all Predictors
138         for (const auto& predictor : mPredictors) {
139             predictor->add(timestampNs, pose, twist);
140         }
141 
142         // Update Verifiers and calculate errors
143         std::vector<float> error(std::size(mVerifiers));
144         for (size_t i = 0; i < mLookaheadMs.size(); ++i) {
145             constexpr float RADIAN_TO_DEGREES = 180 / M_PI;
146             const int64_t atNs =
147                     timestampNs + mLookaheadMs[i] * PosePredictorVerifier::kMillisToNanos;
148 
149             for (size_t j = 0; j < mPredictors.size(); ++j) {
150                 const size_t idx = i * std::size(mPredictors) + j;
151                 mVerifiers[idx].verifyActualPose(timestampNs, pose);
152                 mVerifiers[idx].addPredictedPose(atNs, mPredictors[j]->predict(atNs));
153                 error[idx] =  RADIAN_TO_DEGREES * mVerifiers[idx].lastError();
154             }
155         }
156         // Record errors
157         mPredictionRecorder.record(error);
158         mPredictionDurableRecorder.record(error);
159     } else /* constexpr */ {
160         selectedPredictor->add(timestampNs, pose, twist);
161     }
162 
163     // Deliver prediction
164     const int64_t predictionTimeNs = timestampNs + (int64_t)predictionDurationNs;
165     return selectedPredictor->predict(predictionTimeNs);
166 }
167 
setPosePredictorType(PosePredictorType type)168 void PosePredictor::setPosePredictorType(PosePredictorType type) {
169     if (!isValidPosePredictorType(type)) return;
170     if (type == mSetType) return;
171     mSetType = type;
172     if (type == android::media::PosePredictorType::AUTO) {
173         type = android::media::PosePredictorType::LEAST_SQUARES;
174     }
175     if (type != mCurrentType) {
176         mCurrentType = type;
177         if constexpr (!kEnableVerification) {
178             // Verification keeps all predictors up-to-date.
179             // If we don't enable verification, we must reset the current predictor.
180             getCurrentPredictor()->reset();
181         }
182     }
183 }
184 
toString(size_t index) const185 std::string PosePredictor::toString(size_t index) const {
186     std::string prefixSpace(index, ' ');
187     std::string ss(prefixSpace);
188     ss.append("PosePredictor:\n")
189         .append(prefixSpace)
190         .append(" Current Prediction Type: ")
191         .append(android::media::toString(mCurrentType))
192         .append("\n")
193         .append(prefixSpace)
194         .append(" Resets: ")
195         .append(std::to_string(mResets))
196         .append("\n")
197         .append(getCurrentPredictor()->toString(index + 1));
198     if constexpr (kEnableVerification) {
199         // dump verification
200         ss.append(prefixSpace)
201             .append(" Prediction abs error (L1) degrees [ type (");
202         for (size_t i = 0; i < mPredictors.size(); ++i) {
203             if (i > 0) ss.append(" , ");
204             ss.append(mPredictors[i]->name());
205         }
206         ss.append(" ) x ( ");
207         for (size_t i = 0; i < mLookaheadMs.size(); ++i) {
208             if (i > 0) ss.append(" : ");
209             ss.append(std::to_string(mLookaheadMs[i]));
210         }
211         std::vector<float> cumulativeAverageErrors(std::size(mVerifiers));
212         for (size_t i = 0; i < cumulativeAverageErrors.size(); ++i) {
213             cumulativeAverageErrors[i] = mVerifiers[i].cumulativeAverageError();
214         }
215         ss.append(" ) ms ]\n")
216             .append(prefixSpace)
217             .append("  Cumulative Average Error:\n")
218             .append(prefixSpace)
219             .append("   ")
220             .append(VectorRecorder::toString(cumulativeAverageErrors, mDelimiterIdx, "%.3g"))
221             .append("\n")
222             .append(prefixSpace)
223             .append("  PerMinuteHistory:\n")
224             .append(mPredictionDurableRecorder.toString(index + 3))
225             .append(prefixSpace)
226             .append("  PerSecondHistory:\n")
227             .append(mPredictionRecorder.toString(index + 3));
228     }
229     return ss;
230 }
231 
getCurrentPredictor() const232 std::shared_ptr<PredictorBase> PosePredictor::getCurrentPredictor() const {
233     // we don't use a map here, we look up directly
234     switch (mCurrentType) {
235     default:
236     case android::media::PosePredictorType::LAST:
237         return mPredictors[0];
238     case android::media::PosePredictorType::TWIST:
239         return mPredictors[1];
240     case android::media::PosePredictorType::AUTO: // shouldn't occur here.
241     case android::media::PosePredictorType::LEAST_SQUARES:
242         return mPredictors[2];
243     }
244 }
245 
246 } // namespace android::media
247