1// Copyright 2017 Google Inc. All rights reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//     http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15package android
16
17import (
18	"bytes"
19	"fmt"
20	"path/filepath"
21	"regexp"
22	"sort"
23	"strings"
24	"sync"
25	"testing"
26
27	mkparser "android/soong/androidmk/parser"
28
29	"github.com/google/blueprint"
30	"github.com/google/blueprint/proptools"
31)
32
33func newTestContextForFixture(config Config) *TestContext {
34	ctx := &TestContext{
35		Context: &Context{blueprint.NewContext(), config},
36	}
37
38	ctx.postDeps = append(ctx.postDeps, registerPathDepsMutator)
39
40	ctx.SetFs(ctx.config.fs)
41	if ctx.config.mockBpList != "" {
42		ctx.SetModuleListFile(ctx.config.mockBpList)
43	}
44
45	return ctx
46}
47
48func NewTestContext(config Config) *TestContext {
49	ctx := newTestContextForFixture(config)
50
51	nameResolver := NewNameResolver(config)
52	ctx.NameResolver = nameResolver
53	ctx.SetNameInterface(nameResolver)
54
55	return ctx
56}
57
58var PrepareForTestWithArchMutator = GroupFixturePreparers(
59	// Configure architecture targets in the fixture config.
60	FixtureModifyConfig(modifyTestConfigToSupportArchMutator),
61
62	// Add the arch mutator to the context.
63	FixtureRegisterWithContext(func(ctx RegistrationContext) {
64		ctx.PreDepsMutators(registerArchMutator)
65	}),
66)
67
68var PrepareForTestWithDefaults = FixtureRegisterWithContext(func(ctx RegistrationContext) {
69	ctx.PreArchMutators(RegisterDefaultsPreArchMutators)
70})
71
72var PrepareForTestWithComponentsMutator = FixtureRegisterWithContext(func(ctx RegistrationContext) {
73	ctx.PreArchMutators(RegisterComponentsMutator)
74})
75
76var PrepareForTestWithPrebuilts = FixtureRegisterWithContext(RegisterPrebuiltMutators)
77
78var PrepareForTestWithOverrides = FixtureRegisterWithContext(func(ctx RegistrationContext) {
79	ctx.PostDepsMutators(RegisterOverridePostDepsMutators)
80})
81
82var PrepareForTestWithLicenses = GroupFixturePreparers(
83	FixtureRegisterWithContext(RegisterLicenseKindBuildComponents),
84	FixtureRegisterWithContext(RegisterLicenseBuildComponents),
85	FixtureRegisterWithContext(registerLicenseMutators),
86)
87
88var PrepareForTestWithGenNotice = FixtureRegisterWithContext(RegisterGenNoticeBuildComponents)
89
90func registerLicenseMutators(ctx RegistrationContext) {
91	ctx.PreArchMutators(RegisterLicensesPackageMapper)
92	ctx.PreArchMutators(RegisterLicensesPropertyGatherer)
93	ctx.PostDepsMutators(RegisterLicensesDependencyChecker)
94}
95
96var PrepareForTestWithLicenseDefaultModules = GroupFixturePreparers(
97	FixtureAddTextFile("build/soong/licenses/Android.bp", `
98		license {
99				name: "Android-Apache-2.0",
100				package_name: "Android",
101				license_kinds: ["SPDX-license-identifier-Apache-2.0"],
102				copyright_notice: "Copyright (C) The Android Open Source Project",
103				license_text: ["LICENSE"],
104		}
105
106		license_kind {
107				name: "SPDX-license-identifier-Apache-2.0",
108				conditions: ["notice"],
109				url: "https://spdx.org/licenses/Apache-2.0.html",
110		}
111
112		license_kind {
113				name: "legacy_unencumbered",
114				conditions: ["unencumbered"],
115		}
116	`),
117	FixtureAddFile("build/soong/licenses/LICENSE", nil),
118)
119
120var PrepareForTestWithNamespace = FixtureRegisterWithContext(func(ctx RegistrationContext) {
121	registerNamespaceBuildComponents(ctx)
122	ctx.PreArchMutators(RegisterNamespaceMutator)
123})
124
125var PrepareForTestWithMakevars = FixtureRegisterWithContext(func(ctx RegistrationContext) {
126	ctx.RegisterSingletonType("makevars", makeVarsSingletonFunc)
127})
128
129// Test fixture preparer that will register most java build components.
130//
131// Singletons and mutators should only be added here if they are needed for a majority of java
132// module types, otherwise they should be added under a separate preparer to allow them to be
133// selected only when needed to reduce test execution time.
134//
135// Module types do not have much of an overhead unless they are used so this should include as many
136// module types as possible. The exceptions are those module types that require mutators and/or
137// singletons in order to function in which case they should be kept together in a separate
138// preparer.
139//
140// The mutators in this group were chosen because they are needed by the vast majority of tests.
141var PrepareForTestWithAndroidBuildComponents = GroupFixturePreparers(
142	// Sorted alphabetically as the actual order does not matter as tests automatically enforce the
143	// correct order.
144	PrepareForTestWithArchMutator,
145	PrepareForTestWithComponentsMutator,
146	PrepareForTestWithDefaults,
147	PrepareForTestWithFilegroup,
148	PrepareForTestWithOverrides,
149	PrepareForTestWithPackageModule,
150	PrepareForTestWithPrebuilts,
151	PrepareForTestWithVisibility,
152)
153
154// Prepares an integration test with all build components from the android package.
155//
156// This should only be used by tests that want to run with as much of the build enabled as possible.
157var PrepareForIntegrationTestWithAndroid = GroupFixturePreparers(
158	PrepareForTestWithAndroidBuildComponents,
159)
160
161// Prepares a test that may be missing dependencies by setting allow_missing_dependencies to
162// true.
163var PrepareForTestWithAllowMissingDependencies = GroupFixturePreparers(
164	FixtureModifyProductVariables(func(variables FixtureProductVariables) {
165		variables.Allow_missing_dependencies = proptools.BoolPtr(true)
166	}),
167	FixtureModifyContext(func(ctx *TestContext) {
168		ctx.SetAllowMissingDependencies(true)
169	}),
170)
171
172// Prepares a test that disallows non-existent paths.
173var PrepareForTestDisallowNonExistentPaths = FixtureModifyConfig(func(config Config) {
174	config.TestAllowNonExistentPaths = false
175})
176
177func NewTestArchContext(config Config) *TestContext {
178	ctx := NewTestContext(config)
179	ctx.preDeps = append(ctx.preDeps, registerArchMutator)
180	return ctx
181}
182
183type TestContext struct {
184	*Context
185	preArch, preDeps, postDeps, finalDeps []RegisterMutatorFunc
186	NameResolver                          *NameResolver
187
188	// The list of singletons registered for the test.
189	singletons sortableComponents
190
191	// The order in which the mutators and singletons will be run in this test
192	// context; for debugging.
193	mutatorOrder, singletonOrder []string
194}
195
196func (ctx *TestContext) PreArchMutators(f RegisterMutatorFunc) {
197	ctx.preArch = append(ctx.preArch, f)
198}
199
200func (ctx *TestContext) HardCodedPreArchMutators(f RegisterMutatorFunc) {
201	// Register mutator function as normal for testing.
202	ctx.PreArchMutators(f)
203}
204
205func (ctx *TestContext) moduleProvider(m blueprint.Module, p blueprint.AnyProviderKey) (any, bool) {
206	return ctx.Context.ModuleProvider(m, p)
207}
208
209func (ctx *TestContext) PreDepsMutators(f RegisterMutatorFunc) {
210	ctx.preDeps = append(ctx.preDeps, f)
211}
212
213func (ctx *TestContext) PostDepsMutators(f RegisterMutatorFunc) {
214	ctx.postDeps = append(ctx.postDeps, f)
215}
216
217func (ctx *TestContext) FinalDepsMutators(f RegisterMutatorFunc) {
218	ctx.finalDeps = append(ctx.finalDeps, f)
219}
220
221func (ctx *TestContext) OtherModuleProviderAdaptor() OtherModuleProviderContext {
222	return NewOtherModuleProviderAdaptor(func(module blueprint.Module, provider blueprint.AnyProviderKey) (any, bool) {
223		return ctx.moduleProvider(module, provider)
224	})
225}
226
227// registeredComponentOrder defines the order in which a sortableComponent type is registered at
228// runtime and provides support for reordering the components registered for a test in the same
229// way.
230type registeredComponentOrder struct {
231	// The name of the component type, used for error messages.
232	componentType string
233
234	// The names of the registered components in the order in which they were registered.
235	namesInOrder []string
236
237	// Maps from the component name to its position in the runtime ordering.
238	namesToIndex map[string]int
239
240	// A function that defines the order between two named components that can be used to sort a slice
241	// of component names into the same order as they appear in namesInOrder.
242	less func(string, string) bool
243}
244
245// registeredComponentOrderFromExistingOrder takes an existing slice of sortableComponents and
246// creates a registeredComponentOrder that contains a less function that can be used to sort a
247// subset of that list of names so it is in the same order as the original sortableComponents.
248func registeredComponentOrderFromExistingOrder(componentType string, existingOrder sortableComponents) registeredComponentOrder {
249	// Only the names from the existing order are needed for this so create a list of component names
250	// in the correct order.
251	namesInOrder := componentsToNames(existingOrder)
252
253	// Populate the map from name to position in the list.
254	nameToIndex := make(map[string]int)
255	for i, n := range namesInOrder {
256		nameToIndex[n] = i
257	}
258
259	// A function to use to map from a name to an index in the original order.
260	indexOf := func(name string) int {
261		index, ok := nameToIndex[name]
262		if !ok {
263			// Should never happen as tests that use components that are not known at runtime do not sort
264			// so should never use this function.
265			panic(fmt.Errorf("internal error: unknown %s %q should be one of %s", componentType, name, strings.Join(namesInOrder, ", ")))
266		}
267		return index
268	}
269
270	// The less function.
271	less := func(n1, n2 string) bool {
272		i1 := indexOf(n1)
273		i2 := indexOf(n2)
274		return i1 < i2
275	}
276
277	return registeredComponentOrder{
278		componentType: componentType,
279		namesInOrder:  namesInOrder,
280		namesToIndex:  nameToIndex,
281		less:          less,
282	}
283}
284
285// componentsToNames maps from the slice of components to a slice of their names.
286func componentsToNames(components sortableComponents) []string {
287	names := make([]string, len(components))
288	for i, c := range components {
289		names[i] = c.componentName()
290	}
291	return names
292}
293
294// enforceOrdering enforces the supplied components are in the same order as is defined in this
295// object.
296//
297// If the supplied components contains any components that are not registered at runtime, i.e. test
298// specific components, then it is impossible to sort them into an order that both matches the
299// runtime and also preserves the implicit ordering defined in the test. In that case it will not
300// sort the components, instead it will just check that the components are in the correct order.
301//
302// Otherwise, this will sort the supplied components in place.
303func (o *registeredComponentOrder) enforceOrdering(components sortableComponents) {
304	// Check to see if the list of components contains any components that are
305	// not registered at runtime.
306	var unknownComponents []string
307	testOrder := componentsToNames(components)
308	for _, name := range testOrder {
309		if _, ok := o.namesToIndex[name]; !ok {
310			unknownComponents = append(unknownComponents, name)
311			break
312		}
313	}
314
315	// If the slice contains some unknown components then it is not possible to
316	// sort them into an order that matches the runtime while also preserving the
317	// order expected from the test, so in that case don't sort just check that
318	// the order of the known mutators does match.
319	if len(unknownComponents) > 0 {
320		// Check order.
321		o.checkTestOrder(testOrder, unknownComponents)
322	} else {
323		// Sort the components.
324		sort.Slice(components, func(i, j int) bool {
325			n1 := components[i].componentName()
326			n2 := components[j].componentName()
327			return o.less(n1, n2)
328		})
329	}
330}
331
332// checkTestOrder checks that the supplied testOrder matches the one defined by this object,
333// panicking if it does not.
334func (o *registeredComponentOrder) checkTestOrder(testOrder []string, unknownComponents []string) {
335	lastMatchingTest := -1
336	matchCount := 0
337	// Take a copy of the runtime order as it is modified during the comparison.
338	runtimeOrder := append([]string(nil), o.namesInOrder...)
339	componentType := o.componentType
340	for i, j := 0, 0; i < len(testOrder) && j < len(runtimeOrder); {
341		test := testOrder[i]
342		runtime := runtimeOrder[j]
343
344		if test == runtime {
345			testOrder[i] = test + fmt.Sprintf(" <-- matched with runtime %s %d", componentType, j)
346			runtimeOrder[j] = runtime + fmt.Sprintf(" <-- matched with test %s %d", componentType, i)
347			lastMatchingTest = i
348			i += 1
349			j += 1
350			matchCount += 1
351		} else if _, ok := o.namesToIndex[test]; !ok {
352			// The test component is not registered globally so assume it is the correct place, treat it
353			// as having matched and skip it.
354			i += 1
355			matchCount += 1
356		} else {
357			// Assume that the test list is in the same order as the runtime list but the runtime list
358			// contains some components that are not present in the tests. So, skip the runtime component
359			// to try and find the next one that matches the current test component.
360			j += 1
361		}
362	}
363
364	// If every item in the test order was either test specific or matched one in the runtime then
365	// it is in the correct order. Otherwise, it was not so fail.
366	if matchCount != len(testOrder) {
367		// The test component names were not all matched with a runtime component name so there must
368		// either be a component present in the test that is not present in the runtime or they must be
369		// in the wrong order.
370		testOrder[lastMatchingTest+1] = testOrder[lastMatchingTest+1] + " <--- unmatched"
371		panic(fmt.Errorf("the tests uses test specific components %q and so cannot be automatically sorted."+
372			" Unfortunately it uses %s components in the wrong order.\n"+
373			"test order:\n    %s\n"+
374			"runtime order\n    %s\n",
375			SortedUniqueStrings(unknownComponents),
376			componentType,
377			strings.Join(testOrder, "\n    "),
378			strings.Join(runtimeOrder, "\n    ")))
379	}
380}
381
382// registrationSorter encapsulates the information needed to ensure that the test mutators are
383// registered, and thereby executed, in the same order as they are at runtime.
384//
385// It MUST be populated lazily AFTER all package initialization has been done otherwise it will
386// only define the order for a subset of all the registered build components that are available for
387// the packages being tested.
388//
389// e.g if this is initialized during say the cc package initialization then any tests run in the
390// java package will not sort build components registered by the java package's init() functions.
391type registrationSorter struct {
392	// Used to ensure that this is only created once.
393	once sync.Once
394
395	// The order of mutators
396	mutatorOrder registeredComponentOrder
397
398	// The order of singletons
399	singletonOrder registeredComponentOrder
400}
401
402// populate initializes this structure from globally registered build components.
403//
404// Only the first call has any effect.
405func (s *registrationSorter) populate() {
406	s.once.Do(func() {
407		// Created an ordering from the globally registered mutators.
408		globallyRegisteredMutators := collateGloballyRegisteredMutators()
409		s.mutatorOrder = registeredComponentOrderFromExistingOrder("mutator", globallyRegisteredMutators)
410
411		// Create an ordering from the globally registered singletons.
412		globallyRegisteredSingletons := collateGloballyRegisteredSingletons()
413		s.singletonOrder = registeredComponentOrderFromExistingOrder("singleton", globallyRegisteredSingletons)
414	})
415}
416
417// Provides support for enforcing the same order in which build components are registered globally
418// to the order in which they are registered during tests.
419//
420// MUST only be accessed via the globallyRegisteredComponentsOrder func.
421var globalRegistrationSorter registrationSorter
422
423// globallyRegisteredComponentsOrder returns the globalRegistrationSorter after ensuring it is
424// correctly populated.
425func globallyRegisteredComponentsOrder() *registrationSorter {
426	globalRegistrationSorter.populate()
427	return &globalRegistrationSorter
428}
429
430func (ctx *TestContext) Register() {
431	globalOrder := globallyRegisteredComponentsOrder()
432
433	mutators := collateRegisteredMutators(ctx.preArch, ctx.preDeps, ctx.postDeps, ctx.finalDeps)
434	// Ensure that the mutators used in the test are in the same order as they are used at runtime.
435	globalOrder.mutatorOrder.enforceOrdering(mutators)
436	mutators.registerAll(ctx.Context)
437
438	// Ensure that the singletons used in the test are in the same order as they are used at runtime.
439	globalOrder.singletonOrder.enforceOrdering(ctx.singletons)
440	ctx.singletons.registerAll(ctx.Context)
441
442	// Save the sorted components order away to make them easy to access while debugging.
443	ctx.mutatorOrder = componentsToNames(mutators)
444	ctx.singletonOrder = componentsToNames(singletons)
445}
446
447func (ctx *TestContext) ParseFileList(rootDir string, filePaths []string) (deps []string, errs []error) {
448	// This function adapts the old style ParseFileList calls that are spread throughout the tests
449	// to the new style that takes a config.
450	return ctx.Context.ParseFileList(rootDir, filePaths, ctx.config)
451}
452
453func (ctx *TestContext) ParseBlueprintsFiles(rootDir string) (deps []string, errs []error) {
454	// This function adapts the old style ParseBlueprintsFiles calls that are spread throughout the
455	// tests to the new style that takes a config.
456	return ctx.Context.ParseBlueprintsFiles(rootDir, ctx.config)
457}
458
459func (ctx *TestContext) RegisterModuleType(name string, factory ModuleFactory) {
460	ctx.Context.RegisterModuleType(name, ModuleFactoryAdaptor(factory))
461}
462
463func (ctx *TestContext) RegisterSingletonModuleType(name string, factory SingletonModuleFactory) {
464	s, m := SingletonModuleFactoryAdaptor(name, factory)
465	ctx.RegisterSingletonType(name, s)
466	ctx.RegisterModuleType(name, m)
467}
468
469func (ctx *TestContext) RegisterParallelSingletonModuleType(name string, factory SingletonModuleFactory) {
470	s, m := SingletonModuleFactoryAdaptor(name, factory)
471	ctx.RegisterParallelSingletonType(name, s)
472	ctx.RegisterModuleType(name, m)
473}
474
475func (ctx *TestContext) RegisterSingletonType(name string, factory SingletonFactory) {
476	ctx.singletons = append(ctx.singletons, newSingleton(name, factory, false))
477}
478
479func (ctx *TestContext) RegisterParallelSingletonType(name string, factory SingletonFactory) {
480	ctx.singletons = append(ctx.singletons, newSingleton(name, factory, true))
481}
482
483// ModuleVariantForTests selects a specific variant of the module with the given
484// name by matching the variations map against the variations of each module
485// variant. A module variant matches the map if every variation that exists in
486// both have the same value. Both the module and the map are allowed to have
487// extra variations that the other doesn't have. Panics if not exactly one
488// module variant matches.
489func (ctx *TestContext) ModuleVariantForTests(name string, matchVariations map[string]string) TestingModule {
490	modules := []Module{}
491	ctx.VisitAllModules(func(m blueprint.Module) {
492		if ctx.ModuleName(m) == name {
493			am := m.(Module)
494			amMut := am.base().commonProperties.DebugMutators
495			amVar := am.base().commonProperties.DebugVariations
496			matched := true
497			for i, mut := range amMut {
498				if wantedVar, found := matchVariations[mut]; found && amVar[i] != wantedVar {
499					matched = false
500					break
501				}
502			}
503			if matched {
504				modules = append(modules, am)
505			}
506		}
507	})
508
509	if len(modules) == 0 {
510		// Show all the modules or module variants that do exist.
511		var allModuleNames []string
512		var allVariants []string
513		ctx.VisitAllModules(func(m blueprint.Module) {
514			allModuleNames = append(allModuleNames, ctx.ModuleName(m))
515			if ctx.ModuleName(m) == name {
516				allVariants = append(allVariants, m.(Module).String())
517			}
518		})
519
520		if len(allVariants) == 0 {
521			panic(fmt.Errorf("failed to find module %q. All modules:\n  %s",
522				name, strings.Join(SortedUniqueStrings(allModuleNames), "\n  ")))
523		} else {
524			sort.Strings(allVariants)
525			panic(fmt.Errorf("failed to find module %q matching %v. All variants:\n  %s",
526				name, matchVariations, strings.Join(allVariants, "\n  ")))
527		}
528	}
529
530	if len(modules) > 1 {
531		moduleStrings := []string{}
532		for _, m := range modules {
533			moduleStrings = append(moduleStrings, m.String())
534		}
535		sort.Strings(moduleStrings)
536		panic(fmt.Errorf("module %q has more than one variant that match %v:\n  %s",
537			name, matchVariations, strings.Join(moduleStrings, "\n  ")))
538	}
539
540	return newTestingModule(ctx.config, modules[0])
541}
542
543func (ctx *TestContext) ModuleForTests(name, variant string) TestingModule {
544	var module Module
545	ctx.VisitAllModules(func(m blueprint.Module) {
546		if ctx.ModuleName(m) == name && ctx.ModuleSubDir(m) == variant {
547			module = m.(Module)
548		}
549	})
550
551	if module == nil {
552		// find all the modules that do exist
553		var allModuleNames []string
554		var allVariants []string
555		ctx.VisitAllModules(func(m blueprint.Module) {
556			allModuleNames = append(allModuleNames, ctx.ModuleName(m))
557			if ctx.ModuleName(m) == name {
558				allVariants = append(allVariants, ctx.ModuleSubDir(m))
559			}
560		})
561		sort.Strings(allVariants)
562
563		if len(allVariants) == 0 {
564			panic(fmt.Errorf("failed to find module %q. All modules:\n  %s",
565				name, strings.Join(SortedUniqueStrings(allModuleNames), "\n  ")))
566		} else {
567			panic(fmt.Errorf("failed to find module %q variant %q. All variants:\n  %s",
568				name, variant, strings.Join(allVariants, "\n  ")))
569		}
570	}
571
572	return newTestingModule(ctx.config, module)
573}
574
575func (ctx *TestContext) ModuleVariantsForTests(name string) []string {
576	var variants []string
577	ctx.VisitAllModules(func(m blueprint.Module) {
578		if ctx.ModuleName(m) == name {
579			variants = append(variants, ctx.ModuleSubDir(m))
580		}
581	})
582	return variants
583}
584
585// SingletonForTests returns a TestingSingleton for the singleton registered with the given name.
586func (ctx *TestContext) SingletonForTests(name string) TestingSingleton {
587	allSingletonNames := []string{}
588	for _, s := range ctx.Singletons() {
589		n := ctx.SingletonName(s)
590		if n == name {
591			return TestingSingleton{
592				baseTestingComponent: newBaseTestingComponent(ctx.config, s.(testBuildProvider)),
593				singleton:            s.(*singletonAdaptor).Singleton,
594			}
595		}
596		allSingletonNames = append(allSingletonNames, n)
597	}
598
599	panic(fmt.Errorf("failed to find singleton %q."+
600		"\nall singletons: %v", name, allSingletonNames))
601}
602
603type InstallMakeRule struct {
604	Target        string
605	Deps          []string
606	OrderOnlyDeps []string
607}
608
609func parseMkRules(t *testing.T, config Config, nodes []mkparser.Node) []InstallMakeRule {
610	var rules []InstallMakeRule
611	for _, node := range nodes {
612		if mkParserRule, ok := node.(*mkparser.Rule); ok {
613			var rule InstallMakeRule
614
615			if targets := mkParserRule.Target.Words(); len(targets) == 0 {
616				t.Fatalf("no targets for rule %s", mkParserRule.Dump())
617			} else if len(targets) > 1 {
618				t.Fatalf("unsupported multiple targets for rule %s", mkParserRule.Dump())
619			} else if !targets[0].Const() {
620				t.Fatalf("unsupported non-const target for rule %s", mkParserRule.Dump())
621			} else {
622				rule.Target = normalizeStringRelativeToTop(config, targets[0].Value(nil))
623			}
624
625			prereqList := &rule.Deps
626			for _, prereq := range mkParserRule.Prerequisites.Words() {
627				if !prereq.Const() {
628					t.Fatalf("unsupported non-const prerequisite for rule %s", mkParserRule.Dump())
629				}
630
631				if prereq.Value(nil) == "|" {
632					prereqList = &rule.OrderOnlyDeps
633					continue
634				}
635
636				*prereqList = append(*prereqList, normalizeStringRelativeToTop(config, prereq.Value(nil)))
637			}
638
639			rules = append(rules, rule)
640		}
641	}
642
643	return rules
644}
645
646func (ctx *TestContext) InstallMakeRulesForTesting(t *testing.T) []InstallMakeRule {
647	installs := ctx.SingletonForTests("makevars").Singleton().(*makeVarsSingleton).installsForTesting
648	buf := bytes.NewBuffer(append([]byte(nil), installs...))
649	parser := mkparser.NewParser("makevars", buf)
650
651	nodes, errs := parser.Parse()
652	if len(errs) > 0 {
653		t.Fatalf("error parsing install rules: %s", errs[0])
654	}
655
656	return parseMkRules(t, ctx.config, nodes)
657}
658
659// MakeVarVariable provides access to make vars that will be written by the makeVarsSingleton
660type MakeVarVariable interface {
661	// Name is the name of the variable.
662	Name() string
663
664	// Value is the value of the variable.
665	Value() string
666}
667
668func (v makeVarsVariable) Name() string {
669	return v.name
670}
671
672func (v makeVarsVariable) Value() string {
673	return v.value
674}
675
676// PrepareForTestAccessingMakeVars sets up the test so that MakeVarsForTesting will work.
677var PrepareForTestAccessingMakeVars = GroupFixturePreparers(
678	PrepareForTestWithAndroidMk,
679	PrepareForTestWithMakevars,
680)
681
682// MakeVarsForTesting returns a filtered list of MakeVarVariable objects that represent the
683// variables that will be written out.
684//
685// It is necessary to use PrepareForTestAccessingMakeVars in tests that want to call this function.
686// Along with any other preparers needed to add the make vars.
687func (ctx *TestContext) MakeVarsForTesting(filter func(variable MakeVarVariable) bool) []MakeVarVariable {
688	vars := ctx.SingletonForTests("makevars").Singleton().(*makeVarsSingleton).varsForTesting
689	result := make([]MakeVarVariable, 0, len(vars))
690	for _, v := range vars {
691		if filter(v) {
692			result = append(result, v)
693		}
694	}
695
696	return result
697}
698
699func (ctx *TestContext) Config() Config {
700	return ctx.config
701}
702
703type testBuildProvider interface {
704	BuildParamsForTests() []BuildParams
705	RuleParamsForTests() map[blueprint.Rule]blueprint.RuleParams
706}
707
708type TestingBuildParams struct {
709	BuildParams
710	RuleParams blueprint.RuleParams
711
712	config Config
713}
714
715// RelativeToTop creates a new instance of this which has had any usages of the current test's
716// temporary and test specific build directory replaced with a path relative to the notional top.
717//
718// The parts of this structure which are changed are:
719// * BuildParams
720//   - Args
721//   - All Path, Paths, WritablePath and WritablePaths fields.
722//
723// * RuleParams
724//   - Command
725//   - Depfile
726//   - Rspfile
727//   - RspfileContent
728//   - CommandDeps
729//   - CommandOrderOnly
730//
731// See PathRelativeToTop for more details.
732//
733// deprecated: this is no longer needed as TestingBuildParams are created in this form.
734func (p TestingBuildParams) RelativeToTop() TestingBuildParams {
735	// If this is not a valid params then just return it back. That will make it easy to use with the
736	// Maybe...() methods.
737	if p.Rule == nil {
738		return p
739	}
740	if p.config.config == nil {
741		return p
742	}
743	// Take a copy of the build params and replace any args that contains test specific temporary
744	// paths with paths relative to the top.
745	bparams := p.BuildParams
746	bparams.Depfile = normalizeWritablePathRelativeToTop(bparams.Depfile)
747	bparams.Output = normalizeWritablePathRelativeToTop(bparams.Output)
748	bparams.Outputs = bparams.Outputs.RelativeToTop()
749	bparams.ImplicitOutput = normalizeWritablePathRelativeToTop(bparams.ImplicitOutput)
750	bparams.ImplicitOutputs = bparams.ImplicitOutputs.RelativeToTop()
751	bparams.Input = normalizePathRelativeToTop(bparams.Input)
752	bparams.Inputs = bparams.Inputs.RelativeToTop()
753	bparams.Implicit = normalizePathRelativeToTop(bparams.Implicit)
754	bparams.Implicits = bparams.Implicits.RelativeToTop()
755	bparams.OrderOnly = bparams.OrderOnly.RelativeToTop()
756	bparams.Validation = normalizePathRelativeToTop(bparams.Validation)
757	bparams.Validations = bparams.Validations.RelativeToTop()
758	bparams.Args = normalizeStringMapRelativeToTop(p.config, bparams.Args)
759
760	// Ditto for any fields in the RuleParams.
761	rparams := p.RuleParams
762	rparams.Command = normalizeStringRelativeToTop(p.config, rparams.Command)
763	rparams.Depfile = normalizeStringRelativeToTop(p.config, rparams.Depfile)
764	rparams.Rspfile = normalizeStringRelativeToTop(p.config, rparams.Rspfile)
765	rparams.RspfileContent = normalizeStringRelativeToTop(p.config, rparams.RspfileContent)
766	rparams.CommandDeps = normalizeStringArrayRelativeToTop(p.config, rparams.CommandDeps)
767	rparams.CommandOrderOnly = normalizeStringArrayRelativeToTop(p.config, rparams.CommandOrderOnly)
768
769	return TestingBuildParams{
770		BuildParams: bparams,
771		RuleParams:  rparams,
772	}
773}
774
775func normalizeWritablePathRelativeToTop(path WritablePath) WritablePath {
776	if path == nil {
777		return nil
778	}
779	return path.RelativeToTop().(WritablePath)
780}
781
782func normalizePathRelativeToTop(path Path) Path {
783	if path == nil {
784		return nil
785	}
786	return path.RelativeToTop()
787}
788
789func allOutputs(p BuildParams) []string {
790	outputs := append(WritablePaths(nil), p.Outputs...)
791	outputs = append(outputs, p.ImplicitOutputs...)
792	if p.Output != nil {
793		outputs = append(outputs, p.Output)
794	}
795	return outputs.Strings()
796}
797
798// AllOutputs returns all 'BuildParams.Output's and 'BuildParams.Outputs's in their full path string forms.
799func (p TestingBuildParams) AllOutputs() []string {
800	return allOutputs(p.BuildParams)
801}
802
803// baseTestingComponent provides functionality common to both TestingModule and TestingSingleton.
804type baseTestingComponent struct {
805	config   Config
806	provider testBuildProvider
807}
808
809func newBaseTestingComponent(config Config, provider testBuildProvider) baseTestingComponent {
810	return baseTestingComponent{config, provider}
811}
812
813// A function that will normalize a string containing paths, e.g. ninja command, by replacing
814// any references to the test specific temporary build directory that changes with each run to a
815// fixed path relative to a notional top directory.
816//
817// This is similar to StringPathRelativeToTop except that assumes the string is a single path
818// containing at most one instance of the temporary build directory at the start of the path while
819// this assumes that there can be any number at any position.
820func normalizeStringRelativeToTop(config Config, s string) string {
821	// The soongOutDir usually looks something like: /tmp/testFoo2345/001
822	//
823	// Replace any usage of the soongOutDir with out/soong, e.g. replace "/tmp/testFoo2345/001" with
824	// "out/soong".
825	outSoongDir := filepath.Clean(config.soongOutDir)
826	re := regexp.MustCompile(`\Q` + outSoongDir + `\E\b`)
827	s = re.ReplaceAllString(s, "out/soong")
828
829	// Replace any usage of the soongOutDir/.. with out, e.g. replace "/tmp/testFoo2345" with
830	// "out". This must come after the previous replacement otherwise this would replace
831	// "/tmp/testFoo2345/001" with "out/001" instead of "out/soong".
832	outDir := filepath.Dir(outSoongDir)
833	re = regexp.MustCompile(`\Q` + outDir + `\E\b`)
834	s = re.ReplaceAllString(s, "out")
835
836	return s
837}
838
839// normalizeStringArrayRelativeToTop creates a new slice constructed by applying
840// normalizeStringRelativeToTop to each item in the slice.
841func normalizeStringArrayRelativeToTop(config Config, slice []string) []string {
842	newSlice := make([]string, len(slice))
843	for i, s := range slice {
844		newSlice[i] = normalizeStringRelativeToTop(config, s)
845	}
846	return newSlice
847}
848
849// normalizeStringMapRelativeToTop creates a new map constructed by applying
850// normalizeStringRelativeToTop to each value in the map.
851func normalizeStringMapRelativeToTop(config Config, m map[string]string) map[string]string {
852	newMap := map[string]string{}
853	for k, v := range m {
854		newMap[k] = normalizeStringRelativeToTop(config, v)
855	}
856	return newMap
857}
858
859func (b baseTestingComponent) newTestingBuildParams(bparams BuildParams) TestingBuildParams {
860	return TestingBuildParams{
861		config:      b.config,
862		BuildParams: bparams,
863		RuleParams:  b.provider.RuleParamsForTests()[bparams.Rule],
864	}.RelativeToTop()
865}
866
867func (b baseTestingComponent) maybeBuildParamsFromRule(rule string) (TestingBuildParams, []string) {
868	var searchedRules []string
869	buildParams := b.provider.BuildParamsForTests()
870	for _, p := range buildParams {
871		ruleAsString := p.Rule.String()
872		searchedRules = append(searchedRules, ruleAsString)
873		if strings.Contains(ruleAsString, rule) {
874			return b.newTestingBuildParams(p), searchedRules
875		}
876	}
877	return TestingBuildParams{}, searchedRules
878}
879
880func (b baseTestingComponent) buildParamsFromRule(rule string) TestingBuildParams {
881	p, searchRules := b.maybeBuildParamsFromRule(rule)
882	if p.Rule == nil {
883		panic(fmt.Errorf("couldn't find rule %q.\nall rules:\n%s", rule, strings.Join(searchRules, "\n")))
884	}
885	return p
886}
887
888func (b baseTestingComponent) maybeBuildParamsFromDescription(desc string) (TestingBuildParams, []string) {
889	var searchedDescriptions []string
890	for _, p := range b.provider.BuildParamsForTests() {
891		searchedDescriptions = append(searchedDescriptions, p.Description)
892		if strings.Contains(p.Description, desc) {
893			return b.newTestingBuildParams(p), searchedDescriptions
894		}
895	}
896	return TestingBuildParams{}, searchedDescriptions
897}
898
899func (b baseTestingComponent) buildParamsFromDescription(desc string) TestingBuildParams {
900	p, searchedDescriptions := b.maybeBuildParamsFromDescription(desc)
901	if p.Rule == nil {
902		panic(fmt.Errorf("couldn't find description %q\nall descriptions:\n%s", desc, strings.Join(searchedDescriptions, "\n")))
903	}
904	return p
905}
906
907func (b baseTestingComponent) maybeBuildParamsFromOutput(file string) (TestingBuildParams, []string) {
908	searchedOutputs := WritablePaths(nil)
909	for _, p := range b.provider.BuildParamsForTests() {
910		outputs := append(WritablePaths(nil), p.Outputs...)
911		outputs = append(outputs, p.ImplicitOutputs...)
912		if p.Output != nil {
913			outputs = append(outputs, p.Output)
914		}
915		for _, f := range outputs {
916			if f.String() == file || f.Rel() == file || PathRelativeToTop(f) == file {
917				return b.newTestingBuildParams(p), nil
918			}
919			searchedOutputs = append(searchedOutputs, f)
920		}
921	}
922
923	formattedOutputs := []string{}
924	for _, f := range searchedOutputs {
925		formattedOutputs = append(formattedOutputs,
926			fmt.Sprintf("%s (rel=%s)", PathRelativeToTop(f), f.Rel()))
927	}
928
929	return TestingBuildParams{}, formattedOutputs
930}
931
932func (b baseTestingComponent) buildParamsFromOutput(file string) TestingBuildParams {
933	p, searchedOutputs := b.maybeBuildParamsFromOutput(file)
934	if p.Rule == nil {
935		panic(fmt.Errorf("couldn't find output %q.\nall outputs:\n    %s\n",
936			file, strings.Join(searchedOutputs, "\n    ")))
937	}
938	return p
939}
940
941func (b baseTestingComponent) allOutputs() []string {
942	var outputFullPaths []string
943	for _, p := range b.provider.BuildParamsForTests() {
944		outputFullPaths = append(outputFullPaths, allOutputs(p)...)
945	}
946	return outputFullPaths
947}
948
949// MaybeRule finds a call to ctx.Build with BuildParams.Rule set to a rule with the given name.  Returns an empty
950// BuildParams if no rule is found.
951func (b baseTestingComponent) MaybeRule(rule string) TestingBuildParams {
952	r, _ := b.maybeBuildParamsFromRule(rule)
953	return r
954}
955
956// Rule finds a call to ctx.Build with BuildParams.Rule set to a rule with the given name.  Panics if no rule is found.
957func (b baseTestingComponent) Rule(rule string) TestingBuildParams {
958	return b.buildParamsFromRule(rule)
959}
960
961// MaybeDescription finds a call to ctx.Build with BuildParams.Description set to a the given string.  Returns an empty
962// BuildParams if no rule is found.
963func (b baseTestingComponent) MaybeDescription(desc string) TestingBuildParams {
964	p, _ := b.maybeBuildParamsFromDescription(desc)
965	return p
966}
967
968// Description finds a call to ctx.Build with BuildParams.Description set to a the given string.  Panics if no rule is
969// found.
970func (b baseTestingComponent) Description(desc string) TestingBuildParams {
971	return b.buildParamsFromDescription(desc)
972}
973
974// MaybeOutput finds a call to ctx.Build with a BuildParams.Output or BuildParams.Outputs whose String() or Rel()
975// value matches the provided string.  Returns an empty BuildParams if no rule is found.
976func (b baseTestingComponent) MaybeOutput(file string) TestingBuildParams {
977	p, _ := b.maybeBuildParamsFromOutput(file)
978	return p
979}
980
981// Output finds a call to ctx.Build with a BuildParams.Output or BuildParams.Outputs whose String() or Rel()
982// value matches the provided string.  Panics if no rule is found.
983func (b baseTestingComponent) Output(file string) TestingBuildParams {
984	return b.buildParamsFromOutput(file)
985}
986
987// AllOutputs returns all 'BuildParams.Output's and 'BuildParams.Outputs's in their full path string forms.
988func (b baseTestingComponent) AllOutputs() []string {
989	return b.allOutputs()
990}
991
992// TestingModule is wrapper around an android.Module that provides methods to find information about individual
993// ctx.Build parameters for verification in tests.
994type TestingModule struct {
995	baseTestingComponent
996	module Module
997}
998
999func newTestingModule(config Config, module Module) TestingModule {
1000	return TestingModule{
1001		newBaseTestingComponent(config, module),
1002		module,
1003	}
1004}
1005
1006// Module returns the Module wrapped by the TestingModule.
1007func (m TestingModule) Module() Module {
1008	return m.module
1009}
1010
1011// VariablesForTestsRelativeToTop returns a copy of the Module.VariablesForTests() with every value
1012// having any temporary build dir usages replaced with paths relative to a notional top.
1013func (m TestingModule) VariablesForTestsRelativeToTop() map[string]string {
1014	return normalizeStringMapRelativeToTop(m.config, m.module.VariablesForTests())
1015}
1016
1017// OutputFiles first checks if module base outputFiles property has any output
1018// files can be used to return.
1019// If not, it calls OutputFileProducer.OutputFiles on the
1020// encapsulated module, exits the test immediately if there is an error and
1021// otherwise returns the result of calling Paths.RelativeToTop
1022// on the returned Paths.
1023func (m TestingModule) OutputFiles(t *testing.T, tag string) Paths {
1024	// TODO: add non-empty-string tag case and remove OutputFileProducer part
1025	if tag == "" && m.module.base().outputFiles.DefaultOutputFiles != nil {
1026		return m.module.base().outputFiles.DefaultOutputFiles.RelativeToTop()
1027	}
1028
1029	producer, ok := m.module.(OutputFileProducer)
1030	if !ok {
1031		t.Fatalf("%q must implement OutputFileProducer\n", m.module.Name())
1032	}
1033	paths, err := producer.OutputFiles(tag)
1034	if err != nil {
1035		t.Fatal(err)
1036	}
1037
1038	return paths.RelativeToTop()
1039}
1040
1041// TestingSingleton is wrapper around an android.Singleton that provides methods to find information about individual
1042// ctx.Build parameters for verification in tests.
1043type TestingSingleton struct {
1044	baseTestingComponent
1045	singleton Singleton
1046}
1047
1048// Singleton returns the Singleton wrapped by the TestingSingleton.
1049func (s TestingSingleton) Singleton() Singleton {
1050	return s.singleton
1051}
1052
1053func FailIfErrored(t *testing.T, errs []error) {
1054	t.Helper()
1055	if len(errs) > 0 {
1056		for _, err := range errs {
1057			t.Error(err)
1058		}
1059		t.FailNow()
1060	}
1061}
1062
1063// Fail if no errors that matched the regular expression were found.
1064//
1065// Returns true if a matching error was found, false otherwise.
1066func FailIfNoMatchingErrors(t *testing.T, pattern string, errs []error) bool {
1067	t.Helper()
1068
1069	matcher, err := regexp.Compile(pattern)
1070	if err != nil {
1071		t.Fatalf("failed to compile regular expression %q because %s", pattern, err)
1072	}
1073
1074	found := false
1075	for _, err := range errs {
1076		if matcher.FindStringIndex(err.Error()) != nil {
1077			found = true
1078			break
1079		}
1080	}
1081	if !found {
1082		t.Errorf("could not match the expected error regex %q (checked %d error(s))", pattern, len(errs))
1083		for i, err := range errs {
1084			t.Errorf("errs[%d] = %q", i, err)
1085		}
1086	}
1087
1088	return found
1089}
1090
1091func CheckErrorsAgainstExpectations(t *testing.T, errs []error, expectedErrorPatterns []string) {
1092	t.Helper()
1093
1094	if expectedErrorPatterns == nil {
1095		FailIfErrored(t, errs)
1096	} else {
1097		for _, expectedError := range expectedErrorPatterns {
1098			FailIfNoMatchingErrors(t, expectedError, errs)
1099		}
1100		if len(errs) > len(expectedErrorPatterns) {
1101			t.Errorf("additional errors found, expected %d, found %d",
1102				len(expectedErrorPatterns), len(errs))
1103			for i, expectedError := range expectedErrorPatterns {
1104				t.Errorf("expectedErrors[%d] = %s", i, expectedError)
1105			}
1106			for i, err := range errs {
1107				t.Errorf("errs[%d] = %s", i, err)
1108			}
1109			t.FailNow()
1110		}
1111	}
1112}
1113
1114func SetKatiEnabledForTests(config Config) {
1115	config.katiEnabled = true
1116}
1117
1118func SetTrimmedApexEnabledForTests(config Config) {
1119	config.productVariables.TrimmedApex = new(bool)
1120	*config.productVariables.TrimmedApex = true
1121}
1122
1123func AndroidMkEntriesForTest(t *testing.T, ctx *TestContext, mod blueprint.Module) []AndroidMkEntries {
1124	t.Helper()
1125	var p AndroidMkEntriesProvider
1126	var ok bool
1127	if p, ok = mod.(AndroidMkEntriesProvider); !ok {
1128		t.Errorf("module does not implement AndroidMkEntriesProvider: " + mod.Name())
1129	}
1130
1131	entriesList := p.AndroidMkEntries()
1132	aconfigUpdateAndroidMkEntries(ctx, mod.(Module), &entriesList)
1133	for i := range entriesList {
1134		entriesList[i].fillInEntries(ctx, mod)
1135	}
1136	return entriesList
1137}
1138
1139func AndroidMkDataForTest(t *testing.T, ctx *TestContext, mod blueprint.Module) AndroidMkData {
1140	t.Helper()
1141	var p AndroidMkDataProvider
1142	var ok bool
1143	if p, ok = mod.(AndroidMkDataProvider); !ok {
1144		t.Fatalf("module does not implement AndroidMkDataProvider: " + mod.Name())
1145	}
1146	data := p.AndroidMk()
1147	data.fillInData(ctx, mod)
1148	aconfigUpdateAndroidMkData(ctx, mod.(Module), &data)
1149	return data
1150}
1151
1152// Normalize the path for testing.
1153//
1154// If the path is relative to the build directory then return the relative path
1155// to avoid tests having to deal with the dynamically generated build directory.
1156//
1157// Otherwise, return the supplied path as it is almost certainly a source path
1158// that is relative to the root of the source tree.
1159//
1160// The build and source paths should be distinguishable based on their contents.
1161//
1162// deprecated: use PathRelativeToTop instead as it handles make install paths and differentiates
1163// between output and source properly.
1164func NormalizePathForTesting(path Path) string {
1165	if path == nil {
1166		return "<nil path>"
1167	}
1168	p := path.String()
1169	if w, ok := path.(WritablePath); ok {
1170		rel, err := filepath.Rel(w.getSoongOutDir(), p)
1171		if err != nil {
1172			panic(err)
1173		}
1174		return rel
1175	}
1176	return p
1177}
1178
1179// NormalizePathsForTesting creates a slice of strings where each string is the result of applying
1180// NormalizePathForTesting to the corresponding Path in the input slice.
1181//
1182// deprecated: use PathsRelativeToTop instead as it handles make install paths and differentiates
1183// between output and source properly.
1184func NormalizePathsForTesting(paths Paths) []string {
1185	var result []string
1186	for _, path := range paths {
1187		relative := NormalizePathForTesting(path)
1188		result = append(result, relative)
1189	}
1190	return result
1191}
1192
1193// PathRelativeToTop returns a string representation of the path relative to a notional top
1194// directory.
1195//
1196// It return "<nil path>" if the supplied path is nil, otherwise it returns the result of calling
1197// Path.RelativeToTop to obtain a relative Path and then calling Path.String on that to get the
1198// string representation.
1199func PathRelativeToTop(path Path) string {
1200	if path == nil {
1201		return "<nil path>"
1202	}
1203	return path.RelativeToTop().String()
1204}
1205
1206// PathsRelativeToTop creates a slice of strings where each string is the result of applying
1207// PathRelativeToTop to the corresponding Path in the input slice.
1208func PathsRelativeToTop(paths Paths) []string {
1209	var result []string
1210	for _, path := range paths {
1211		relative := PathRelativeToTop(path)
1212		result = append(result, relative)
1213	}
1214	return result
1215}
1216
1217// StringPathRelativeToTop returns a string representation of the path relative to a notional top
1218// directory.
1219//
1220// See Path.RelativeToTop for more details as to what `relative to top` means.
1221//
1222// This is provided for processing paths that have already been converted into a string, e.g. paths
1223// in AndroidMkEntries structures. As a result it needs to be supplied the soong output dir against
1224// which it can try and relativize paths. PathRelativeToTop must be used for process Path objects.
1225func StringPathRelativeToTop(soongOutDir string, path string) string {
1226	ensureTestOnly()
1227
1228	// A relative path must be a source path so leave it as it is.
1229	if !filepath.IsAbs(path) {
1230		return path
1231	}
1232
1233	// Check to see if the path is relative to the soong out dir.
1234	rel, isRel, err := maybeRelErr(soongOutDir, path)
1235	if err != nil {
1236		panic(err)
1237	}
1238
1239	if isRel {
1240		// The path is in the soong out dir so indicate that in the relative path.
1241		return filepath.Join("out/soong", rel)
1242	}
1243
1244	// Check to see if the path is relative to the top level out dir.
1245	outDir := filepath.Dir(soongOutDir)
1246	rel, isRel, err = maybeRelErr(outDir, path)
1247	if err != nil {
1248		panic(err)
1249	}
1250
1251	if isRel {
1252		// The path is in the out dir so indicate that in the relative path.
1253		return filepath.Join("out", rel)
1254	}
1255
1256	// This should never happen.
1257	panic(fmt.Errorf("internal error: absolute path %s is not relative to the out dir %s", path, outDir))
1258}
1259
1260// StringPathsRelativeToTop creates a slice of strings where each string is the result of applying
1261// StringPathRelativeToTop to the corresponding string path in the input slice.
1262//
1263// This is provided for processing paths that have already been converted into a string, e.g. paths
1264// in AndroidMkEntries structures. As a result it needs to be supplied the soong output dir against
1265// which it can try and relativize paths. PathsRelativeToTop must be used for process Paths objects.
1266func StringPathsRelativeToTop(soongOutDir string, paths []string) []string {
1267	var result []string
1268	for _, path := range paths {
1269		relative := StringPathRelativeToTop(soongOutDir, path)
1270		result = append(result, relative)
1271	}
1272	return result
1273}
1274
1275// StringRelativeToTop will normalize a string containing paths, e.g. ninja command, by replacing
1276// any references to the test specific temporary build directory that changes with each run to a
1277// fixed path relative to a notional top directory.
1278//
1279// This is similar to StringPathRelativeToTop except that assumes the string is a single path
1280// containing at most one instance of the temporary build directory at the start of the path while
1281// this assumes that there can be any number at any position.
1282func StringRelativeToTop(config Config, command string) string {
1283	return normalizeStringRelativeToTop(config, command)
1284}
1285
1286// StringsRelativeToTop will return a new slice such that each item in the new slice is the result
1287// of calling StringRelativeToTop on the corresponding item in the input slice.
1288func StringsRelativeToTop(config Config, command []string) []string {
1289	return normalizeStringArrayRelativeToTop(config, command)
1290}
1291
1292func EnsureListContainsSuffix(t *testing.T, result []string, expected string) {
1293	t.Helper()
1294	if !SuffixInList(result, expected) {
1295		t.Errorf("%q is not found in %v", expected, result)
1296	}
1297}
1298
1299type panickingConfigAndErrorContext struct {
1300	ctx *TestContext
1301}
1302
1303func (ctx *panickingConfigAndErrorContext) OtherModulePropertyErrorf(module Module, property, fmt string, args ...interface{}) {
1304	panic(ctx.ctx.PropertyErrorf(module, property, fmt, args...).Error())
1305}
1306
1307func (ctx *panickingConfigAndErrorContext) Config() Config {
1308	return ctx.ctx.Config()
1309}
1310
1311func PanickingConfigAndErrorContext(ctx *TestContext) ConfigAndErrorContext {
1312	return &panickingConfigAndErrorContext{
1313		ctx: ctx,
1314	}
1315}
1316